1
|
Traversa D, Diakou A, Colombo M, Kumar S, Long T, Chaintoutis SC, Venco L, Betti Miller G, Prichard R. First case of macrocyclic lactone-resistant Dirofilaria immitis in Europe - Cause for concern. Int J Parasitol Drugs Drug Resist 2024; 25:100549. [PMID: 38795510 PMCID: PMC11153229 DOI: 10.1016/j.ijpddr.2024.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Heartworm disease caused by the nematode Dirofilaria immitis is one of the most important parasitoses of dogs. The treatment of the infection is long, complicated, risky and expensive. Conversely, prevention is easy, safe, and effective and it is achieved by the administration of macrocyclic lactones (MLs). In recent years, D. immitis strains resistant to MLs have been described in Southern USA, raising concerns for possible emergence, or spreading in other areas of the world. The present study describes the first case of ML-resistant D. immitis in a dog in Europe. The dog arrived in Rome, Italy, from USA in 2023. Less than 6 months after its arrival in Italy, the dog tested positive for D. immitis circulating antigen and microfilariae, despite it having received monthly the ML milbemycin oxime (plus an isoxazoline) after arrival. The microfilariae suppression test suggested a resistant strain. Microfilariae DNA was examined by droplet digital PCR-based duplex assays targeting four marker positions at single nucleotide polymorphisms (SNP1, SNP2, SNP3, SNP7) which differentiate resistant from susceptible isolates. The genetic analysis showed that microfilariae had a ML-resistant genotype at SNP1 and SNP7 positions, compatible with a resistant strain. It is unlikely that the dog acquired the infection after its arrival in Europe, while it is biologically and epidemiologically plausible that the dog was already infected when imported from USA to Europe. The present report highlights the realistic risk of ML-resistant D. immitis strains being imported and possibly transmitted in Europe and other areas of the world. Monitoring dogs travelling from one area to another, especially if they originate from regions where ML-resistance is well-documented, is imperative. Scientists, practitioners, and pet owners should be aware of the risk and remain vigilant against ML-resistance, in order to monitor and reduce the spreading of resistant D. immitis.
Collapse
Affiliation(s)
- Donato Traversa
- Department of Veterinary Medicine, University of Teramo, 64100, Teramo, Italy.
| | - Anastasia Diakou
- Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Mariasole Colombo
- Department of Veterinary Medicine, University of Teramo, 64100, Teramo, Italy.
| | - Sohini Kumar
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte Anne-de-Bellevue, QC, H9X3V9, Canada.
| | - Thavy Long
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte Anne-de-Bellevue, QC, H9X3V9, Canada.
| | - Serafeim C Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627, Thessaloniki, Greece.
| | - Luigi Venco
- Ospedale Veterinario Città di Pavia, 27100, Pavia, Italy.
| | | | - Roger Prichard
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte Anne-de-Bellevue, QC, H9X3V9, Canada.
| |
Collapse
|
2
|
Hampton N, Smith V, Brewer MT, Jesudoss Chelladurai JRJ. Strain-level variations of Dirofilaria immitis microfilariae in two biochemical assays. PLoS One 2024; 19:e0307261. [PMID: 39018313 PMCID: PMC11253964 DOI: 10.1371/journal.pone.0307261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND The increase in reports of resistance to macrocyclic lactones in the canine heartworm, Dirofilaria immitis is alarming. While DNA based tests have been well-validated, they can be expensive. In a previous study, we showed that two biochemical tests adapted to a 96- well plate format and read in a spectrophotometer could detect differences among lab validated D. immitis isolates. The two tests- Resazurin reduction and Hoechst 33342 efflux-detect metabolism and P-glycoprotein activity respectively in microfilariae isolated from infected dog blood. METHODS Our objective was to optimize the two assays further by testing various assay parameters in D. immitis isolates not tested previously. We tested microfilarial seeding density, incubation time and the effect of in vitro treatment with ivermectin and doxycycline in five other D. immitis isolates-JYD-34, Big Head, Berkeley, Georgia III and LOL. All assays were performed in 3 technical replicates and 2-4 biological replicates. To understand the molecular basis of the assays, we also performed qPCR for selected drug metabolism and elimination associated genes of the ABC transporter and cytochrome P450 gene families. RESULTS Metabolism and ABC transporter activity as detected by these assays varied between strains. Anthelmintic status (resistant or susceptible) did not correlate with metabolism or P-gp efflux. Basal transcriptional variations were found between strains in ABC transporter and cytochrome P450 genes. CONCLUSIONS These assays provide a greater understanding of the biochemical variation among isolates of D. immitis, which can be exploited in the future to develop in vitro diagnostic tests capable of differentiating susceptible and resistant isolates.
Collapse
Affiliation(s)
- Naomi Hampton
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States of America
| | - Vicki Smith
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States of America
| | - Matthew T. Brewer
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, Iowa, United States of America
| | - Jeba R. J. Jesudoss Chelladurai
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States of America
| |
Collapse
|
3
|
Song J, Wang H, Li S, Du C, Qian P, Wang W, Shen M, Zhang Z, Zhou J, Zhang Y, Li C, Hao Y, Dong Y. The genetic diversity of Oncomelania hupensis robertsoni, intermediate hosts of Schistosoma japonicum in hilly regions of China, using microsatellite markers. Parasit Vectors 2024; 17:147. [PMID: 38515113 PMCID: PMC10956175 DOI: 10.1186/s13071-024-06227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND The elimination of schistosomiasis remains a challenging task, with current measures primarily focused on the monitoring and control of Oncomelania hupensis (O. hupensis) snail, the sole intermediate host of Schistosome japonicum. Given the emerging, re-emerging, and persistent habitats of snails, understanding their genetic diversity might be essential for their successful monitoring and control. The aims of this study were to analyze the genetic diversity of Oncomelania hupensis robertsoni (O. h. robertsoni) using microsatellite DNA markers; and validate the applicability of previously identified microsatellite loci for O. hupensis in hilly regions. METHODS A total of 17 populations of O. h. robertsoni from Yunnan Province in China were selected for analysis of genetic diversity using six microsatellite DNA polymorphic loci (P82, P84, T4-22, T5-11, T5-13, and T6-27). RESULTS The number of alleles among populations ranged from 0 to 19, with an average of 5. The average ranges of expected (He) and observed (Ho) heterozygosity within populations were 0.506 to 0.761 and 0.443 to 0.792, respectively. The average fixation index within the population ranged from - 0.801 to 0.211. The average polymorphic information content (PIC) within the population ranged from 0.411 to 0.757, appearing to be polymorphic for all loci (all PIC > 0.5), except for P28 and P48. A total of 68 loci showed significant deviations from Hardy-Weinberg equilibrium (P < 0.05), and pairwise Fst values ranged from 0.051 to 0.379. The analysis of molecular variance indicated that 88% of the variation occurred within snail populations, whereas 12% occurred among snail populations. Phylogenetic trees and principal coordinate analysis revealed two distinct clusters within the snail population, corresponding to "Yunnan North" and "Yunnan South". CONCLUSIONS O. h. robertsoni exhibited a relatively high level of genetic differentiation, with variation chiefly existing within snail populations. All snail in this region could be separated into two clusters. The microsatellite loci P82 and P84 might not be suitable for classification studies of O. hupensis in hilly regions. These findings provided important information for the monitoring and control of snail, and for further genetic diversity studies on snail populations.
Collapse
Affiliation(s)
- Jing Song
- Department of Schistosomiasis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, 671000, China
- Yunnan Key Laboratory of Natural Focus Disease Control Technology, Dali, 671000, China
| | - Hongqiong Wang
- Department of Schistosomiasis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, 671000, China
- Yunnan Key Laboratory of Natural Focus Disease Control Technology, Dali, 671000, China
| | - Shizhu Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Tropical Diseases Research; NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Shanghai, 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research-Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunhong Du
- Department of Schistosomiasis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, 671000, China
- Yunnan Key Laboratory of Natural Focus Disease Control Technology, Dali, 671000, China
| | - Peijun Qian
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Tropical Diseases Research; NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Shanghai, 200025, China
| | - Wenya Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Tropical Diseases Research; NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Shanghai, 200025, China
| | - Meifen Shen
- Department of Schistosomiasis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, 671000, China
- Yunnan Key Laboratory of Natural Focus Disease Control Technology, Dali, 671000, China
| | - Zongya Zhang
- Department of Schistosomiasis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, 671000, China
- Yunnan Key Laboratory of Natural Focus Disease Control Technology, Dali, 671000, China
| | - Jihua Zhou
- Department of Schistosomiasis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, 671000, China
- Yunnan Key Laboratory of Natural Focus Disease Control Technology, Dali, 671000, China
| | - Yun Zhang
- Department of Schistosomiasis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, 671000, China
- Yunnan Key Laboratory of Natural Focus Disease Control Technology, Dali, 671000, China
| | - Chunying Li
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Yuwan Hao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Tropical Diseases Research; NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.
| | - Yi Dong
- Department of Schistosomiasis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, 671000, China.
- Yunnan Key Laboratory of Natural Focus Disease Control Technology, Dali, 671000, China.
| |
Collapse
|
4
|
Hedtke SM, Choi YJ, Kode A, Chalasani GC, Sirwani N, Jada SR, Hotterbeekx A, Mandro M, Siewe Fodjo JN, Amambo GN, Abong RA, Wanji S, Kuesel AC, Colebunders R, Mitreva M, Grant WN. Assessing Onchocerca volvulus Intensity of Infection and Genetic Diversity Using Mitochondrial Genome Sequencing of Single Microfilariae Obtained before and after Ivermectin Treatment. Pathogens 2023; 12:971. [PMID: 37513818 PMCID: PMC10385737 DOI: 10.3390/pathogens12070971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Onchocerciasis is a neglected tropical disease targeted for elimination using ivermectin mass administration. Ivermectin kills the microfilariae and temporarily arrests microfilariae production by the macrofilariae. We genotyped 436 microfilariae from 10 people each in Ituri, Democratic Republic of the Congo (DRC), and Maridi County, South Sudan, collected before and 4-5 months after ivermectin treatment. Population genetic analyses identified 52 and 103 mitochondrial DNA haplotypes among the microfilariae from DRC and South Sudan, respectively, with few haplotypes shared between people. The percentage of genotype-based correct assignment to person within DRC was ~88% and within South Sudan ~64%. Rarefaction and extrapolation analysis showed that the genetic diversity in DRC, and even more so in South Sudan, was captured incompletely. The results indicate that the per-person adult worm burden is likely higher in South Sudan than DRC. Analyses of haplotype data from a subsample (n = 4) did not discriminate genetically between pre- and post-treatment microfilariae, confirming that post-treatment microfilariae are not the result of new infections. With appropriate sampling, mitochondrial haplotype analysis could help monitor changes in the number of macrofilariae in a population as a result of treatment, identify cases of potential treatment failure, and detect new infections as an indicator of continuing transmission.
Collapse
Affiliation(s)
- Shannon M. Hedtke
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; (A.K.); (G.C.C.); (N.S.); (W.N.G.)
| | - Young-Jun Choi
- Department of Medicine, Washington University in St. Louis and McDonnell Genome Institute, St. Louis, MO 63108, USA; (Y.-J.C.); (M.M.)
| | - Anusha Kode
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; (A.K.); (G.C.C.); (N.S.); (W.N.G.)
| | - Gowtam C. Chalasani
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; (A.K.); (G.C.C.); (N.S.); (W.N.G.)
| | - Neha Sirwani
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; (A.K.); (G.C.C.); (N.S.); (W.N.G.)
| | | | - An Hotterbeekx
- Global Health Institute, University of Antwerp, Doornstraat 331, 2610 Antwerp, Belgium; (A.H.); (J.N.S.F.); (R.C.)
| | - Michel Mandro
- Provincial Health Division Ituri, Ministry of Health, Bunia P.O. Box 57, Democratic Republic of the Congo;
| | - Joseph N. Siewe Fodjo
- Global Health Institute, University of Antwerp, Doornstraat 331, 2610 Antwerp, Belgium; (A.H.); (J.N.S.F.); (R.C.)
| | - Glory Ngongeh Amambo
- Parasites and Vectors Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (G.N.A.); (R.A.A.); (S.W.)
| | - Raphael A. Abong
- Parasites and Vectors Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (G.N.A.); (R.A.A.); (S.W.)
- Research Foundation for Tropical Diseases and Environment (REFOTDE), Buea P.O. Box 474, Cameroon
| | - Samuel Wanji
- Parasites and Vectors Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (G.N.A.); (R.A.A.); (S.W.)
- Research Foundation for Tropical Diseases and Environment (REFOTDE), Buea P.O. Box 474, Cameroon
| | - Annette C. Kuesel
- UNICEF/UNDP/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, 1202 Geneva, Switzerland;
| | - Robert Colebunders
- Global Health Institute, University of Antwerp, Doornstraat 331, 2610 Antwerp, Belgium; (A.H.); (J.N.S.F.); (R.C.)
| | - Makedonka Mitreva
- Department of Medicine, Washington University in St. Louis and McDonnell Genome Institute, St. Louis, MO 63108, USA; (Y.-J.C.); (M.M.)
| | - Warwick N. Grant
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia; (A.K.); (G.C.C.); (N.S.); (W.N.G.)
| |
Collapse
|
5
|
Gerlovina I, Gerlovin B, Rodríguez-Barraquer I, Greenhouse B. Dcifer: an IBD-based method to calculate genetic distance between polyclonal infections. Genetics 2022; 222:6674513. [PMID: 36000888 PMCID: PMC9526043 DOI: 10.1093/genetics/iyac126] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
An essential step toward reconstructing pathogen transmission and answering epidemiologically relevant questions from genomic data is obtaining pairwise genetic distance between infections. For recombining organisms such as malaria parasites, relatedness measures quantifying recent shared ancestry would provide a meaningful distance, suggesting methods based on identity by descent (IBD). While the concept of relatedness and consequently an IBD approach is fairly straightforward for individual parasites, the distance between polyclonal infections, which are prevalent in malaria, presents specific challenges, and awaits a general solution that could be applied to infections of any clonality and accommodate multiallelic (e.g. microsatellite or microhaplotype) and biallelic [single nucleotide polymorphism (SNP)] data. Filling this methodological gap, we present Dcifer (Distance for complex infections: fast estimation of relatedness), a method for calculating genetic distance between polyclonal infections, which is designed for unphased data, explicitly accounts for population allele frequencies and complexity of infection, and provides reliable inference. Dcifer’s IBD-based framework allows us to define model parameters that represent interhost relatedness and to propose corresponding estimators with attractive statistical properties. By using combinatorics to account for unobserved phased haplotypes, Dcifer is able to quickly process large datasets and estimate pairwise relatedness along with measures of uncertainty. We show that Dcifer delivers accurate and interpretable results and detects related infections with statistical power that is 2–4 times greater than that of approaches based on identity by state. Applications to real data indicate that relatedness structure aligns with geographic locations. Dcifer is implemented in a comprehensive publicly available software package.
Collapse
Affiliation(s)
- Inna Gerlovina
- EPPIcenter research program, Division of HIV, ID and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Boris Gerlovin
- EPPIcenter research program, Division of HIV, ID and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Isabel Rodríguez-Barraquer
- EPPIcenter research program, Division of HIV, ID and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bryan Greenhouse
- EPPIcenter research program, Division of HIV, ID and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
Macrocyclic lactone resistance in Dirofilaria immitis: risks for prevention of heartworm disease. Int J Parasitol 2021; 51:1121-1132. [PMID: 34717929 DOI: 10.1016/j.ijpara.2021.08.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 11/21/2022]
Abstract
Heartworm disease, caused by Dirofilaria immitis, can be lethal in dogs and cats. It is transmitted by mosquitoes, and occurs in many parts of the world. Prevention relies on macrocyclic lactones. Macrocyclic lactones used are ivermectin, selamectin, abamectin, eprinomectin, milbemycin oxime and moxidectin, administered at 30-day intervals during the transmission season. Some moxidectin formulations are long-acting injectables. In the USA, preventives are recommended throughout the year. Loss of efficacy of macrocyclic lactone preventives was reported in 2005 and proof of resistance in the USA was published a decade later. Understanding factors which promote resistance is important to maintain control. Factors important for resistance development are discussed. Better, inexpensive tests to confirm resistance are needed. Infection in animals under chemoprophylaxis per se does not imply resistance because lack of compliance in preventive use could be the reason. In vivo confirmation of resistance is expensive, slow and ethically questionable. A microfilariae suppression test can be a surrogate test, but requires a high dose of a macrocyclic lactone and repeated blood microfilaria counts 2-4 weeks later. DNA single nucleotide polymorphism markers have been successfully used. However, the specific genetic changes which cause resistance are unknown. Surveys to map and follow the extent of resistance are needed. Long acting mosquito repellants and insecticides can play a useful role. High dose rate formulations of moxidectin, coupled with mosquito biting mitigation may reduce transmission of resistant genotypes. Doxycycline, daily for 28 days, as anti-Wolbachia treatment, can reduce transmission and remove adult parasites. However, new classes of heartworm preventives are needed. While any preventive strategy must be highly effective, registration requirements for 100% efficacy may hinder development of useful new classes of preventives. Continued reliance on macrocyclic lactone preventives, when they do not work against resistant genotypes, will spread resistance, and allow for more disease.
Collapse
|
7
|
Concern for Dirofilaria immitis and Macrocyclic Lactone Loss of Efficacy: Current Situation in the USA and Europe, and Future Scenarios. Pathogens 2021; 10:pathogens10101323. [PMID: 34684273 PMCID: PMC8541013 DOI: 10.3390/pathogens10101323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
Dirofilaria immitis infection is one of the most severe parasitic diseases in dogs. Prevention is achieved by the administration of drugs containing macrocyclic lactones (MLs). These products are very safe and highly effective, targeting the third and fourth larval stages (L3, L4) of the parasite. Until 2011, claims of the ineffectiveness of MLs, reported as “loss of efficacy” (LOE), were generally attributed to owners’ non-compliance, or other reasons associated with inadequate preventative coverage. There was solid argumentation that a resistance problem is not likely to occur because of (i) the great extent of refugia, (ii) the complexity of resistance development to MLs, and (iii) the possible large number of genes involved in resistance selection. Nevertheless, today, it is unequivocally proven that ML-resistant D. immitis strains exist, at least in the Lower Mississippi region, USA. Accordingly, tools have been developed to evaluate and confirm the susceptibility status of D. immitis strains. A simple, in-clinic, microfilariae suppression test, 14-28 days after ML administration, and a “decision tree” (algorithm), including compliance and preventatives’ purchase history, and testing gaps, may be applied for assessing any resistant nature of the parasite. On the molecular level, specific SNPs may be used as markers of ML resistance, offering a basis for the validation of clinically suspected resistant strains. In Europe, no LOE/resistance claims have been reported so far, and the existing conditions (stray dogs, rich wildlife, majority of owned dogs not on preventive ML treatment) do not favor selection pressure on the parasites. Considering the genetic basis of resistance and the epizootiological characteristics of D. immitis, ML resistance neither establishes easily nor spreads quickly, a fact confirmed by the current known dispersion of the problem, which is limited. Nevertheless, ML resistance may propagate from an initial geographical point, via animal and vector mobility, to other regions, while it can also emerge as an independent evolutionary process in a new area. For these reasons, and considering the current chemoprophylaxis recommendations and increasing use of ML endectoparasiticides as a potential selection pressure, it is important to remain vigilant for the timely detection of any ML LOE/resistance, in all continents where D. immitis is enzootic.
Collapse
|
8
|
Janecka MJ, Rovenolt F, Stephenson JF. How does host social behavior drive parasite non-selective evolution from the within-host to the landscape-scale? Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03089-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Hedtke SM, Kuesel AC, Crawford KE, Graves PM, Boussinesq M, Lau CL, Boakye DA, Grant WN. Genomic Epidemiology in Filarial Nematodes: Transforming the Basis for Elimination Program Decisions. Front Genet 2020; 10:1282. [PMID: 31998356 PMCID: PMC6964045 DOI: 10.3389/fgene.2019.01282] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022] Open
Abstract
Onchocerciasis and lymphatic filariasis are targeted for elimination, primarily using mass drug administration at the country and community levels. Elimination of transmission is the onchocerciasis target and global elimination as a public health problem is the end point for lymphatic filariasis. Where program duration, treatment coverage, and compliance are sufficiently high, elimination is achievable for both parasites within defined geographic areas. However, transmission has re-emerged after apparent elimination in some areas, and in others has continued despite years of mass drug treatment. A critical question is whether this re-emergence and/or persistence of transmission is due to persistence of local parasites-i.e., the result of insufficient duration or drug coverage, poor parasite response to the drugs, or inadequate methods of assessment and/or criteria for determining when to stop treatment-or due to re-introduction of parasites via human or vector movement from another endemic area. We review recent genetics-based research exploring these questions in Onchocerca volvulus, the filarial nematode that causes onchocerciasis, and Wuchereria bancrofti, the major pathogen for lymphatic filariasis. We focus in particular on the combination of genomic epidemiology and genome-wide associations to delineate transmission zones and distinguish between local and introduced parasites as the source of resurgence or continuing transmission, and to identify genetic markers associated with parasite response to chemotherapy. Our ultimate goal is to assist elimination efforts by developing easy-to-use tools that incorporate genetic information about transmission and drug response for more effective mass drug distribution, surveillance strategies, and decisions on when to stop interventions to improve sustainability of elimination.
Collapse
Affiliation(s)
- Shannon M. Hedtke
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Annette C. Kuesel
- Unicef/UNDP/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - Katie E. Crawford
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Patricia M. Graves
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD, Australia
| | - Michel Boussinesq
- Unité Mixte Internationale 233 "TransVIHMI", Institut de Recherche pour le Développement (IRD), INSERM U1175, University of Montpellier, Montpellier, France
| | - Colleen L. Lau
- Department of Global Health, Research School of Population Health, Australian National University, Acton, ACT, Australia
| | - Daniel A. Boakye
- Parasitology Department, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Warwick N. Grant
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
10
|
Neves MI, Webster JP, Walker M. Estimating helminth burdens using sibship reconstruction. Parasit Vectors 2019; 12:441. [PMID: 31522688 PMCID: PMC6745796 DOI: 10.1186/s13071-019-3687-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/28/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Sibship reconstruction is a form of parentage analysis that can be used to identify the number of helminth parental genotypes infecting individual hosts using genetic data on only their offspring. This has the potential to be used for estimating individual worm burdens when adult parasites are otherwise inaccessible, the case for many of the most globally important human helminthiases and neglected tropical diseases. Yet methods of inferring worm burdens from sibship reconstruction data on numbers of unique parental genotypes are lacking, limiting the method's scope of application. RESULTS We developed a novel statistical method for estimating female worm burdens from data on the number of unique female parental genotypes derived from sibship reconstruction. We illustrate the approach using genotypic data on Schistosoma mansoni (miracidial) offspring collected from schoolchildren in Tanzania. We show how the bias and precision of worm burden estimates critically depends on the number of sampled offspring and we discuss strategies for obtaining sufficient sample sizes and for incorporating judiciously formulated prior information to improve the accuracy of estimates. CONCLUSIONS This work provides a novel approach for estimating individual-level worm burdens using genetic data on helminth offspring. This represents a step towards a wider scope of application of parentage analysis techniques. We discuss how the method could be used to assist in the interpretation of monitoring and evaluation data collected during mass drug administration programmes targeting human helminthiases and to help resolve outstanding questions on key population biological processes that govern the transmission dynamics of these neglected tropical diseases.
Collapse
Affiliation(s)
- M Inês Neves
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, UK. .,London Centre for Neglected Tropical Disease Research, London, UK.
| | - Joanne P Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, UK.,London Centre for Neglected Tropical Disease Research, London, UK
| | - Martin Walker
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hawkshead Lane, Hatfield, UK.,London Centre for Neglected Tropical Disease Research, London, UK
| |
Collapse
|
11
|
Kanamitie JN, Ahorlu CS, Otchere J, Aboagye-Antwi F, Kwansa-Bentum B, Boakye DA, Biritwum NK, Wilson MD, de Souza DK. Twelve-month longitudinal parasitological assessment of lymphatic filariasis-positive individuals: impact of a biannual treatment with ivermectin and albendazole. Trop Med Int Health 2017; 22:1451-1456. [PMID: 28891597 DOI: 10.1111/tmi.12974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Mass drug administration (MDA) for the control of lymphatic filariasis (LF), in Ghana, started in the year 2000. While this had great success in many implementation units, there remain areas with persistent transmission, after more than 10 years of treatment. A closer examination of the parasite populations could help understand the reasons for persistent infections and formulate appropriate strategies to control LF in these areas of persistent transmission. MATERIALS AND METHODS In a longitudinal study, we assessed the prevalence of microfilaraemia (mf) in two communities with 12 years of MDA in Ghana. In baseline surveys 6 months after the National MDA in 2014, 370 consenting individuals were tested for antigenaemia using immunochromatographic test (ICT) cards and had their mf count determined through night blood surveys. 48 ICT positives, of whom, 17 were positive for mf, were treated with 400 μg/kg ivermectin + 400 mg albendazole and subsequently followed for parasitological assessment at 3-month intervals for 1 year. This overlapped with the National MDA in 2015. RESULTS There was a 68% parasite clearance 3 months after treatment. The pre-treatment mf count differed significantly from the post-treatment mf counts at 3 months (P = 0.0023), 6 months (P = 0.0051), 9 months (P = 0.0113) and 12 months (P = 0.0008). CONCLUSION In these settings with persistent LF transmission, twice-yearly treatment may help accelerate LF elimination. Further large-scale evaluations are required to ascertain these findings.
Collapse
Affiliation(s)
- John N Kanamitie
- Department of Animal Biology and Conservation Science, University of Ghana, Accra, Ghana.,Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Collins S Ahorlu
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joseph Otchere
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Fred Aboagye-Antwi
- Department of Animal Biology and Conservation Science, University of Ghana, Accra, Ghana
| | - Bethel Kwansa-Bentum
- Department of Animal Biology and Conservation Science, University of Ghana, Accra, Ghana
| | - Daniel A Boakye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Michael D Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dziedzom K de Souza
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
12
|
Mani T, Bourguinat C, Keller K, Ashraf S, Blagburn B, Prichard RK. Interaction of macrocyclic lactones with a Dirofilaria immitis P-glycoprotein. Int J Parasitol 2016; 46:631-40. [DOI: 10.1016/j.ijpara.2016.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/04/2016] [Accepted: 04/11/2016] [Indexed: 12/31/2022]
|
13
|
Dharmarajan G. Inbreeding in stochastic subdivided mating systems: the genetic consequences of host spatial structure, aggregated transmission dynamics and life history characteristics in parasite populations. J Genet 2015; 94:43-53. [PMID: 25846876 DOI: 10.1007/s12041-015-0488-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Inbreeding in parasite populations can have important epidemiological and evolutionary implications. However, theoretical models have predominantly focussed on the evolution of parasite populations under strong selection or in epidemic situations, and our understanding of neutral gene dynamics in parasite populations at equilibrium has been limited to verbal arguments or conceptual models. This study focusses on how host-parasite population dynamics affects observed levels of inbreeding in a random sample of parasites from an infinite population of hosts by bridging traditional genetic and parasitological processes utilizing a backward-forward branching Markov process embedded within a flexible statistical framework, the logarithmic-poisson mixture model. My results indicate that levels of inbreeding in parasites are impacted by demographic and/or transmission dynamics (subdivided mating, aggregated transmission dynamics and host spatial structure), and that this inbreeding is poorly estimated by 'equilibrium' levels of inbreeding calculated assuming regular systems of mating. Specifically, the model reveals that at low levels of inbreeding (F ≤ 0.1), equilibrium levels of inbreeding are lower than those observed, while at high levels of inbreeding the opposite pattern occurs. The model also indicates that inbreeding could have important epidemiological implications (e.g., the spread of recessive drug resistance genes) by directly impacting the observed frequency of rare homozygotes in parasite populations. My results indicate that frequencies of rare homozygotes are affected by aggregated transmission dynamics and host spatial structure, and also that an increase in the frequency of rare homozygotes can be caused by a decrease in effective population size solely due to the presence of a subdivided breeding system.
Collapse
Affiliation(s)
- Guha Dharmarajan
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Mohanpur 741 246, India.
| |
Collapse
|
14
|
Small ST, Tisch DJ, Zimmerman PA. Molecular epidemiology, phylogeny and evolution of the filarial nematode Wuchereria bancrofti. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2014; 28:33-43. [PMID: 25176600 PMCID: PMC4257870 DOI: 10.1016/j.meegid.2014.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/17/2014] [Accepted: 08/19/2014] [Indexed: 12/18/2022]
Abstract
Wuchereria bancrofti (Wb) is the most widely distributed of the three nematodes known to cause lymphatic filariasis (LF), the other two being Brugia malayi and Brugia timori. Current tools available to monitor LF are limited to diagnostic tests targeting DNA repeats, filarial antigens, and anti-filarial antibodies. While these tools are useful for detection and surveillance, elimination programs have yet to take full advantage of molecular typing for inferring infection history, strain fingerprinting, and evolution. To date, molecular typing approaches have included whole mitochondrial genomes, genotyping, targeted sequencing, and random amplified polymorphic DNA (RAPDs). These studies have revealed much about Wb biology. For example, in one study in Papua New Guinea researchers identified 5 major strains that were widespread and many minor strains some of which exhibit geographic stratification. Genome data, while rare, has been utilized to reconstruct evolutionary relationships among taxa of the Onchocercidae (the clade of filarial nematodes) and identify gene synteny. Their phylogeny reveals that speciation from the common ancestor of both B. malayi and Wb occurred around 5-6 millions years ago with shared ancestry to other filarial nematodes as recent as 15 million years ago. These discoveries hold promise for gene discovery and identifying drug targets in species that are more amenable to in vivo experiments. Continued technological developments in whole genome sequencing and data analysis will likely replace many other forms of molecular typing, multiplying the amount of data available on population structure, genetic diversity, and phylogenetics. Once widely available, the addition of population genetic data from genomic studies should hasten the elimination of LF parasites like Wb. Infectious disease control programs have benefited greatly from population genetics data and recently from population genomics data. However, while there is currently a surplus of data for diseases like malaria and HIV, there is a scarcity of this data for filarial nematodes. With the falling cost of genome sequencing, research on filarial nematodes could benefit from the addition of population genetics statistics and phylogenetics especially in dealing with elimination programs. A comprehensive review focusing on population genetics of filarial nematode does not yet exist. Here our goal is to provide a current overview of the molecular epidemiology of W. bancrofti (Wb) the primary causative agent of LF. We begin by reviewing studies utilizing molecular typing techniques with specific focus on genomic and population datasets. Next, we used whole mitochondrial genome data to construct a phylogeny and examine the evolutionary history of the Onchocercidae. Then, we provide a perspective to aid in understanding how population genetic techniques translate to modern epidemiology. Finally, we introduce the concept of genomic epidemiology and provide some examples that will aid in future studies of Wb.
Collapse
Affiliation(s)
- Scott T Small
- The Center for Global Health and Diseases, Case Western Reserve University, School of Medicine, Cleveland, OH, United States.
| | - Daniel J Tisch
- The Center for Global Health and Diseases, Case Western Reserve University, School of Medicine, Cleveland, OH, United States
| | - Peter A Zimmerman
- The Center for Global Health and Diseases, Case Western Reserve University, School of Medicine, Cleveland, OH, United States
| |
Collapse
|
15
|
Fountain T, Duvaux L, Horsburgh G, Reinhardt K, Butlin RK. Human-facilitated metapopulation dynamics in an emerging pest species, Cimex lectularius. Mol Ecol 2014; 23:1071-84. [PMID: 24446663 PMCID: PMC4016754 DOI: 10.1111/mec.12673] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 01/06/2014] [Accepted: 01/13/2014] [Indexed: 12/01/2022]
Abstract
The number and demographic history of colonists can have dramatic consequences for the way in which genetic diversity is distributed and maintained in a metapopulation. The bed bug (Cimex lectularius) is a re-emerging pest species whose close association with humans has led to frequent local extinction and colonization, that is, to metapopulation dynamics. Pest control limits the lifespan of subpopulations, causing frequent local extinctions, and human-facilitated dispersal allows the colonization of empty patches. Founder events often result in drastic reductions in diversity and an increased influence of genetic drift. Coupled with restricted migration, this can lead to rapid population differentiation. We therefore predicted strong population structuring. Here, using 21 newly characterized microsatellite markers and approximate Bayesian computation (ABC), we investigate simplified versions of two classical models of metapopulation dynamics, in a coalescent framework, to estimate the number and genetic composition of founders in the common bed bug. We found very limited diversity within infestations but high degrees of structuring across the city of London, with extreme levels of genetic differentiation between infestations (FST = 0.59). ABC results suggest a common origin of all founders of a given subpopulation and that the numbers of colonists were low, implying that even a single mated female is enough to found a new infestation successfully. These patterns of colonization are close to the predictions of the propagule pool model, where all founders originate from the same parental infestation. These results show that aspects of metapopulation dynamics can be captured in simple models and provide insights that are valuable for the future targeted control of bed bug infestations.
Collapse
Affiliation(s)
- Toby Fountain
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; Department of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | | | | | | | | |
Collapse
|
16
|
French MD, Churcher TS, Basáñez MG, Norton AJ, Lwambo NJ, Webster JP. Reductions in genetic diversity of Schistosoma mansoni populations under chemotherapeutic pressure: the effect of sampling approach and parasite population definition. Acta Trop 2013; 128:196-205. [PMID: 22440199 DOI: 10.1016/j.actatropica.2012.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 03/02/2012] [Accepted: 03/04/2012] [Indexed: 10/28/2022]
Abstract
Detecting potential changes in genetic diversity in schistosome populations following chemotherapy with praziquantel (PZQ) is crucial if we are to fully understand the impact of such chemotherapy with respect to the potential emergence of resistance and/or other evolutionary outcomes of interventions. Doing so by implementing effective, and cost-efficient sampling protocols will help to optimise time and financial resources, particularly relevant to a disease such as schistosomiasis currently reliant on a single available drug. Here we explore the effect on measures of parasite genetic diversity of applying various field sampling approaches, both in terms of the number of (human) hosts sampled and the number of transmission stages (miracidia) sampled per host for a Schistosoma mansoni population in Tanzania pre- and post-treatment with PZQ. In addition, we explore population structuring within and between hosts by comparing the estimates of genetic diversity obtained assuming a 'component population' approach with those using an 'infrapopulation' approach. We found that increasing the number of hosts sampled, rather than the number of miracidia per host, gives more robust estimates of genetic diversity. We also found statistically significant population structuring (using Wright's F-statistics) and significant differences in the measures of genetic diversity depending on the parasite population definition. The relative advantages, disadvantages and, hence, subsequent reliability of these metrics for parasites with complex life-cycles are discussed, both for the specific epidemiological and ecological scenario under study here and for their future application to other areas and schistosome species.
Collapse
|
17
|
Small ST, Ramesh A, Bun K, Reimer L, Thomsen E, Baea M, Bockarie MJ, Siba P, Kazura JW, Tisch DJ, Zimmerman PA. Population genetics of the filarial worm wuchereria bancrofti in a post-treatment region of Papua New Guinea: insights into diversity and life history. PLoS Negl Trop Dis 2013; 7:e2308. [PMID: 23875043 PMCID: PMC3708868 DOI: 10.1371/journal.pntd.0002308] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/30/2013] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Wuchereria bancrofti (Wb) is the primary causative agent of lymphatic filariasis (LF). Our studies of LF in Papua New Guinea (PNG) have shown that it is possible to reduce the prevalence of Wb in humans and mosquitoes through mass drug administration (MDA; diethylcarbamazine with/without ivermectin). While MDAs in the Dreikikir region through 1998 significantly reduced prevalence of Wb infection, parasites continue to be transmitted in the area. METHODS We sequenced the Wb mitochondrial Cytochrome Oxidase 1 (CO1) gene from 16 people infected with Wb. Patients were selected from 7 villages encompassing both high and moderate annual transmission potentials (ATP). We collected genetic data with the objectives to (i) document contemporary levels of genetic diversity and (ii) distinguish between populations of parasites and hosts across the study area. PRINCIPLE FINDINGS We discovered 109 unique haplotypes currently segregating in the Wb parasite population, with one common haplotype present in 15 out of 16 infections. We found that parasite diversity was similar among people residing within the same village and clustered within transmission zones. For example, in the high transmission area, diversity tended to be more similar between neighboring villages, while in the moderate transmission area, diversity tended to be less similar. CONCLUSIONS In the Dreikikir region of PNG there are currently high levels of genetic diversity in populations of Wb. High levels of genetic diversity may complicate future MDAs in this region and the presence of dominant haplotypes will require adjustments to current elimination strategies.
Collapse
Affiliation(s)
- Scott T. Small
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Akshaya Ramesh
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Krufinta Bun
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lisa Reimer
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Edward Thomsen
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Manasseh Baea
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Moses J. Bockarie
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
- Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - James W. Kazura
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Daniel J. Tisch
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
18
|
Lustigman S, Geldhof P, Grant WN, Osei-Atweneboana MY, Sripa B, Basáñez MG. A research agenda for helminth diseases of humans: basic research and enabling technologies to support control and elimination of helminthiases. PLoS Negl Trop Dis 2012; 6:e1445. [PMID: 22545160 PMCID: PMC3335859 DOI: 10.1371/journal.pntd.0001445] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Successful and sustainable intervention against human helminthiases depends on optimal utilisation of available control measures and development of new tools and strategies, as well as an understanding of the evolutionary implications of prolonged intervention on parasite populations and those of their hosts and vectors. This will depend largely on updated knowledge of relevant and fundamental parasite biology. There is a need, therefore, to exploit and apply new knowledge and techniques in order to make significant and novel gains in combating helminthiases and supporting the sustainability of current and successful mass drug administration (MDA) programmes. Among the fields of basic research that are likely to yield improved control tools, the Disease Reference Group on Helminth Infections (DRG4) has identified four broad areas that stand out as central to the development of the next generation of helminth control measures: 1) parasite genetics, genomics, and functional genomics; 2) parasite immunology; 3) (vertebrate) host–parasite interactions and immunopathology; and 4) (invertebrate) host–parasite interactions and transmission biology. The DRG4 was established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR). The Group was given the mandate to undertake a comprehensive review of recent advances in helminthiases research in order to identify notable gaps and highlight priority areas. This paper summarises recent advances and discusses challenges in the investigation of the fundamental biology of those helminth parasites under the DRG4 Group's remit according to the identified priorities, and presents a research and development agenda for basic parasite research and enabling technologies that will help support control and elimination efforts against human helminthiases.
Collapse
Affiliation(s)
- Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Basáñez MG, McCarthy JS, French MD, Yang GJ, Walker M, Gambhir M, Prichard RK, Churcher TS. A research agenda for helminth diseases of humans: modelling for control and elimination. PLoS Negl Trop Dis 2012; 6:e1548. [PMID: 22545162 PMCID: PMC3335861 DOI: 10.1371/journal.pntd.0001548] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mathematical modelling of helminth infections has the potential to inform policy and guide research for the control and elimination of human helminthiases. However, this potential, unlike in other parasitic and infectious diseases, has yet to be realised. To place contemporary efforts in a historical context, a summary of the development of mathematical models for helminthiases is presented. These efforts are discussed according to the role that models can play in furthering our understanding of parasite population biology and transmission dynamics, and the effect on such dynamics of control interventions, as well as in enabling estimation of directly unobservable parameters, exploration of transmission breakpoints, and investigation of evolutionary outcomes of control. The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to review helminthiases research and identify research priorities and gaps. A research and development agenda for helminthiasis modelling is proposed based on identified gaps that need to be addressed for models to become useful decision tools that can support research and control operations effectively. This agenda includes the use of models to estimate the impact of large-scale interventions on infection incidence; the design of sampling protocols for the monitoring and evaluation of integrated control programmes; the modelling of co-infections; the investigation of the dynamical relationship between infection and morbidity indicators; the improvement of analytical methods for the quantification of anthelmintic efficacy and resistance; the determination of programme endpoints; the linking of dynamical helminth models with helminth geostatistical mapping; and the investigation of the impact of climate change on human helminthiases. It is concluded that modelling should be embedded in helminth research, and in the planning, evaluation, and surveillance of interventions from the outset. Modellers should be essential members of interdisciplinary teams, propitiating a continuous dialogue with end users and stakeholders to reflect public health needs in the terrain, discuss the scope and limitations of models, and update biological assumptions and model outputs regularly. It is highlighted that to reach these goals, a collaborative framework must be developed for the collation, annotation, and sharing of databases from large-scale anthelmintic control programmes, and that helminth modellers should join efforts to tackle key questions in helminth epidemiology and control through the sharing of such databases, and by using diverse, yet complementary, modelling approaches.
Collapse
Affiliation(s)
- María-Gloria Basáñez
- Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Geary TG, Bourguinat C, Prichard RK. Evidence for macrocyclic lactone anthelmintic resistance in Dirofilaria immitis. Top Companion Anim Med 2012; 26:186-92. [PMID: 22152606 DOI: 10.1053/j.tcam.2011.09.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reports of loss-of-efficacy (LOE) events in dogs infected with Dirofilaria immitis despite adherence to accepted prophylaxis regimens with a macrocyclic lactone anthelmintic are attracting considerable attention. It is crucially important to distinguish among several possible causes for these LOE reports, one of which is the evolution of resistance to these drugs in heartworms. We review here recent evidence at the molecular level that supports the hypothesis that parasites derived from LOE cases have experienced a strong selection event and that these populations are characterized by very high frequencies of single-nucleotide polymorphisms in a D. immitis gene encoding a P-glycoprotein transporter, comprised of homozygous guanosine residues at 2 locations ("GG-GG" genotype). Furthermore, an infected dog adopted to Canada from the southern United States harbored a microfilarial population that was insensitive to very high doses of macrocyclic lactones and was characterized by a high frequency of the GG-GG genotype associated with LOE cases. We propose that this case be defined as a drug-resistant heartworm infection and suggest that a simple assay for the existence of resistant parasites is a 7-day microfilariae suppression test, which can be performed in a veterinary clinic as part of an effort to document the geographic distribution of this phenotype.
Collapse
Affiliation(s)
- Timothy G Geary
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC, Canada.
| | | | | |
Collapse
|
21
|
Vilas R, Vázquez-Prieto S, Paniagua E. Contrasting patterns of population genetic structure of Fasciola hepatica from cattle and sheep: implications for the evolution of anthelmintic resistance. INFECTION GENETICS AND EVOLUTION 2011; 12:45-52. [PMID: 22036705 DOI: 10.1016/j.meegid.2011.10.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/06/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
Twelve polymorphic genetic markers, eight allozymic loci and four microsatellites, were used to characterize 20 infrapopulations of Fasciola hepatica (all flukes from 10 individual cattle and 10 sheep) from 11 farms in Northwest Spain. Results suggest different patterns of population genetic structure depending on the host species. Individuals identified as clones were much more frequent in sheep. The common presence of clones and its nonrandom occurrence among individual hosts suggests clumped transmission of liver flukes in sheep. After reducing significant repeated multilocus genotypes to one unique copy within infrapopulations, results show relatively high levels of gene diversity within infrapopulations from cattle and sheep (0.411 and 0.360 on average, respectively). However, parasites of sheep appear to show significantly more structured variation at the infrapopulation level (Standardized F(ST)=0.087 and 0.170 for parasites of cattle and sheep, respectively). Compared to the parasites from cattle, results suggest that populations from sheep show lower levels of gene flow, higher degree of aggregate transmission, higher probability of mating within clones, and lower parasitic load. These differences have implications for the evolution of anthelmintic resistance because they affect the effective population size and the degree of inbreeding. The development and rapid spread of resistance seems likely in the parasites of cattle because populations from the study area are characterized by high gene flow. However, results also suggest that the efficient selection of a new recessive advantageous mutation would be favored in parasites of sheep due to a greater potential for inbreeding.
Collapse
Affiliation(s)
- Román Vilas
- Departamento de Xenética, Universidade de Santiago de Compostela, Facultade de Veterinaria, Campus de Lugo, 27002 Lugo, Spain.
| | | | | |
Collapse
|
22
|
Belanger DH, Perkins SL, Rockwell RF. Inference of Population Structure and Patterns of Gene Flow in Canine Heartworm (Dirofilaria immitis). J Parasitol 2011; 97:602-9. [DOI: 10.1645/ge-2679.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
23
|
Abstract
Since 1977, >2000 research papers described attempts to detect, identify and/or quantify parasites, or disease organisms carried by ecto-parasites, using DNA-based tests and 148 reviews of the topic were published. Despite this, only a few DNA-based tests for parasitic diseases are routinely available, and most of these are optional tests used occasionally in disease diagnosis. Malaria, trypanosomiasis, toxoplasmosis, leishmaniasis and cryptosporidiosis diagnosis may be assisted by DNA-based testing in some countries, but there are very few cases where the detection of veterinary parasites is assisted by DNA-based tests. The diagnoses of some bacterial (e.g. lyme disease) and viral diseases (e.g. tick borne encephalitis) which are transmitted by ecto-parasites more commonly use DNA-based tests, and research developing tests for these species makes up almost 20% of the literature. Other important uses of DNA-based tests are for epidemiological and risk assessment, quality control for food and water, forensic diagnosis and in parasite biology research. Some DNA-based tests for water-borne parasites, including Cryptosporidium and Giardia, are used in routine checks of water treatment, but forensic and food-testing applications have not been adopted in routine practice. Biological research, including epidemiological research, makes the widest use of DNA-based diagnostics, delivering enhanced understanding of parasites and guidelines for managing parasitic diseases. Despite the limited uptake of DNA-based tests to date, there is little doubt that they offer great potential to not only detect, identify and quantify parasites, but also to provide further information important for the implementation of parasite control strategies. For example, variant sequences within species of parasites and other organisms can be differentiated by tests in a manner similar to genetic testing in medicine or livestock breeding. If an association between DNA sequence and phenotype has been demonstrated, then qualities such as drug resistance, strain divergence, virulence, and origin of isolates could be inferred by DNA-based tests. No such tests are in clinical or commercial use in parasitology and few tests are available for other organisms. Why have DNA-based tests not had a bigger impact in veterinary and human medicine? To explore this question, technological, biological, economic and sociological factors must be considered. Additionally, a realistic expectation of research progress is needed. DNA-based tests could enhance parasite management in many ways, but patience, persistence and dedication will be needed to achieve this goal.
Collapse
|
24
|
Macrocyclic lactone resistance in Dirofilaria immitis. Vet Parasitol 2011; 181:388-92. [PMID: 21570194 DOI: 10.1016/j.vetpar.2011.04.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 11/22/2022]
Abstract
Microfilariae were isolated from a Katrina rescue dog that remained microfilariaemic despite successful adulticidal treatments and repeated treatment with high doses of macrocyclic lactones (MLs). The microfilariae were genotyped at two P-glycoprotein single nucleotide polymorphic sites which had been found to correlate with reduced sensitivity to MLs. The genetic polymorphism (GG-GG), previously found to be associated with insensitivity to MLs in vitro, was present at a frequency of 45.3% in microfilariae that survived repeated treatments with high doses of ML anthelmintics. The data show phenotypic and genotypic evidence of ML resistance in Dirofilaria immitis.
Collapse
|
25
|
Walker M, Hall A, Basáñez MG. Trickle or clumped infection process? An analysis of aggregation in the weights of the parasitic roundworm of humans, Ascaris lumbricoides. Int J Parasitol 2010; 40:1373-80. [DOI: 10.1016/j.ijpara.2010.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
|
26
|
Bayesian paternity analysis and mating patterns in a parasitic nematode, Trichostrongylus tenuis. Heredity (Edinb) 2009; 104:573-82. [DOI: 10.1038/hdy.2009.139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
27
|
Churcher TS, Basáñez MG. Sampling strategies to detect anthelmintic resistance: the perspective of human onchocerciasis. Trends Parasitol 2008; 25:11-7. [PMID: 19008151 DOI: 10.1016/j.pt.2008.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 08/18/2008] [Accepted: 09/29/2008] [Indexed: 11/29/2022]
Abstract
The large-scale use of mass drug administration in human helminthiases control has raised awareness that anthelmintic resistance could develop. This has motivated an increasing number of studies to investigate changes in genetic structure of parasite populations undergoing treatment. For these studies to reflect accurately the current situation, parasitologists need to consider the sampling schemes they employ. In this article, we use mathematical models to discuss issues such as which hosts to examine, on which parasite life stage(s) to focus, and when after treatment to sample to quantify the presence and frequency of genetic markers of treatment-induced selection or drug resistance.
Collapse
Affiliation(s)
- Thomas S Churcher
- Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom.
| | | |
Collapse
|