1
|
Cruz-Saavedra L, Schwabl P, Vallejo GA, Carranza JC, Muñoz M, Patino LH, Paniz-Mondolfi A, Llewellyn MS, Ramírez JD. Genome plasticity driven by aneuploidy and loss of heterozygosity in Trypanosoma cruzi. Microb Genom 2022; 8. [PMID: 35748878 PMCID: PMC9455712 DOI: 10.1099/mgen.0.000843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi the causative agent of Chagas disease shows a marked genetic diversity and divided into at least six Discrete Typing Units (DTUs). High intra genetic variability has been observed in the TcI DTU, the most widely distributed DTU, where patterns of genomic diversity can provide information on ecological and evolutionary processes driving parasite population structure and genome organization. Chromosomal aneuploidies and rearrangements across multigene families represent an evidence of T. cruzi genome plasticity. We explored genomic diversity among 18 Colombian T. cruzi I clones and 15 T. cruzi I South American strains. Our results confirm high genomic variability, heterozygosity and presence of a clade compatible with the TcIdom genotype, described for strains from humans in Colombia and Venezuela. TcI showed high structural plasticity across the geographical region studied. Differential events of whole and segmental aneuploidy (SA) along chromosomes even between clones from the same strain were found and corroborated by the depth and allelic frequency. We detected loss of heterozygosity (LOH) events in different chromosomes, however, the size and location of segments under LOH varied between clones. Genes adjacent to breakpoints were evaluated, and retrotransposon hot spot genes flanked the beginning of segmental aneuploidies. Our results suggest that T. cruzi genomes, like those of Leishmania, may have a highly unstable structure and there is now an urgent need to design experiments to explore any potential adaptive role for the plasticity observed.
Collapse
Affiliation(s)
- Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Philipp Schwabl
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gustavo A Vallejo
- Laboratorio de Investigación en Parasitología Tropical, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Julio C Carranza
- Laboratorio de Investigación en Parasitología Tropical, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patino
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Martin S Llewellyn
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Schwabl P, Maiguashca Sánchez J, Costales JA, Ocaña-Mayorga S, Segovia M, Carrasco HJ, Hernández C, Ramírez JD, Lewis MD, Grijalva MJ, Llewellyn MS. Culture-free genome-wide locus sequence typing (GLST) provides new perspectives on Trypanosoma cruzi dispersal and infection complexity. PLoS Genet 2020; 16:e1009170. [PMID: 33326438 PMCID: PMC7743988 DOI: 10.1371/journal.pgen.1009170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022] Open
Abstract
Analysis of genetic polymorphism is a powerful tool for epidemiological surveillance and research. Powerful inference from pathogen genetic variation, however, is often restrained by limited access to representative target DNA, especially in the study of obligate parasitic species for which ex vivo culture is resource-intensive or bias-prone. Modern sequence capture methods enable pathogen genetic variation to be analyzed directly from host/vector material but are often too complex and expensive for resource-poor settings where infectious diseases prevail. This study proposes a simple, cost-effective 'genome-wide locus sequence typing' (GLST) tool based on massive parallel amplification of information hotspots throughout the target pathogen genome. The multiplexed polymerase chain reaction amplifies hundreds of different, user-defined genetic targets in a single reaction tube, and subsequent agarose gel-based clean-up and barcoding completes library preparation at under 4 USD per sample. Our study generates a flexible GLST primer panel design workflow for Trypanosoma cruzi, the parasitic agent of Chagas disease. We successfully apply our 203-target GLST panel to direct, culture-free metagenomic extracts from triatomine vectors containing a minimum of 3.69 pg/μl T. cruzi DNA and further elaborate on method performance by sequencing GLST libraries from T. cruzi reference clones representing discrete typing units (DTUs) TcI, TcIII, TcIV, TcV and TcVI. The 780 SNP sites we identify in the sample set repeatably distinguish parasites infecting sympatric vectors and detect correlations between genetic and geographic distances at regional (< 150 km) as well as continental scales. The markers also clearly separate TcI, TcIII, TcIV and TcV + TcVI and appear to distinguish multiclonal infections within TcI. We discuss the advantages, limitations and prospects of our method across a spectrum of epidemiological research.
Collapse
Affiliation(s)
- Philipp Schwabl
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Jalil Maiguashca Sánchez
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jaime A. Costales
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Sofía Ocaña-Mayorga
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Maikell Segovia
- Laboratorio de Biología Molecular de Protozoarios, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Hernán J. Carrasco
- Laboratorio de Biología Molecular de Protozoarios, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Carolina Hernández
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Michael D. Lewis
- London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
| | - Mario J. Grijalva
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Infectious and Tropical Disease Institute, Biomedical Sciences Department, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States of America
| | - Martin S. Llewellyn
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
3
|
Systematic Review of the Epidemiology of Chagas Disease in the Americas: a Call for Standardized Reporting of Chagas Disease Prevalence. CURRENT TROPICAL MEDICINE REPORTS 2019. [DOI: 10.1007/s40475-019-00177-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Fajardo EF, Cabrine-Santos M, Ferreira KAM, Lages-Silva E, Ramírez LE, Pedrosa AL. Semisolid liver infusion tryptose supplemented with human urine allows growth and isolation of Trypanosoma cruzi and Trypanosoma rangeli clonal lineages. Rev Soc Bras Med Trop 2017; 49:369-72. [PMID: 27384837 DOI: 10.1590/0037-8682-0190-2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 05/11/2016] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION This work shows that 3% (v/v) human urine (HU) in semisolid Liver Infusion Tryptose (SSL) medium favors the growth of Trypanosoma cruzi and T. rangeli. METHODS Parasites were plated as individual or mixed strains on SSL medium and on SSL medium with 3% human urine (SSL-HU). Isolate DNA was analyzed using polymerase chain reaction (PCR) and pulsed-field gel electrophoresis (PFGE). RESULTS SSL-HU medium improved clone isolation. PCR revealed that T. cruzi strains predominate on mixed-strain plates. PFGE confirmed that isolated parasites share the same molecular karyotype as parental cell lines. CONCLUSIONS SSL-HU medium constitutes a novel tool for obtaining T. cruzi and T. rangeli clonal lineages.
Collapse
Affiliation(s)
- Emanuella Francisco Fajardo
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brasil
| | - Marlene Cabrine-Santos
- Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brasil
| | | | - Eliane Lages-Silva
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brasil
| | - Luis Eduardo Ramírez
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brasil
| | - André Luiz Pedrosa
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brasil
| |
Collapse
|
5
|
Nogueira-Paiva NC, Vieira PMDA, Oliveri LMR, Fonseca KDS, Pound-Lana G, de Oliveira MT, de Lana M, Veloso VM, Reis AB, Tafuri WL, Carneiro CM. Host-Parasite Interactions in Chagas Disease: Genetically Unidentical Isolates of a Single Trypanosoma cruzi Strain Identified In Vitro via LSSP-PCR. PLoS One 2015; 10:e0137788. [PMID: 26359864 PMCID: PMC4567304 DOI: 10.1371/journal.pone.0137788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/21/2015] [Indexed: 11/18/2022] Open
Abstract
The present study aims at establishing whether the diversity in pathogenesis within a genetically diverse host population infected with a single polyclonal strain of Trypanosoma cruzi is due to selection of specific subpopulations within the strain. For this purpose we infected Swiss mice, a genetically diverse population, with the polyclonal strain of Trypanosoma cruzi Berenice-78 and characterized via LSSP-PCR the kinetoplast DNA of subpopulations isolated from blood samples collected from the animals at various times after inoculation (3, 6 and 12 months after inoculation). We examined the biological behavior of the isolates in acellular medium and in vitro profiles of infectivity in Vero cell medium. We compared the characteristics of the isolates with the inoculating strain and with another strain, Berenice 62, isolated from the same patient 16 years earlier. We found that one of the isolates had intermediate behavior in comparison with Berenice-78 and Berenice-62 and a significantly different genetic profile by LSSP-PCR in comparison with the inoculating strain. We hereby demonstrate that genetically distinct Trypanosoma cruzi isolates may be obtained upon experimental murine infection with a single polyclonal Trypanosoma cruzi strain.
Collapse
Affiliation(s)
- Nívia Carolina Nogueira-Paiva
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Paula Melo de Abreu Vieira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Larissa Maris Rezende Oliveri
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Kátia da Silva Fonseca
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Gwenaelle Pound-Lana
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Maykon Tavares de Oliveira
- Laboratório de Doença de Chagas, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto,Ouro Preto, MG, Brazil
| | - Marta de Lana
- Laboratório de Doença de Chagas, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto,Ouro Preto, MG, Brazil
- Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto,Ouro Preto, MG, Brazil
| | - Vanja Maria Veloso
- Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto,Ouro Preto, MG, Brazil
| | - Washington Luiz Tafuri
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Cláudia Martins Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto,Ouro Preto, MG, Brazil
- * E-mail:
| |
Collapse
|
6
|
Messenger LA, Miles MA, Bern C. Between a bug and a hard place: Trypanosoma cruzi genetic diversity and the clinical outcomes of Chagas disease. Expert Rev Anti Infect Ther 2015; 13:995-1029. [PMID: 26162928 PMCID: PMC4784490 DOI: 10.1586/14787210.2015.1056158] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the last 30 years, concomitant with successful transnational disease control programs across Latin America, Chagas disease has expanded from a neglected, endemic parasitic infection of the rural poor to an urbanized chronic disease, and now a potentially emergent global health problem. Trypanosoma cruzi infection has a highly variable clinical course, ranging from complete absence of symptoms to severe and often fatal cardiovascular and/or gastrointestinal manifestations. To date, few correlates of clinical disease progression have been identified. Elucidating a putative role for T. cruzi strain diversity in Chagas disease pathogenesis is complicated by the scarcity of parasites in clinical specimens and the limitations of our contemporary genotyping techniques. This article systematically reviews the historical literature, given our current understanding of parasite genetic diversity, to evaluate the evidence for any association between T. cruzi genotype and chronic clinical outcome, risk of congenital transmission or reactivation and orally transmitted outbreaks.
Collapse
Affiliation(s)
- Louisa A Messenger
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael A Miles
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Caryn Bern
- Global Health Sciences, Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Keenan M, Chaplin JH. A New Era for Chagas Disease Drug Discovery? PROGRESS IN MEDICINAL CHEMISTRY 2015; 54:185-230. [DOI: 10.1016/bs.pmch.2014.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Selection and optimization of hits from a high-throughput phenotypic screen against Trypanosoma cruzi. Future Med Chem 2014; 5:1733-52. [PMID: 24144410 DOI: 10.4155/fmc.13.139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Inhibitors of Trypanosoma cruzi with novel mechanisms of action are urgently required to diversify the current clinical and preclinical pipelines. Increasing the number and diversity of hits available for assessment at the beginning of the discovery process will help to achieve this aim. RESULTS We report the evaluation of multiple hits generated from a high-throughput screen to identify inhibitors of T. cruzi and from these studies the discovery of two novel series currently in lead optimization. Lead compounds from these series potently and selectively inhibit growth of T. cruzi in vitro and the most advanced compound is orally active in a subchronic mouse model of T. cruzi infection. CONCLUSION High-throughput screening of novel compound collections has an important role to play in diversifying the trypanosomatid drug discovery portfolio. A new T. cruzi inhibitor series with good drug-like properties and promising in vivo efficacy has been identified through this process.
Collapse
|
9
|
Lo Presti MS, Esteves BH, Moya D, Bazán PC, Strauss M, Báez AL, Pizzi R, Quispe Ricalde MA, Valladares B, Rivarola HW, Paglini-Oliva PA. Circulating Trypanosoma cruzi populations differ from those found in the tissues of the same host during acute experimental infection. Acta Trop 2014; 133:98-109. [PMID: 24560963 DOI: 10.1016/j.actatropica.2014.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 12/20/2013] [Accepted: 02/11/2014] [Indexed: 12/20/2022]
Abstract
We evaluated the presence and distribution of two Trypanosoma cruzi natural isolates in blood, heart, skeletal muscle, liver, and spleen tissues in the acute phase of the experimental infection (35 days postinfection) in order to determine if the populations present in blood were different to those found in the tissues of the same host. Thirty mice were infected with 50 forms of each isolate or with a combination of them. Presence and molecular characterization of the parasites in the host tissues were determined by specific PCR. Cardiac and skeletal muscle alterations were analyzed by histological studies. T. cruzi variability in the host tissues was analyzed through RFLP studies. Both isolates used consisted of a mixture of two T. cruzi lineages. Specific PCRs were positive for most of the samples from the 3 groups analyzed. Cardiac and skeletal muscle sections from the groups infected with one isolate presented mild to moderate inflammatory infiltrates; the group infected with both isolates showed severe inflammatory infiltrates and the presence of amastigote nests in both tissues. Different parasite populations were found in circulation and in the tissues from the same host. These results are important for patients with high probability of mixed infections in endemic areas and contribute to the knowledge of parasite/host interactions.
Collapse
|
10
|
Sales-Campos H, Kappel HB, Andrade CP, Lima TP, Mattos ME, de Castilho A, Correia D, Giraldo LER, Lages-Silva E. A DTU-dependent blood parasitism and a DTU-independent tissue parasitism during mixed infection of Trypanosoma cruzi in immunosuppressed mice. Parasitol Res 2013; 113:375-85. [DOI: 10.1007/s00436-013-3665-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/18/2013] [Indexed: 01/09/2023]
|
11
|
Ramírez JD, Tapia-Calle G, Guhl F. Genetic structure of Trypanosoma cruzi in Colombia revealed by a High-throughput Nuclear Multilocus Sequence Typing (nMLST) approach. BMC Genet 2013; 14:96. [PMID: 24079755 PMCID: PMC3850472 DOI: 10.1186/1471-2156-14-96] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/25/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Chagas disease is a systemic pathology caused by Trypanosoma cruzi. This parasite reveals remarkable genetic variability, evinced in six Discrete Typing Units (DTUs) named from T. cruzi I to T. cruzi VI (TcI to TcVI). Recently newly identified genotypes have emerged such as TcBat in Brazil, Colombia and Panama associated to anthropogenic bats. The genotype with the broadest geographical distribution is TcI, which has recently been associated to severe cardiomyopathies in Argentina and Colombia. Therefore, new studies unraveling the genetic structure and natural history of this DTU must be pursued. RESULTS We conducted a spatial and temporal analysis on 50 biological clones of T. cruzi I (TcI) isolated from humans with different clinical phenotypes, triatomine bugs and mammal reservoirs across three endemic regions for Chagas disease in Colombia. These clones were submitted to a nuclear Multilocus Sequence Typing (nMLST) analysis in order to elucidate its genetic diversity and clustering. After analyzing 13 nuclear housekeeping genes and obtaining a 5821 bp length alignment, we detected two robust genotypes within TcI henceforth named TcIDOM (associated to human infections) and a second cluster associated to peridomestic and sylvatic populations. Additionaly, we detected putative events of recombination and an intriguing lack of linkage disequilibrium. CONCLUSIONS These findings reinforce the emergence of an enigmatic domestic T. cruzi genotype (TcIDOM), and demonstrates the high frequency of recombination at nuclear level across natural populations of T. cruzi. Therefore, the need to pursue studies focused on the diferential virulence profiles of TcI strains. The biological and epidemiological implications of these findings are herein discussed.
Collapse
Affiliation(s)
- Juan David Ramírez
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Universidad de Los Andes, Bogotá, Colombia.
| | | | | |
Collapse
|
12
|
Higuera SL, Guhl F, Ramírez JD. Identification of Trypanosoma cruzi discrete typing units (DTUs) through the implementation of a high-resolution melting (HRM) genotyping assay. Parasit Vectors 2013; 6:112. [PMID: 23602078 PMCID: PMC3641988 DOI: 10.1186/1756-3305-6-112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/11/2013] [Indexed: 11/11/2022] Open
Abstract
Background Chagas disease, caused by Trypanosoma cruzi, is a geographically widespread anthropozoonosis that is considered a major public health problem in Latin America. Because this parasite presents high genetic variability, a nomenclature has been adopted to classify the parasite into six discrete typing units (DTUs): TcI, TcII, TcIII, TcIV, TcV, and TcVI, which present different eco-epidemiological, clinical, and geographic associations. Currently, the available genotyping methods present a series of drawbacks that implies the need for developing new methods for characterizing T. cruzi DTU’s. The aim of this work was to genotype reference populations from T. cruzi by means of a High-Resolution Melting (HRM) genotyping assay. To genotype the DTUs of 38 strains and 14 reference clones of T. cruzi from diverse sources, real-time PCR (qPCR) was coupled to high-resolution melting (HRM) based on the amplification of two molecular markers—the divergent domain of the 24 sα rRNA gene and the intergenic region of the mini-exon gene. Findings Amplification of the mini-exon gene allowed the genotyping of three distinct groups: TcI, TcII- TcIV- TcV, and TcIII-TcVI, while amplification of the 24sα gene generated non-overlapping melting temperature ranges for each DTU that were used to identify the groups in the six existing DTUs of Trypanosoma cruzi. Conclusions The proposed genotyping assay allowed discrimination of the six genetic groups by obtaining specific melting curves for each DTU. The application of this technique is proposed because of its specificity, sensitivity, high performance, and low cost compared with other previously described characterization methods.
Collapse
|
13
|
Ramírez JD, Montilla M, Cucunubá ZM, Floréz AC, Zambrano P, Guhl F. Molecular epidemiology of human oral Chagas disease outbreaks in Colombia. PLoS Negl Trop Dis 2013; 7:e2041. [PMID: 23437405 PMCID: PMC3578743 DOI: 10.1371/journal.pntd.0002041] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/14/2012] [Indexed: 11/18/2022] Open
Abstract
Background Trypanosoma cruzi, the causative agent of Chagas disease, displays significant genetic variability revealed by six Discrete Typing Units (TcI-TcVI). In this pathology, oral transmission represents an emerging epidemiological scenario where different outbreaks associated to food/beverages consumption have been reported in Argentina, Bolivia, Brazil, Ecuador and Venezuela. In Colombia, six human oral outbreaks have been reported corroborating the importance of this transmission route. Molecular epidemiology of oral outbreaks is barely known observing the incrimination of TcI, TcII, TcIV and TcV genotypes. Methodology and Principal Findings High-throughput molecular characterization was conducted performing MLMT (Multilocus Microsatellite Typing) and mtMLST (mitochondrial Multilocus Sequence Typing) strategies on 50 clones from ten isolates. Results allowed observing the occurrence of TcI, TcIV and mixed infection of distinct TcI genotypes. Thus, a majority of specific mitochondrial haplotypes and allelic multilocus genotypes associated to the sylvatic cycle of transmission were detected in the dataset with the foreseen presence of mitochondrial haplotypes and allelic multilocus genotypes associated to the domestic cycle of transmission. Conclusions These findings suggest the incrimination of sylvatic genotypes in the oral outbreaks occurred in Colombia. We observed patterns of super-infection and/or co-infection with a tailored association with the severe forms of myocarditis in the acute phase of the disease. The transmission dynamics of this infection route based on molecular epidemiology evidence was unraveled and the clinical and biological implications are discussed. Chagas disease represents a serious health problem affecting more than 10 million people in the Americas. The oral transmission route has emerged as a new epidemiological scenario that needs to be considered in prevention and control strategies. Herein was developed a high-resolution molecular characterization using mtMLST and MLMT tools in order to unravel the molecular epidemiology and transmission dynamics drivers in six well-characterized human oral outbreaks in Colombia. We observed the majority of clones typed as TcI and one clone as TcIV. The analysis of mitochondrial haplotypes allowed us to observe a high frequency of sylvatic haplotypes and a low proportion of domestic haplotypes. Likewise, a tailored allelic profile by each outbreak was observed. Our results suggest that sylvatic populations of T. cruzi are the causative agents of Chagas disease oral outbreaks and these findings should help to pursue new initiatives of control and prevention in those areas where domiciliated vectorial transmission has been interrupted.
Collapse
Affiliation(s)
- Juan David Ramírez
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Universidad de Los Andes, Bogotá, Colombia
| | - Marleny Montilla
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Zulma M. Cucunubá
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | | | - Pilar Zambrano
- Subdirección de Vigilancia y Control en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia
| | - Felipe Guhl
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Universidad de Los Andes, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
14
|
Ramírez JD, Herrera C, Bogotá Y, Duque MC, Suárez-Rivillas A, Guhl F. Validation of a Poisson-distributed limiting dilution assay (LDA) for a rapid and accurate resolution of multiclonal infections in natural Trypanosoma cruzi populations. J Microbiol Methods 2013; 92:220-5. [DOI: 10.1016/j.mimet.2012.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022]
|