1
|
Maino A, Bourova-Flin E, Decaens T, Khochbin S, Macek Jilkova Z, Rousseaux S, Plumas J, Saas P, Chaperot L, Manches O. Identification of immunogenic HLA-A*02:01 epitopes associated with HCC for immunotherapy development. Hepatol Commun 2025; 9:e0659. [PMID: 40008881 PMCID: PMC11868434 DOI: 10.1097/hc9.0000000000000659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/16/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND HCC is the most common form of primary liver cancer, and despite recent advances in cancer treatment, it remains associated with poor prognosis and a lack of response to conventional therapies. Immunotherapies have emerged as a promising approach for cancer treatment, especially through the identification of tumor-specific immunogenic epitopes that can trigger a targeted immune response. This study aimed to identify immunogenic epitopes associated with HCC for the development of specific immunotherapies. METHODS We used high-throughput data screening and bioinformatics tools for antigens and epitope selection. The immunogenicity of the selected epitopes was studied after coculture of peripheral blood mononuclear cells obtained from healthy donors or HCC patients with a plasmacytoid dendritic cell line loaded with the selected peptides. Specific CD8+ T cell amplification and functionality were determined by labeling with tetramers and by IFN-γ and CD107a expression (flow cytometry and ELISpot). RESULTS We analyzed the transcriptional gene expression landscape of HCC to screen for a set of 16 ectopically expressed genes in a majority of HCC samples. Epitopes predicted to bind to HLA-A*02:01 with high affinity were further validated for their immunogenicity using the previously described plasmacytoid dendritic cell line in ex vivo CD8+ activation assays using patient immune cells. Three out of the 30 tested epitopes, namely FLWGPRALV (MAGE-A3), FMNKFIYEI (AFP), and KMFHTLDEL (LRRC46), elicited a strong T-cell response, in activation assays, degranulation assays, and IFN-γ secretion assays. CONCLUSIONS These results highlight the potential of these peptides to be considered as targets for immunotherapies. The discovery of such immunogenic epitopes should improve immune-based treatments for liver cancer in combination with the current treatment approach.
Collapse
Affiliation(s)
- Anthony Maino
- EFS, R&D Department, Grenoble, France
- Univ. Grenoble Alpes, INSERM U, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| | - Ekaterina Bourova-Flin
- Univ. Grenoble Alpes, INSERM U, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| | - Thomas Decaens
- Univ. Grenoble Alpes, INSERM U, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
| | - Saadi Khochbin
- Univ. Grenoble Alpes, INSERM U, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| | - Zuzana Macek Jilkova
- Univ. Grenoble Alpes, INSERM U, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
| | - Sophie Rousseaux
- Univ. Grenoble Alpes, INSERM U, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| | - Joel Plumas
- PDC*line Pharma SAS, R&D Department, Grenoble, France
| | - Philippe Saas
- EFS, R&D Department, Grenoble, France
- Univ. Grenoble Alpes, INSERM U, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| | - Laurence Chaperot
- EFS, R&D Department, Grenoble, France
- Univ. Grenoble Alpes, INSERM U, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| | - Olivier Manches
- EFS, R&D Department, Grenoble, France
- Univ. Grenoble Alpes, INSERM U, CNRS UMR, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
2
|
Du X, He Y, Dong P, Yan C, Wei Y, Yao H, Sun J. A novel gene signature based on endoplasmic reticulum stress for predicting prognosis in hepatocellular carcinoma. Transl Cancer Res 2024; 13:4574-4592. [PMID: 39430815 PMCID: PMC11483465 DOI: 10.21037/tcr-24-191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/14/2024] [Indexed: 10/22/2024]
Abstract
Background Hepatocellular carcinoma (HCC) remains one of the most common human cancers, the death cases induced by HCC are increasing these years. Endoplasmic reticulum stress (ERS) occurs when misfolded proteins cannot be disposed of properly. It is reported that ERS plays a crucial role in the pathogenesis of human malignant tumors. The aim of this study is to construct a novel gene signature based on ERS for predicting prognosis in HCC. Methods The data of HCC patients were downloaded from public databases. The Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis were performed to construct ERS-related gene signature. The cases were divided into high- and low-risk groups based on the ERS-related gene signature in The Cancer Genome Atlas (TCGA) cohort. Subsequently, the differences in messenger ribonucleic acid (mRNA) expression patterns, immune status, tumor mutation burden (TMB) and copy number variants (CNV) were investigated between high- and low-risk groups. Then, a predictive nomogram according to the ERS-related gene signature and clinicopathological variables was established. At last, we explored the biological functions of TMX1 which had the biggest coefficient and we investigated the effect of BRSK2 on apoptosis in HCC. Results In our study, a 9-gene ERS-related gene signature was constructed. The results showed that patients in the low-risk group had a better prognosis than the high-risk group patients. The results of receiver operating characteristic (ROC) curves revealed that the area under the curve (AUC) was 0.784 at 1 year, 0.780 at 2 years, 0.793 at 3 years in the training set. While in validation cohort, this index was 0.694 at 1 year, 0.622 at 2 years, 0.613 at 3 years respectively. The analysis of immune status revealed an immunosuppressive microenvironment in the high-risk group. The analysis of TMB and CNV revealed that the high-risk group patients had a higher genomic mutation frequency. In Univariate Cox regression analysis, the hazard ratio of RiskScore was 2.718 [95% confidence interval (CI): 2.173-3.399]. In Multivariate Cox regression analysis, the hazard ratio of RiskScore was 2.422 (95% CI: 1.805-3.25). Then, we established a nomogram according to the RiskScore and Eastern Cooperative Oncology Group performance status. The AUCs of the nomogram were 0.851 at 1 year, 0.860 at 2 years, and 0.866 at 3 years. At last, we found that TMX1 knockdown can inhibit the proliferation and migration of Huh7 and HepG2 cells. In addition, BRSK2 knockdown could promote the apoptosis induced by ERS. Conclusions In our study, a novel ERS-related gene signature was constructed to predict the prognosis of HCC patients. In addition, TMX1 and BRSK2 could promote the progression of HCC. This study may provide a new understanding for HCC.
Collapse
Affiliation(s)
- Xuezhi Du
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yingjie He
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Penggang Dong
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Caigu Yan
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yaqing Wei
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hao Yao
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jinjin Sun
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Szlasa W, Sauer N, Baczyńska D, Ziętek M, Haczkiewicz-Leśniak K, Karpiński P, Fleszar M, Fortuna P, Kulus MJ, Piotrowska A, Kmiecik A, Barańska A, Michel O, Novickij V, Tarek M, Kasperkiewicz P, Dzięgiel P, Podhorska-Okołów M, Saczko J, Kulbacka J. Pulsed electric field induces exocytosis and overexpression of MAGE antigens in melanoma. Sci Rep 2024; 14:12546. [PMID: 38822068 PMCID: PMC11143327 DOI: 10.1038/s41598-024-63181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
Nanosecond pulsed electric field (nsPEF) has emerged as a promising approach for inducing cell death in melanoma, either as a standalone treatment or in combination with chemotherapeutics. However, to date, there has been a shortage of studies exploring the impact of nsPEF on the expression of cancer-specific molecules. In this investigation, we sought to assess the effects of nsPEF on melanoma-specific MAGE (Melanoma Antigen Gene Protein Family) expression. To achieve this, melanoma cells were exposed to nsPEF with parameters set at 8 kV/cm, 200 ns duration, 100 pulses, and a frequency of 10 kHz. We also aimed to comprehensively describe the consequences of this electric field on melanoma cells' invasion and proliferation potential. Our findings reveal that following exposure to nsPEF, melanoma cells release microvesicles containing MAGE antigens, leading to a simultaneous increase in the expression and mRNA content of membrane-associated antigens such as MAGE-A1. Notably, we observed an unexpected increase in the expression of PD-1 as well. While we did not observe significant differences in the cells' proliferation or invasion potential, a remarkable alteration in the cells' metabolomic and lipidomic profiles towards a less aggressive phenotype was evident. Furthermore, we validated these results using ex vivo tissue cultures and 3D melanoma culture models. Our study demonstrates that nsPEF can elevate the expression of membrane-associated proteins, including melanoma-specific antigens. The mechanism underlying the overexpression of MAGE antigens involves the initial release of microvesicles containing MAGE antigens, followed by a gradual increase in mRNA levels, ultimately resulting in elevated expression of MAGE antigens post-experiment. These findings shed light on a novel method for modulating cancer cells to overexpress cancer-specific molecules, thereby potentially enhancing their sensitivity to targeted anticancer therapy.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Medical University Hospital, Borowska 213, 50-556, Wrocław, Poland.
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| | - Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Marcin Ziętek
- Department of Surgical Oncology, Wroclaw Comprehensive Cancer Center, Wroclaw, Poland
| | | | - Paweł Karpiński
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| | - Mariusz Fleszar
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
- Omics Research Center, Wroclaw Medical University, Wrocław, Poland
| | - Paulina Fortuna
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
- Omics Research Center, Wroclaw Medical University, Wrocław, Poland
| | - Michał J Kulus
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw, Poland
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw, Poland
| | - Agnieszka Barańska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw, Poland
| | - Olga Michel
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227, Vilnius, Lithuania
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410, Vilnius, Lithuania
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, 54000, Nancy, France
| | - Paulina Kasperkiewicz
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw, Poland
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410, Vilnius, Lithuania
| |
Collapse
|
4
|
Chen Y, Gao F, He Y, Liu M, Quan Y, Zhang P. DUB3 is a MAGEA3 deubiquitinase and a potential therapeutic target in hepatocellular carcinoma. iScience 2024; 27:109181. [PMID: 38414853 PMCID: PMC10897913 DOI: 10.1016/j.isci.2024.109181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/24/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Although melanoma-associated antigen A3 and A6 (MAGEA3/6)-specific tumor vaccines have shown antitumor effects in melanoma and non-small cell lung cancer (NSCLC), many cancers do not respond because MAGEA3 can promote cancer without triggering an immune response. Here, we identified DUB3 as the MAGEA3 deubiquitinase. DUB3 interacts with, deubiquitinates and stabilizes MAGEA3. Depletion of DUB3 in hepatocellular carcinoma (HCC) cells results in MAGEA3 degradation and P53-dependent growth inhibition. Moreover, DUB3 knockout attenuates HCC tumorigenesis in vivo, which can be rescued by restoration of MAGEA3. Intriguingly, pharmacological inhibition of DUB3 by palbociclib promotes degradation of MAGEA3 and inhibits tumor growth in preclinical models implanted with parental HCC cells but not with DUB3 knockout HCC cells. In patients with HCC, DUB3 is highly expressed, and its levels positively correlate with MAGEA3 levels. Taken together, DUB3 is a MAGEA3 deubiquitinase, and abrogating DUB3 enzymatic activity by palbociclib is a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Yuanhong Chen
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feng Gao
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yan He
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Meijun Liu
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan Quan
- Stem Cell Laboratory, the Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| | - Peijing Zhang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Verma S, Swain D, Kushwaha PP, Brahmbhatt S, Gupta K, Sundi D, Gupta S. Melanoma Antigen Family A (MAGE A) as Promising Biomarkers and Therapeutic Targets in Bladder Cancer. Cancers (Basel) 2024; 16:246. [PMID: 38254738 PMCID: PMC10813664 DOI: 10.3390/cancers16020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The Melanoma Antigen Gene (MAGE) is a large family of highly conserved proteins that share a common MAGE homology domain. Interestingly, many MAGE family members exhibit restricted expression in reproductive tissues but are abnormally expressed in various human malignancies, including bladder cancer, which is a common urinary malignancy associated with high morbidity and mortality rates. The recent literature suggests a more prominent role for MAGEA family members in driving bladder tumorigenesis. This review highlights the role of MAGEA proteins, the potential for them to serve as diagnostic or prognostic biomarker(s), and as therapeutic targets for bladder cancer.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Diya Swain
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (D.S.); (S.B.)
| | - Prem Prakash Kushwaha
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Smit Brahmbhatt
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (D.S.); (S.B.)
| | - Karishma Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Debasish Sundi
- Department of Urology, Division of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, James Cancer Hospital & Wexner Medical Center, Columbus, OH 43210, USA;
| | - Sanjay Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Wang ZW, Yu QY, Xu MJ, Zhou CY, Li JP, Liao XH. MAGE-A11 is a potential prognostic biomarker and immunotherapeutic target in gastric cancer. Aging (Albany NY) 2024; 16:285-298. [PMID: 38180746 PMCID: PMC10817374 DOI: 10.18632/aging.205368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024]
Abstract
Gastric cancer poses a serious threat to human health and affects the digestive system. The lack of early symptoms and a dearth of effective identification methods make diagnosis difficult, with many patients only receiving a definitive diagnosis at a malignant stage, causing them to miss out on optimal therapeutic interventions. Melanoma-associated antigen-A (MAGE-A) is part of the MAGE family and falls under the cancer/testis antigen (CTA) category. The MAGE-A subfamily plays a significant role in tumorigenesis, proliferation and migration. The expression, prognosis and function of MAGE-A family members in GC, however, remain unclear. Our research and screening have shown that MAGE-A11 was highly expressed in GC tissues and was associated with poor patient prognosis. Additionally, MAGE-A11 functioned as an independent prognostic factor in GC through Cox regression analysis, and its expression showed significant correlation with both tumour immune cell infiltration and responsiveness to immunotherapy. Our data further indicated that MAGE-A11 regulated GC cell proliferation and migration. Subsequently, our findings propose that MAGE-A11 may operate as a prognostic factor, having potential as an immunotherapy target for GC.
Collapse
Affiliation(s)
- Zhi-Wen Wang
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
- Key Laboratory of Chronic Noncommunicable Diseases, Yueyang Vocational Technical College, Yueyang 414006, Hunan, P.R. China
| | - Qi-Ying Yu
- Central Laboratory, Tumor Hospital Affiliated to Nantong University, Nantong 226361, Jiangsu, P.R. China
| | - Meng-Jiao Xu
- Zhaoyuan Linglong Central Health Center, Zhaoyuan 265400, Shandong, P.R. China
| | - Chuan-Yi Zhou
- Yueyang People’s Hospital, Yueyang Hospital Affiliated to Hunan Normal University Neoplasm Ward 1, Yueyang 414000, Hunan, P.R. China
| | - Jia-Peng Li
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
- College of Science, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, Hubei, P.R. China
| |
Collapse
|
7
|
Sun G, Chen H, Xia J, Li T, Ye H, Li J, Zhang X, Cheng Y, Wang K, Shi J, Wang P. Diagnostic performance of anti-MAGEA family protein autoantibodies in esophageal squamous cell carcinoma. Int Immunopharmacol 2023; 125:111041. [PMID: 37866309 DOI: 10.1016/j.intimp.2023.111041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
MAGEA family proteins are immunogenic and can produce corresponding autoantibodies, and we aim to evaluate the diagnostic value of anti-MAGEA family protein autoantibodies in esophageal squamous cell carcinoma (ESCC). Protein chip was used to detect the expression level of anti-MAGEA autoantibodies (IgG and IgM) in 20 mixed serum samples. Enzyme linked immunosorbent assay was adopted to determine the expression level of autoantibodies in 1019 serum samples (423 ESCC, 423 healthy control (HC), 173 benign esophageal disease (BED)), and stepwise logistic regression analysis was used for developing a diagnostic model. Eight anti-MAGEA autoantibodies were screened out based on the protein chip. The levels of 7 autoantibodies (MAGEA1-IgG, MAGEA3-IgG, MAGEA3-IgM, MAGEA4-IgG, MAGEA6-IgG, MAGEA10-IgG, MAGEA12-IgG) in ESCC were significantly higher than that in HC, and the levels of anti-MAGEA1 IgG, anti-MAGEA3-IgG, anti-MAGEA4-IgG, anti-MAGEA10-IgG and anti-MAGEA12-IgG autoantibodies in ESCC group were significantly higher than those in BED group. The area under curve (AUC), sensitivity and specificity of the logistic regression model (MAGEA1-IgG, MAGEA4-IgG, MAGEA6-IgG, MAGEA12-IgG) in the training set and the validation set were 0.725 and 0.698, 55.2% and 51.8%, 80.4% and 84.5%, respectively, in distinguishing ESCC and HC. The model also could distinguish between ESCC and BED, with the AUC of 0.743, sensitivity of 55.4% and specificity of 89.0%. The positive rate of the model combined with cytokeratin 19 fragment to diagnose ESCC reached 78.0%. The study identified anti-MAGEA autoantibodies with potential diagnostic value for ESCC, which may provide new promising for the detection of the disease.
Collapse
Affiliation(s)
- Guiying Sun
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Huili Chen
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Junfen Xia
- Office of Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Tiandong Li
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hua Ye
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jiaxin Li
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Xiaoyue Zhang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yifan Cheng
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Keyan Wang
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450052, Henan Province, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jianxiang Shi
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450052, Henan Province, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Peng Wang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China; Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450052, Henan Province, China.
| |
Collapse
|
8
|
Xiu M, Bao W, Wang J, Chen J, Li Y, Hai Y. High USP32 expression contributes to cancer progression and is correlated with immune infiltrates in hepatocellular carcinoma. BMC Cancer 2023; 23:1105. [PMID: 37957631 PMCID: PMC10644423 DOI: 10.1186/s12885-023-11617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Ubiquitin-specific protease 32 (USP32) is a highly conserved gene that promotes cancer progression. However, its role in hepatocellular carcinoma (HCC) is not well understood. The aim of this project is to explore the clinical significance and functions of USP32 in HCC. METHODS The expression of USP32 in HCC was evaluated using data from TCGA, GEO, TISCH, tissue microarray, and human HCC samples from our hospital. Survival analysis, PPI analysis and GSEA analysis were performed to evaluate USP32-related clinical significance, key molecules and enrichment pathways. Using the ssGSEA algorithm and TIMER, we investigated the relationships between USP32 and immune infiltrates in the TME. Univariate and multivariate Cox regression analyses were then used to identify key USP32-related immunomodulators and constructed a USP32-related immune prognostic model. Finally, CCK8, transwell and colony formation assays of HCC cells were performed and an HCC nude mouse model was established to verify the oncogenic role of USP32. RESULTS USP32 is overexpressed in HCC and its expression is an independent predictive factor for outcomes of HCC patients. USP32 is associated with pathways related to cell behaviors and cancer signaling, and its expression is significantly correlated with the infiltration of immune cells in the TME. We also successfully constructed a USP32-related immune prognostic model using 5 genes. Wet experiments confirmed that knockdown of USP32 could repress the proliferation, colony formation and migration of HCC cells in vitro and inhibit tumor growth in vivo. CONCLUSION USP32 is highly expressed in HCC and closely correlates with the TME of HCC. It is a potential target for improving the efficacy of chemotherapy and developing new strategies for targeted therapy and immunotherapy in HCC.
Collapse
Affiliation(s)
- Mengxi Xiu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Wenfang Bao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jialin Wang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jingde Chen
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Yanan Hai
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
9
|
Liu D, Shi Y, Chen H, Nisar MA, Jabara N, Langwinski N, Mattson S, Nagaoka K, Bai X, Lu S, Huang CK. Molecular profiling reveals potential targets in cholangiocarcinoma. World J Gastroenterol 2023; 29:4053-4071. [PMID: 37476584 PMCID: PMC10354586 DOI: 10.3748/wjg.v29.i25.4053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a devastating malignancy and has a very poor prognosis if tumors spread outside the liver. Understanding the molecular mechanisms underlying the CCA progression will likely yield therapeutic approaches toward treating this deadly disease. AIM To determine the molecular pathogenesis in CCA progression. METHODS In silico analysis, in vitro cell culture, CCA transgenic animals, histological, and molecular assays were adopted to determine the molecular pathogenesis. RESULTS The transcriptomic data of human CCA samples were retrieved from The Cancer Genome Atlas (TGCA, CHOL), European Bioinformatics Institute (EBI, GAD00001001076), and Gene Expression Omnibus (GEO, GSE107943) databases. Using Gene set enrichment analysis, the cell cycle and Notch related pathways were demonstrated to be significantly activated in CCA in TCGA and GEO datasets. We, through differentially expressed genes, found several cell cycle and notch associated genes were significantly up-regulated in cancer tissues when compared with the non-cancerous control samples. The associated genes, via quantitative real-time PCR and western blotting assays, were further examined in normal human cholangiocytes, CCA cell lines, mouse normal bile ducts, and mouse CCA tumors established by specifically depleting P53 and expressing KrasG12D mutation in the liver. Consistently, we validated that the cell cycle and Notch pathways are up-regulated in CCA cell lines and mouse CCA tumors. Interestingly, targeting cell cycle and notch pathways using small molecules also exhibited significant beneficial effects in controlling tumor malignancy. More importantly, we demonstrated that several cell cycle and Notch associated genes are significantly associated with poor overall survival and disease-free survival using the Log-Rank test. CONCLUSION In summary, our study comprehensively analyzed the gene expression pattern of CCA samples using publicly available datasets and identified the cell cycle and Notch pathways are potential therapeutic targets in this deadly disease.
Collapse
Affiliation(s)
- Dan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yang Shi
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hongze Chen
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Muhammad Azhar Nisar
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Nicholas Jabara
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Noah Langwinski
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Sophia Mattson
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Katsuya Nagaoka
- Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Xuewei Bai
- Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Shaolei Lu
- Department of Pathology, Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Chiung-Kuei Huang
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, United States
| |
Collapse
|
10
|
Nin DS, Deng LW. Biology of Cancer-Testis Antigens and Their Therapeutic Implications in Cancer. Cells 2023; 12:cells12060926. [PMID: 36980267 PMCID: PMC10047177 DOI: 10.3390/cells12060926] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Tumour-specific antigens have been an area of interest in cancer therapy since their discovery in the middle of the 20th century. In the era of immune-based cancer therapeutics, redirecting our immune cells to target these tumour-specific antigens has become even more relevant. Cancer-testis antigens (CTAs) are a class of antigens with an expression specific to the testis and cancer cells. CTAs have also been demonstrated to be expressed in a wide variety of cancers. Due to their frequency and specificity of expression in a multitude of cancers, CTAs have been particularly attractive as cancer-specific therapeutic targets. There is now a rapid expansion of CTAs being identified and many studies have been conducted to correlate CTA expression with cancer and therapy-resistant phenotypes. Furthermore, there is an increasing number of clinical trials involving using some of these CTAs as molecular targets in pharmacological and immune-targeted therapeutics for various cancers. This review will summarise the current knowledge of the biology of known CTAs in tumorigenesis and the regulation of CTA genes. CTAs as molecular targets and the therapeutic implications of these CTA-targeted anticancer strategies will also be discussed.
Collapse
Affiliation(s)
- Dawn Sijin Nin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- National University Cancer Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| |
Collapse
|
11
|
Singh AK, Singh SV, Kumar R, Kumar S, Senapati S, Pandey AK. Current therapeutic modalities and chemopreventive role of natural products in liver cancer: Progress and promise. World J Hepatol 2023; 15:1-18. [PMID: 36744169 PMCID: PMC9896505 DOI: 10.4254/wjh.v15.i1.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/02/2022] [Accepted: 12/21/2022] [Indexed: 01/16/2023] Open
Abstract
Liver cancer is a severe concern for public health officials since the clinical cases are increasing each year, with an estimated 5-year survival rate of 30%-35% after diagnosis. Hepatocellular carcinoma (HCC) constitutes a significant subtype of liver cancer (approximate75%) and is considered primary liver cancer. Treatment for liver cancer mainly depends on the stage of its progression, where surgery including, hepatectomy and liver transplantation, and ablation and radiotherapy are the prime choice. For advanced liver cancer, various drugs and immunotherapy are used as first-line treatment, whereas second-line treatment includes chemotherapeutic drugs from natural and synthetic origins. Sorafenib and lenvatinib are first-line therapies, while regorafenib and ramucirumab are second-line therapy. Various metabolic and signaling pathways such as Notch, JAK/ STAT, Hippo, TGF-β, and Wnt have played a critical role during HCC progression. Dysbiosis has also been implicated in liver cancer. Drug-induced toxicity is a key obstacle in the treatment of liver cancer, necessitating the development of effective and safe medications, with natural compounds such as resveratrol, curcumin, diallyl sulfide, and others emerging as promising anticancer agents. This review highlights the current status of liver cancer research, signaling pathways, therapeutic targets, current treatment strategies and the chemopreventive role of various natural products in managing liver cancer.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Botany, Government Naveen Girls College, Balod (Hemchand Yadav University), Durg, Chattisgarh, India
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Shiv Vardan Singh
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Shashank Kumar
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Sabyasachi Senapati
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India.
| |
Collapse
|
12
|
Thelen M, Keller D, Lehmann J, Wennhold K, Weitz H, Bauer E, Gathof B, Brüggemann M, Kotrova M, Quaas A, Mallmann C, Chon SH, Hillmer AM, Bruns C, von Bergwelt-Baildon M, Garcia-Marquez MA, Schlößer HA. Immune responses against shared antigens are common in esophago-gastric cancer and can be enhanced using CD40-activated B cells. J Immunother Cancer 2022; 10:jitc-2022-005200. [PMID: 36600602 PMCID: PMC9743382 DOI: 10.1136/jitc-2022-005200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Specific immune response is a hallmark of cancer immunotherapy and shared tumor-associated antigens (TAAs) are important targets. Recent advances using combined cellular therapy against multiple TAAs renewed the interest in this class of antigens. Our study aims to determine the role of TAAs in esophago-gastric adenocarcinoma (EGA). METHODS RNA expression was assessed by NanoString in tumor samples of 41 treatment-naïve EGA patients. Endogenous T cell and antibody responses against the 10 most relevant TAAs were determined by FluoroSpot and protein-bound bead assays. Digital image analysis was used to evaluate the correlation of TAAs and T-cell abundance. T-cell receptor sequencing, in vitro expansion with autologous CD40-activated B cells (CD40Bs) and in vitro cytotoxicity assays were applied to determine specific expansion, clonality and cytotoxic activity of expanded T cells. RESULTS 68.3% of patients expressed ≥5 TAAs simultaneously with coregulated clusters, which were similar to data from The Cancer Genome Atlas (n=505). Endogenous cellular or humoral responses against ≥1 TAA were detectable in 75.0% and 53.7% of patients, respectively. We found a correlation of T-cell abundance and the expression of TAAs and genes related to antigen presentation. TAA-specific T-cell responses were polyclonal, could be induced or enhanced using autologous CD40Bs and were cytotoxic in vitro. Despite the frequent expression of TAAs co-occurrence with immune responses was rare. CONCLUSIONS We identified the most relevant TAAs in EGA for monitoring of clinical trials and as therapeutic targets. Antigen-escape rather than missing immune response should be considered as mechanism underlying immunotherapy resistance of EGA.
Collapse
Affiliation(s)
- Martin Thelen
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Diandra Keller
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jonas Lehmann
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Kerstin Wennhold
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Hendrik Weitz
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Eugen Bauer
- Institute of Transfusion Medicine, University of Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Birgit Gathof
- Institute of Transfusion Medicine, University of Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Monika Brüggemann
- Klinik für Innere Medizin II, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Michaela Kotrova
- Klinik für Innere Medizin II, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Alexander Quaas
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christoph Mallmann
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Seung-Hun Chon
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Axel M Hillmer
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christiane Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Michael von Bergwelt-Baildon
- Department of Internal Medicine III, University Hospital, Ludwig Maximilians University Munich, München, Germany,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Maria Alejandra Garcia-Marquez
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Hans Anton Schlößer
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany,Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
13
|
Korlimarla A, Ps H, Prabhu J, Ragulan C, Patil Y, Vp S, Desai K, Mathews A, Appachu S, Diwakar RB, Bs S, Melcher A, Cheang M, Sadanandam A. Comprehensive characterization of immune landscape of Indian and Western triple negative breast cancers. Transl Oncol 2022; 25:101511. [PMID: 35964339 PMCID: PMC9386467 DOI: 10.1016/j.tranon.2022.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 11/01/2022] Open
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is a heterogeneous disease with a significant challenge to effectively manage in the clinic worldwide. Immunotherapy may be beneficial to TNBC patients if responders can be effectively identified. Here we sought to elucidate the immune landscape of TNBCs by stratifying patients into immune-specific subtypes (immunotypes) to decipher the molecular and cellular presentations and signaling events of this heterogeneous disease and associating them with their clinical outcomes and potential treatment options. EXPERIMENTAL DESIGN We profiled 730 immune genes in 88 retrospective Indian TNBC samples using the NanoString platform, established immunotypes using non-negative matrix factorization-based machine learning approach, and validated them using Western TNBCs (n=422; public datasets). Immunotype-specific gene signatures were associated with clinicopathological features, immune cell types, biological pathways, acute/chronic inflammatory responses, and immunogenic cell death processes. Responses to different immunotherapies associated with TNBC immunotypes were assessed using cross-cancer comparison to melanoma (n=504). Tumor-infiltrating lymphocytes (TILs) and pan-macrophage spatial marker expression were evaluated. RESULTS We identified three robust transcriptome-based immunotypes in both Indian and Western TNBCs in similar proportions. Immunotype-1 tumors, mainly representing well-known claudin-low and immunomodulatory subgroups, harbored dense TIL infiltrates and T-helper-1 (Th1) response profiles associated with smaller tumors, pre-menopausal status, and a better prognosis. They displayed a cascade of events, including acute inflammation, damage-associated molecular patterns, T-cell receptor-related and chemokine-specific signaling, antigen presentation, and viral-mimicry pathways. On the other hand, immunotype-2 was enriched for Th2/Th17 responses, CD4+ regulatory cells, basal-like/mesenchymal immunotypes, and an intermediate prognosis. In contrast to the two T-cell enriched immunotypes, immunotype-3 patients expressed innate immune genes/proteins, including those representing myeloid infiltrations (validated by spatial immunohistochemistry), and had poor survival. Remarkably, a cross-cancer comparison analysis revealed the association of immunotype-1 with responses to anti-PD-L1 and MAGEA3 immunotherapies. CONCLUSION Overall, the TNBC immunotypes identified in TNBCs reveal different prognoses, immune infiltrations, signaling, acute/chronic inflammation leading to immunogenic cell death of cancer cells, and potentially distinct responses to immunotherapies. The overlap in immune characteristics in Indian and Western TNBCs suggests similar efficiency of immunotherapy in both populations if strategies to select patients according to immunotypes can be further optimized and implemented.
Collapse
Affiliation(s)
- Aruna Korlimarla
- St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India; Sri Shankara Cancer Hospital and Research Centre, Bangalore, India
| | - Hari Ps
- St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India; Sri Shankara Cancer Hospital and Research Centre, Bangalore, India; Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Jyoti Prabhu
- St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Chanthirika Ragulan
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Yatish Patil
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Snijesh Vp
- St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Krisha Desai
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Aju Mathews
- MOSC Medical College, Kolenchery, Kerala, India
| | - Sandhya Appachu
- Sri Shankara Cancer Hospital and Research Centre, Bangalore, India
| | - Ravi B Diwakar
- Sri Shankara Cancer Hospital and Research Centre, Bangalore, India
| | - Srinath Bs
- Sri Shankara Cancer Hospital and Research Centre, Bangalore, India
| | - Alan Melcher
- Centre for Translational Immunotherapy, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Maggie Cheang
- Clinical Trials and Statistical Unit, The Institute of Cancer Research, London, UK
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK; Centre for Translational Immunotherapy, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK; Centre for Global Oncology, Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK.
| |
Collapse
|
14
|
Bai R, Yuan C. Kita-Kyushu Lung Cancer Antigen-1 (KK-LC-1): A Promising Cancer Testis Antigen. Aging Dis 2022; 13:1267-1277. [PMID: 35855340 PMCID: PMC9286905 DOI: 10.14336/ad.2021.1207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer has always been a huge problem in the field of human health, and its early diagnosis and treatment are the key to solving this problem. Cancer testis antigens (CTAs) are a family of multifunctional proteins that are specifically expressed in male spermatozoa and tumor cells but not in healthy somatic cells. Studies have found that CTAs are involved in the occurrence and development of tumors, and some CTAs trigger immunogenicity, which suggests a possibility of tumor immunotherapy. The differential expression and function of CTAs in normal tissues and tumor cells can promote the screening of tumor markers and the development of new immunotherapies. This article introduces the expression of Kita-Kyushu lung cancer antigen-1 (KK-LC-1), a new member of the CTA family, in different types of tumors and its role in immunotherapy.
Collapse
Affiliation(s)
- Rui Bai
- 1Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cheng Yuan
- 2Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Abstract
Liver cancer, more specifically hepatocellular carcinoma (HCC), is the second leading cause of cancer-related death and its incidence is increasing globally. Around 50% of patients with HCC receive systemic therapies, traditionally sorafenib or lenvatinib in the first line and regorafenib, cabozantinib or ramucirumab in the second line. In the past 5 years, immune-checkpoint inhibitors have revolutionized the management of HCC. The combination of atezolizumab and bevacizumab has been shown to improve overall survival relative to sorafenib, resulting in FDA approval of this regimen. More recently, durvalumab plus tremelimumab yielded superior overall survival versus sorafenib and atezolizumab plus cabozantinib yielded superior progression-free survival. In addition, pembrolizumab monotherapy and the combination of nivolumab plus ipilimumab have received FDA Accelerated Approval in the second-line setting based on early efficacy data. Despite these major advances, the molecular underpinnings governing immune responses and evasion remain unclear. The immune microenvironment has crucial roles in the development and progression of HCC and distinct aetiology-dependent immune features have been defined. Inflamed and non-inflamed classes of HCC and genomic signatures have been associated with response to immune-checkpoint inhibitors, yet no validated biomarker is available to guide clinical decision-making. This Review provides information on the immune microenvironments underlying the response or resistance of HCC to immunotherapies. In addition, current evidence from phase III trials on the efficacy, immune-related adverse events and aetiology-dependent mechanisms of response are described. Finally, we discuss emerging trials assessing immunotherapies across all stages of HCC that might change the management of this disease in the near future.
Collapse
|
16
|
Wu SC, Münger K. Role and Clinical Utility of Cancer/Testis Antigens in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13225690. [PMID: 34830845 PMCID: PMC8616139 DOI: 10.3390/cancers13225690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer/testis (CT) antigens exhibit selective expression predominantly in immunoprivileged tissues in non-pathological contexts but are aberrantly expressed in diverse cancers. Due to their expression pattern, they have historically been attractive targets for immunotherapies. A growing number of studies implicate CT antigens in almost all hallmarks of cancer, suggesting that they may act as cancer drivers. CT antigens are expressed in head and neck squamous cell carcinomas. However, their role in the pathogenesis of these cancers remains poorly studied. Given that CT antigens hold intriguing potential as therapeutic targets and as biomarkers for prognosis and that they can provide novel insights into oncogenic mechanisms, their further study in the context of head and squamous cell carcinoma is warranted.
Collapse
Affiliation(s)
- Sharon Changshan Wu
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Karl Münger
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Correspondence:
| |
Collapse
|