1
|
Wang Y, Bu H, Gu X, Liu W, Wang X. Integrated omic analysis provides insights into how Cuscuta australis inhibits the growth and reproduction of Xanthium spinosum. BMC PLANT BIOLOGY 2025; 25:657. [PMID: 40382545 DOI: 10.1186/s12870-025-06698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Xanthium spinosum is one of the most abundant and aggressively invasive plants in the world. Cuscuta australis parasitism hinders X. spinosum growth and development by absorbing nutrients, leading to reduced reproductive performance. However, which metabolite changes contribute to stunted growth and diminished reproductive performance in X. spinosum? Additionally, what genes regulate these metabolites? These underlying mechanisms remain largely unknown. RESULTS X. spinosum was used to determine the physiological relevance of C. australis parasitism to alleviate host plant growth and explore the molecular mechanism, with a focus on metabolic pathways. The results revealed that C. australis significantly reduced the growth potential of X. spinosum, with a particularly notable decrease in seed quantity, which decreased by 92.07%. C. australis parasitism increased the activities of the peroxidase (POD) and superoxide dismutase (SOD) enzymes in the stems of X. spinosum. Integrated transcriptome and metabolome analysis revealed that C. australis influenced lignin synthesis in the stem through the phenylpropanoid biosynthesis pathway. Concurrently, the majority of differentially expressed genes in the galactose metabolism pathway were upregulated, leading to increased sugar accumulation and disrupted metabolism. Furthermore, all differentially expressed genes in the autophagy-other pathway were upregulated, resulting in excessive autophagy and a significant reduction in the reproductive performance of X. spinosum. CONCLUSIONS The results provide a theoretical foundation for the development of targeted pesticides aimed at controlling X. spinosum.
Collapse
Affiliation(s)
- Yunxia Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China
| | - Hubai Bu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China
| | - Xin Gu
- Agricultural College of Ningxia University, Yinchuan, 750021, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Xinpu Wang
- Agricultural College of Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
2
|
Shahi I, Dongas SA, Ilmain JK, Torres VJ, Ratner AJ. Characterization of tigurilysin, a novel human CD59-specific cholesterol-dependent cytolysin, reveals a role for host specificity in augmenting toxin activity. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001393. [PMID: 37702594 PMCID: PMC10569062 DOI: 10.1099/mic.0.001393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Cholesterol-dependent cytolysins (CDCs) are a large family of pore-forming toxins, produced by numerous Gram-positive pathogens. CDCs depend on host membrane cholesterol for pore formation; some CDCs also require surface-associated human CD59 (hCD59) for binding, conferring specificity for human cells. We purified a recombinant version of a putative CDC encoded in the genome of Streptococcus oralis subsp. tigurinus, tigurilysin (TGY), and used CRISPR/Cas9 to construct hCD59 knockout (KO) HeLa and JEG-3 cell lines. Cell viability assays with TGY on wild-type and hCD59 KO cells showed that TGY is a hCD59-dependent CDC. Two variants of TGY exist among S. oralis subsp. tigurinus genomes, only one of which is functional. We discovered that a single amino acid change between these two TGY variants determines its activity. Flow cytometry and oligomerization Western blots revealed that the single amino acid difference between the two TGY isoforms disrupts host cell binding and oligomerization. Furthermore, experiments with hCD59 KO cells and cholesterol-depleted cells demonstrated that TGY is fully dependent on both hCD59 and cholesterol for activity, unlike other known hCD59-dependent CDCs. Using full-length CDCs and toxin constructs differing only in the binding domain, we determined that having hCD59 dependence leads to increased lysis efficiency, conferring a potential advantage to organisms producing hCD59-dependent CDCs.
Collapse
Affiliation(s)
- Ifrah Shahi
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Sophia A. Dongas
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Juliana K. Ilmain
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Adam J. Ratner
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
3
|
Tian S, Zhou N. Gaining New Insights into Fundamental Biological Pathways by Bacterial Toxin-Based Genetic Screens. Bioengineering (Basel) 2023; 10:884. [PMID: 37627769 PMCID: PMC10451959 DOI: 10.3390/bioengineering10080884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Genetic screen technology has been applied to study the mechanism of action of bacterial toxins-a special class of virulence factors that contribute to the pathogenesis caused by bacterial infections. These screens aim to identify host factors that directly or indirectly facilitate toxin intoxication. Additionally, specific properties of certain toxins, such as membrane interaction, retrograde trafficking, and carbohydrate binding, provide robust probes to comprehensively investigate the lipid biosynthesis, membrane vesicle transport, and glycosylation pathways, respectively. This review specifically focuses on recent representative toxin-based genetic screens that have identified new players involved in and provided new insights into fundamental biological pathways, such as glycosphingolipid biosynthesis, protein glycosylation, and membrane vesicle trafficking pathways. Functionally characterizing these newly identified factors not only expands our current understanding of toxin biology but also enables a deeper comprehension of fundamental biological questions. Consequently, it stimulates the development of new therapeutic approaches targeting both bacterial infectious diseases and genetic disorders with defects in these factors and pathways.
Collapse
Affiliation(s)
- Songhai Tian
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Nini Zhou
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Shahi I, Dongas SA, Ilmain JK, Torres VJ, Ratner AJ. Characterization of Tigurilysin, a Novel Human CD59-Specific Cholesterol-Dependent Cytolysin, Reveals a Role for Host Specificity in Augmenting Toxin Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545930. [PMID: 37546867 PMCID: PMC10401958 DOI: 10.1101/2023.06.21.545930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Cholesterol dependent cytolysins (CDCs) are a large family of pore forming toxins, produced by numerous gram-positive pathogens. CDCs depend on host membrane cholesterol for pore formation; some CDCs also require surface associated human CD59 (hCD59) for binding, conferring specificity for human cells. We purified a recombinant version of a putative CDC encoded in the genome of Streptococcus oralis subsp. tigurinus , tigurilysin (TGY), and used CRISPR/Cas9 to construct hCD59 knockout (KO) HeLa and JEG-3 cell lines. Cell viability assays with TGY on WT and hCD59 KO cells showed that TGY is a hCD59-dependent CDC. Two variants of TGY exist among S. oralis subsp. tigurinus genomes, only one of which is functional. We discovered that a single amino acid change between these two TGY variants determines its activity. Flow cytometry and oligomerization western blots revealed that the single amino acid difference between the two TGY isoforms disrupts host cell binding and oligomerization. Furthermore, experiments with hCD59 KO cells and cholesterol depleted cells demonstrated that TGY is fully dependent on both hCD59 and cholesterol for activity, unlike other known hCD59-dependent CDCs. Using full-length CDCs and toxin constructs differing only in the binding domain, we determined that having hCD59-dependence leads to increased lysis efficiency, conferring a potential advantage to organisms producing hCD59-dependent CDCs. IMPORTANCE Cholesterol dependent cytolysins (CDCs) are produced by a variety of disease-causing bacteria, and may play a significant role in pathogenesis. Understanding CDC mechanisms of action provides useful information for developing anti-virulence strategies against bacteria that utilize CDCs and other pore-forming toxins in pathogenesis. This study describes for the first time a novel human-specific CDC with an atypical pore forming mechanism compared to known CDCs. In addition, this study demonstrates that human-specificity potentially confers increased lytic efficiency to CDCs. These data provide a possible explanation for the selective advantage of developing hCD59-dependency in CDCs and the consequent host restriction.
Collapse
Affiliation(s)
- Ifrah Shahi
- New York University Grossman School of Medicine, Department of Pediatrics, New York, NY
| | - Sophia A. Dongas
- New York University Grossman School of Medicine, Department of Pediatrics, New York, NY
| | - Juliana K. Ilmain
- New York University Grossman School of Medicine, Department of Microbiology, New York, NY
| | - Victor J. Torres
- New York University Grossman School of Medicine, Department of Microbiology, New York, NY
| | - Adam J. Ratner
- New York University Grossman School of Medicine, Department of Pediatrics, New York, NY
- New York University Grossman School of Medicine, Department of Microbiology, New York, NY
| |
Collapse
|
5
|
Kwanten B, Deconick T, Walker C, Wang F, Landesman Y, Daelemans D. E3 ubiquitin ligase ASB8 promotes selinexor-induced proteasomal degradation of XPO1. Biomed Pharmacother 2023; 160:114305. [PMID: 36731340 DOI: 10.1016/j.biopha.2023.114305] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Selinexor (KPT-330), a small-molecule inhibitor of exportin-1 (XPO1, CRM1) with potent anticancer activity, has recently been granted FDA approval for treatment of relapsed/refractory multiple myeloma and diffuse large B-cell lymphoma (DLBCL), with a number of additional indications currently under clinical investigation. Since selinexor has often demonstrated synergy when used in combination with other drugs, notably bortezomib and dexamethasone, a more comprehensive approach to uncover new beneficial interactions would be of great value. Moreover, stratifying patients, personalizing therapeutics and improving clinical outcomes requires a better understanding of the genetic vulnerabilities and resistance mechanisms underlying drug response. Here, we used CRISPR-Cas9 loss-of-function chemogenetic screening to identify drug-gene interactions with selinexor in chronic myeloid leukemia, multiple myeloma and DLBCL cell lines. We identified the TGFβ-SMAD4 pathway as an important mediator of resistance to selinexor in multiple myeloma cells. Moreover, higher activity of this pathway correlated with prolonged progression-free survival in multiple myeloma patients treated with selinexor, indicating that the TGFβ-SMAD4 pathway is a potential biomarker predictive of therapeutic outcome. In addition, we identified ASB8 (ankyrin repeat and SOCS box containing 8) as a shared modulator of selinexor sensitivity across all tested cancer types, with both ASB8 knockout and overexpression resulting in selinexor hypersensitivity. Mechanistically, we showed that ASB8 promotes selinexor-induced proteasomal degradation of XPO1. This study provides insight into the genetic factors that influence response to selinexor treatment and could support both the development of predictive biomarkers as well as new drug combinations.
Collapse
Affiliation(s)
- Bert Kwanten
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy (Rega Institute), Leuven, Belgium
| | - Tine Deconick
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy (Rega Institute), Leuven, Belgium
| | | | - Feng Wang
- Karyopharm Therapeutics, Newton, MA 02459, USA
| | | | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy (Rega Institute), Leuven, Belgium.
| |
Collapse
|
6
|
Ray S, Roth R, Keyel PA. Membrane repair triggered by cholesterol-dependent cytolysins is activated by mixed lineage kinases and MEK. SCIENCE ADVANCES 2022; 8:eabl6367. [PMID: 35294243 PMCID: PMC8926344 DOI: 10.1126/sciadv.abl6367] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Repair of plasma membranes damaged by bacterial pore-forming toxins, such as streptolysin O or perfringolysin O, during septic cardiomyopathy or necrotizing soft tissue infections is mediated by several protein families. However, the activation of these proteins downstream of ion influx is poorly understood. Here, we demonstrate that following membrane perforation by bacterial cholesterol-dependent cytolysins, calcium influx activates mixed lineage kinase 3 independently of protein kinase C or ceramide generation. Mixed lineage kinase 3 uncouples mitogen-activated kinase kinase (MEK) and extracellular-regulated kinase (ERK) signaling. MEK signals via an ERK-independent pathway to promote rapid annexin A2 membrane recruitment and enhance microvesicle shedding. This pathway accounted for 70% of all calcium ion-dependent repair responses to streptolysin O and perfringolysin O, but only 50% of repair to intermedilysin. We conclude that mixed lineage kinase signaling via MEK coordinates microvesicle shedding, which is critical for cellular survival against cholesterol-dependent cytolysins.
Collapse
Affiliation(s)
- Sucharit Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Robyn Roth
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter A. Keyel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Corresponding author.
| |
Collapse
|
7
|
Shahi I, Llaneras CN, Perelman SS, Torres VJ, Ratner AJ. Genome-Wide CRISPR-Cas9 Screen Does Not Identify Host Factors Modulating Streptococcus agalactiae β-Hemolysin/Cytolysin-Induced Cell Death. Microbiol Spectr 2022; 10:e0218621. [PMID: 35196804 PMCID: PMC8865549 DOI: 10.1128/spectrum.02186-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/07/2022] [Indexed: 11/20/2022] Open
Abstract
Pore-forming toxins (PFTs) are commonly produced by pathogenic bacteria, and understanding them is key to the development of virulence-targeted therapies. Streptococcus agalactiae, or group B Streptococcus (GBS), produces several factors that enhance its pathogenicity, including the PFT β-hemolysin/cytolysin (βhc). Little is understood about the cellular factors involved in βhc pore formation. We conducted a whole-genome CRISPR-Cas9 forward genetic screen to identify host genes that might contribute to βhc pore formation and cell death. While the screen identified the established receptor, CD59, in control experiments using the toxin intermedilysin (ILY), no clear candidate genes were identified that were required for βhc-mediated lethality. Of the top targets from the screen, two genes involved in membrane remodeling and repair represented candidates that might modulate the kinetics of βhc-induced cell death. Upon attempted validation of the results using monoclonal cell lines with targeted disruption of these genes, no effect on βhc-mediated cell lysis was observed. The CRISPR-Cas9 screen results are consistent with the hypothesis that βhc does not require a single nonessential host factor to mediate target cell death. IMPORTANCE CRISPR-Cas9 forward genetic screens have been used to identify host cell targets required by bacterial toxins. They have been used successfully to both verify known targets and elucidate novel host factors required by toxins. Here, we show that this approach fails to identify host factors required for cell death due to βhc, a toxin required for GBS virulence. These data suggest that βhc may not require a host cell receptor for toxin function or may require a host receptor that is an essential gene and would not be identified using this screening strategy.
Collapse
Affiliation(s)
- Ifrah Shahi
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Cristina N. Llaneras
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Sofya S. Perelman
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
| | - Adam J. Ratner
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|