1
|
Hernandez-Ortiz S, Ok K, O’Halloran TV, Fiebig A, Crosson S. A co-conserved gene pair supports Caulobacter iron homeostasis during chelation stress. J Bacteriol 2025; 207:e0048424. [PMID: 40084995 PMCID: PMC12004947 DOI: 10.1128/jb.00484-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/21/2024] [Indexed: 03/16/2025] Open
Abstract
Synthetic metal chelators are widely used in industrial, clinical, and agricultural settings, leading to their accumulation in the environment. We measured the growth of Caulobacter crescentus, a soil and aquatic bacterium, in the presence of the ubiquitous chelator ethylenediaminetetraacetic acid (EDTA) and found that it restricts growth by lowering intracellular iron levels. Using barcoded transposon sequencing, we identified an operonic gene pair, cciT-cciO, that is required to maintain iron homeostasis in laboratory media during EDTA challenge. cciT encodes one of four TonB-dependent transporters that are regulated by the ferric uptake repressor (Fur) and stands out among this group of genes in its ability to support Caulobacter growth across diverse media conditions. The function of CciT strictly requires cciO, which encodes a cytoplasmic FeII dioxygenase-family protein. Our results thus define a functional partnership between an outer membrane iron receptor and a cytoplasmic dioxygenase that are broadly co-conserved in Proteobacteria. We expanded our analysis to natural environments by examining the growth of mutant strains in freshwater from two lakes, each with biochemical and geochemical profiles that differ markedly from standard laboratory media. In lake water, Caulobacter growth did not require cciT or cciO and was less affected by EDTA treatment. This result aligns with our observation that EDTA toxicity is influenced by common forms of biologically chelated iron and the spectrum of free cations present in the medium. Our study defines a conserved iron acquisition system in Proteobacteria and bridges laboratory-based physiology studies with real-world conditions.IMPORTANCEMetal-chelating chemicals are widely used across industries, including as preservatives in the food sector, but their full impact on microbial physiology is not well understood. We identified two genes, cciT and cciO, that function together to support Caulobacter crescentus iron balance when cells are exposed to the common synthetic chelator, EDTA. CciT is an outer membrane transporter and CciO is a dioxygenase-family protein that are mutually conserved in many bacteria, including human pathogens where mutations in cciT homologs are linked to clinical resistance to the siderophore antibiotic cefiderocol. This study identifies a conserved genetic system that supports iron homeostasis during chelation stress and illuminates the iron acquisition versatility and stress resilience of Caulobacter in freshwater environments.
Collapse
Affiliation(s)
- Sergio Hernandez-Ortiz
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Kiwon Ok
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
- Elemental Health Institute, Michigan State University, East Lansing, Michigan, USA
| | - Thomas V. O’Halloran
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
- Elemental Health Institute, Michigan State University, East Lansing, Michigan, USA
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Aretha Fiebig
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Sean Crosson
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Ortiz SH, Ok K, O’Halloran TV, Fiebig A, Crosson S. A co-conserved gene pair supports Caulobacter iron homeostasis during chelation stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.16.618771. [PMID: 40027609 PMCID: PMC11870441 DOI: 10.1101/2024.10.16.618771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Synthetic metal chelators are widely used in industrial, clinical, and agricultural settings, leading to their accumulation in the environment. We measured the growth of Caulobacter crescentus, a soil and aquatic bacterium, in the presence of the ubiquitous chelator ethylenediaminetetraacetic acid (EDTA) and found that it restricts growth by lowering intracellular iron levels. Using barcoded transposon sequencing, we identified an operonic gene pair, cciT-cciO, that is required to maintain iron homeostasis in laboratory media during EDTA challenge. cciT encodes one of four TonB-dependent transporters that are regulated by the ferric uptake repressor (Fur) and stands out among this group of genes in its ability to support Caulobacter growth across diverse media conditions. The function of CciT strictly requires cciO, which encodes a cytoplasmic FeII dioxygenase-family protein. Our results thus define a functional partnership between an outer membrane iron receptor and a cytoplasmic dioxygenase that are broadly co-conserved in Proteobacteria. We expanded our analysis to natural environments by examining the growth of mutant strains in freshwater from two lakes, each with biochemical and geochemical profiles that differ markedly from standard laboratory media. In lake water, Caulobacter growth did not require cciT or cciO and was less affected by EDTA treatment. This result aligns with our observation that EDTA toxicity is influenced by common forms of biologically chelated iron and the spectrum of free cations present in the medium. Our study defines a conserved iron acquisition system in Proteobacteria and bridges laboratory-based physiology studies with real-world conditions. IMPORTANCE Metal-chelating chemicals are widely used across industries, including as preservatives in the food sector, but their full impact on microbial physiology is not well understood. We identified two genes, cciT and cciO, that function together to support Caulobacter crescentus iron balance when cells are exposed to the common synthetic chelator, EDTA. CciT is an outer membrane transporter and CciO is a dioxygenase-family protein that are mutually conserved in many bacteria, including several human pathogens, where mutations in cciT homologs are linked to clinical resistance to the siderophore antibiotic, cefiderocol. This study identifies a conserved genetic system that supports iron homeostasis during chelation stress and illuminates the iron acquisition versatility and stress resilience of Caulobacter in freshwater environments.
Collapse
Affiliation(s)
- Sergio Hernandez Ortiz
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
| | - Kiwon Ok
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
- Elemental Health Institute, Michigan State University, East Lansing, MI, USA
| | - Thomas V. O’Halloran
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
- Elemental Health Institute, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Aretha Fiebig
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
| | - Sean Crosson
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Zappa S, Berne C, Morton RI, De Stercke J, Brun YV. The HmrABCX pathway regulates the transition between motile and sessile lifestyles in Caulobacter crescentus by a HfiA-independent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571505. [PMID: 38168291 PMCID: PMC10760086 DOI: 10.1101/2023.12.13.571505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Through its cell cycle, the bacterium Caulobacter crescentus switches from a motile, free-living state, to a sessile surface-attached cell. During this coordinated process, cells undergo irreversible morphological changes, such as shedding of their polar flagellum and synthesis of an adhesive holdfast at the same pole. In this work, we used genetic screens to identify genes involved in the regulation of the motile to sessile lifestyle transition. We identified a predicted hybrid histidine kinase that inhibits biofilm formation and activates the motile lifestyle: HmrA (Holdfast and motility regulator A). Genetic screens and genomic localization led to the identification of additional genes that regulate the proportion of cells harboring an active flagellum or a holdfast and that form a putative phosphorelay pathway with HmrA. Further genetic analysis indicates that the Hmr pathway is independent of the holdfast synthesis regulator HfiA and may impact c-di-GMP synthesis through the diguanylate cyclase DgcB pathway. Finally, we provide evidence that the Hmr pathway is involved in the regulation of sessile-to-motile lifestyle as a function of environmental stresses, namely excess copper and non-optimal temperatures.
Collapse
Affiliation(s)
- Sébastien Zappa
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, CANADA
| | - Cecile Berne
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, CANADA
| | - Robert I. Morton
- Department of Biology, Indiana University, Bloomington, IN, USA
- Present address: Boston Scientific, Yokneam, Northern, ISRAEL
| | - Jonathan De Stercke
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, CANADA
- Present address: Unité de Recherche en Biologie des Micro-organismes, Université de Namur, 61 rue de Bruxelles, B-5000 Namur, BELGIUM
| | - Yves V. Brun
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, CANADA
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
4
|
McLaughlin M, Fiebig A, Crosson S. XRE transcription factors conserved in Caulobacter and φCbK modulate adhesin development and phage production. PLoS Genet 2023; 19:e1011048. [PMID: 37972151 PMCID: PMC10688885 DOI: 10.1371/journal.pgen.1011048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
The xenobiotic response element (XRE) family of transcription factors (TFs), which are commonly encoded by bacteria and bacteriophage, regulate diverse features of bacterial cell physiology and impact phage infection dynamics. Through a pangenome analysis of Caulobacter species isolated from soil and aquatic ecosystems, we uncovered an apparent radiation of a paralogous XRE TF gene cluster, several of which have established functions in the regulation of holdfast adhesin development and biofilm formation in C. crescentus. We further discovered related XRE TFs throughout the class Alphaproteobacteria and its phages, including the φCbK Caulophage, suggesting that members of this cluster impact host-phage interactions. Here we show that a closely related group of XRE transcription factors encoded by both C. crescentus and φCbK can physically interact and function to control the transcription of a common gene set, influencing processes including holdfast development and the production of φCbK virions. The φCbK-encoded XRE paralog, tgrL, is highly expressed at the earliest stages of infection and can directly inhibit transcription of host genes including hfiA, a potent holdfast inhibitor, and gafYZ, an activator of prophage-like gene transfer agents (GTAs). XRE proteins encoded from the C. crescentus chromosome also directly repress gafYZ transcription, revealing a functionally redundant set of host regulators that may protect against spurious production of GTA particles and inadvertent cell lysis. Deleting the C. crescentus XRE transcription factors reduced φCbK burst size, while overexpressing these host genes or φCbK tgrL rescued this burst defect. We conclude that this XRE TF gene cluster, shared by C. crescentus and φCbK, plays an important role in adhesion regulation under phage-free conditions, and influences host-phage dynamics during infection.
Collapse
Affiliation(s)
- Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
5
|
North H, McLaughlin M, Fiebig A, Crosson S. The Caulobacter NtrB-NtrC two-component system bridges nitrogen assimilation and cell development. J Bacteriol 2023; 205:e0018123. [PMID: 37791753 PMCID: PMC10601693 DOI: 10.1128/jb.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/03/2023] [Indexed: 10/05/2023] Open
Abstract
A suite of molecular sensory systems enables Caulobacter to control growth, development, and reproduction in response to levels of essential elements. The bacterial enhancer-binding protein (bEBP) NtrC and its cognate sensor histidine kinase, NtrB, are key regulators of nitrogen assimilation in many bacteria, but their roles in Caulobacter metabolism and development are not well defined. Notably, Caulobacter NtrC is an unconventional bEBP that lacks the σ54-interacting loop commonly known as the GAFTGA motif. Here we show that deletion of Caulobacter crescentus ntrC slows cell growth in complex medium and that ntrB and ntrC are essential when ammonium is the sole nitrogen source due to their requirement for glutamine synthetase expression. Random transposition of a conserved IS3-family mobile genetic element frequently rescued the growth defect of ntrC mutant strains by restoring transcription of the glnBA operon, revealing a possible role for IS3 transposition in shaping the evolution of Caulobacter populations during nutrient limitation. We further identified dozens of direct NtrC-binding sites on the C. crescentus chromosome, with a large fraction located near genes involved in polysaccharide biosynthesis. The majority of binding sites align with those of the essential nucleoid-associated protein, GapR, or the cell cycle regulator, MucR1. NtrC is therefore predicted to directly impact the regulation of cell cycle and cell development. Indeed, loss of NtrC function led to elongated polar stalks and elevated synthesis of cell envelope polysaccharides. This study establishes regulatory connections between NtrC, nitrogen metabolism, polar morphogenesis, and envelope polysaccharide synthesis in Caulobacter. IMPORTANCE Bacteria balance cellular processes with the availability of nutrients in their environment. The NtrB-NtrC two-component signaling system is responsible for controlling nitrogen assimilation in many bacteria. We have characterized the effect of ntrB and ntrC deletion on Caulobacter growth and development and uncovered a role for spontaneous IS element transposition in the rescue of transcriptional and nutritional deficiencies caused by ntrC mutation. We further defined the regulon of Caulobacter NtrC, a bacterial enhancer-binding protein, and demonstrate that it shares specific binding sites with essential proteins involved in cell cycle regulation and chromosome organization. Our work provides a comprehensive view of transcriptional regulation mediated by a distinctive NtrC protein, establishing its connection to nitrogen assimilation and developmental processes in Caulobacter.
Collapse
Affiliation(s)
- Hunter North
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
North H, McLaughlin M, Fiebig A, Crosson S. The Caulobacter NtrB-NtrC two-component system bridges nitrogen assimilation and cell development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543975. [PMID: 37333394 PMCID: PMC10274813 DOI: 10.1101/2023.06.06.543975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
A suite of molecular sensory systems enables Caulobacter to control growth, development, and reproduction in response to levels of essential elements. The bacterial enhancer binding protein (bEBP) NtrC, and its cognate sensor histidine kinase NtrB, are key regulators of nitrogen assimilation in many bacteria, but their roles in Caulobacter metabolism and development are not well defined. Notably, Caulobacter NtrC is an unconventional bEBP that lacks the σ54-interacting loop commonly known as the GAFTGA motif. Here we show that deletion of C. crescentus ntrC slows cell growth in complex medium, and that ntrB and ntrC are essential when ammonium is the sole nitrogen source due to their requirement for glutamine synthetase (glnA) expression. Random transposition of a conserved IS3-family mobile genetic element frequently rescued the growth defect of ntrC mutant strains by restoring transcription of the glnBA operon, revealing a possible role for IS3 transposition in shaping the evolution of Caulobacter populations during nutrient limitation. We further identified dozens of direct NtrC binding sites on the C. crescentus chromosome, with a large fraction located near genes involved in polysaccharide biosynthesis. The majority of binding sites align with those of the essential nucleoid associated protein, GapR, or the cell cycle regulator, MucR1. NtrC is therefore predicted to directly impact the regulation of cell cycle and cell development. Indeed, loss of NtrC function led to elongated polar stalks and elevated synthesis of cell envelope polysaccharides. This study establishes regulatory connections between NtrC, nitrogen metabolism, polar morphogenesis, and envelope polysaccharide synthesis in Caulobacter .
Collapse
Affiliation(s)
- Hunter North
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| |
Collapse
|
7
|
McLaughlin M, Fiebig A, Crosson S. XRE Transcription Factors Conserved in Caulobacter and φCbK Modulate Adhesin Development and Phage Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554034. [PMID: 37645952 PMCID: PMC10462132 DOI: 10.1101/2023.08.20.554034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Upon infection, transcriptional shifts in both a host bacterium and its invading phage determine host and viral fitness. The xenobiotic response element (XRE) family of transcription factors (TFs), which are commonly encoded by bacteria and phages, regulate diverse features of bacterial cell physiology and impact phage infection dynamics. Through a pangenome analysis of Caulobacter species isolated from soil and aquatic ecosystems, we uncovered an apparent radiation of a paralogous XRE TF gene cluster, several of which have established functions in the regulation of holdfast adhesin development and biofilm formation in C. crescentus. We further discovered related XRE TFs across the class Alphaproteobacteria and its phages, including the φCbK Caulophage, suggesting that members of this gene cluster impact host-phage interactions. Here we show that that a closely related group of XRE proteins, encoded by both C. crescentus and φCbK, can form heteromeric associations and control the transcription of a common gene set, influencing processes including holdfast development and the production of φCbK virions. The φCbK XRE paralog, tgrL, is highly expressed at the earliest stages of infection and can directly repress transcription of hfiA, a potent holdfast inhibitor, and gafYZ, a transcriptional activator of prophage-like gene transfer agents (GTAs) encoded on the C. crescentus chromosome. XRE proteins encoded from the C. crescentus chromosome also directly repress gafYZ transcription, revealing a functionally redundant set of host regulators that may protect against spurious production of GTA particles and inadvertent cell lysis. Deleting host XRE transcription factors reduced φCbK burst size, while overexpressing these genes or φCbK tgrL rescued this burst defect. We conclude that an XRE TF gene cluster, shared by C. crescentus and φCbK, plays an important role in adhesion regulation under phage-free conditions, and influences host-phage dynamics during infection.
Collapse
Affiliation(s)
- Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Affiliation(s)
- Cecile Berne
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|