1
|
Deng H, Deng Y, Song T, Pang L, Zhu S, Ren Z, Guo H, Xu Z, Zhu L, Geng Y, Ouyang P, He R, Deng J. Evaluation of the activity and mechanisms of oregano essential oil against PRV in vivo and in vitro. Microb Pathog 2024; 194:106791. [PMID: 39019121 DOI: 10.1016/j.micpath.2024.106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND The Pseudorabies Virus (PRV) leading to pseudorabies and causes huge economic losses in pig industry. The development of novel PRV variations has diminished the efficacy of traditional vaccinations, and there is yet no medication that can stop the spread of PRV infection. Therefore, PRV eradication is challenging. Oregano essential oil, the plant-based ingredient for medication feed have been shown to has strong anti-herpesvirus activity, but no anti-PRV function has been reported. RESULTS The current study assessed the anti-pseudorabies virus (PRV) activity of oregano essential oil and explored its mechanisms and most effective components against PRV. Our in vivo findings demonstrated that oregano essential oil could decrease the PRV load in tissues, mitigate tissue lesions, and enhance the survival rate of mice. The potential antiviral mechanism involves augmenting humoral and cellular immune responses in PRV-infected mice. To further investigate the most effective components of oregano essential oil against PRV, an in vitro study was conducted, revealing that oregano essential oil and its main constituents, carvacrol and thymol, all diminished PRV intracellular proliferation in vitro. Carvacrol exhibited the most potent anti-PRV effect, serving as the primary contributor to oregano essential oil's anti-PRV activity. The mechanisms underlying carvacrol's anti-PRV properties include the upregulation of cytokines TNF-α, IFN-β, IFN-γ, IL-12, and the inhibition of PRV-induced apoptosis in BHK-21 cells. CONCLUSIONS Our study provides an effective drug for the prevention and control of PRV infection.
Collapse
Affiliation(s)
- Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Youtian Deng
- College of Food Science, Sichuan Agriculture University, Yaan, Sichuan, 625014, China
| | - Tianhao Song
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Lianfeng Pang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Song Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ran He
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
2
|
Ait Djebbara S, Mcheik S, Percier P, Segueni N, Poncelet A, Truyens C. The macrophage infectivity potentiator of Trypanosoma cruzi induces innate IFN-γ and TNF-α production by human neonatal and adult blood cells through TLR2/1 and TLR4. Front Immunol 2023; 14:1180900. [PMID: 37304288 PMCID: PMC10250606 DOI: 10.3389/fimmu.2023.1180900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
We previously identified the recombinant (r) macrophage (M) infectivity (I) potentiator (P) of the protozoan parasite Trypanosoma cruzi (Tc) (rTcMIP) as an immuno-stimulatory protein that induces the release of IFN-γ, CCL2 and CCL3 by human cord blood cells. These cytokines and chemokines are important to direct a type 1 adaptive immune response. rTcMIP also increased the Ab response and favored the production of the Th1-related isotype IgG2a in mouse models of neonatal vaccination, indicating that rTcMIP could be used as a vaccine adjuvant to enhance T and B cell responses. In the present study, we used cord and adult blood cells, and isolated NK cells and human monocytes to investigate the pathways and to decipher the mechanism of action of the recombinant rTcMIP. We found that rTcMIP engaged TLR1/2 and TLR4 independently of CD14 and activated the MyD88, but not the TRIF, pathway to induce IFN-γ production by IL-15-primed NK cells, and TNF-α secretion by monocytes and myeloid dendritic cells. Our results also indicated that TNF-α boosted IFN-γ expression. Though cord blood cells displayed lower responses than adult cells, our results allow to consider rTcMIP as a potential pro-type 1 adjuvant that might be associated to vaccines administered in early life or later.
Collapse
Affiliation(s)
- Sarra Ait Djebbara
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Saria Mcheik
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pauline Percier
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Service Immune Response, Sciensano, Brussels, Belgium
| | - Noria Segueni
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Antoine Poncelet
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Carine Truyens
- Laboratory of Parasitology, Faculty of Medicine, and ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
3
|
Gil-Jaramillo N, Rocha AP, Raiol T, Motta FN, Favali C, Brigido MM, Bastos IMD, Santana JM. The First Contact of Human Dendritic Cells With Trypanosoma cruzi Reveals Response to Virus as an Unexplored Central Pathway. Front Immunol 2021; 12:638020. [PMID: 33897690 PMCID: PMC8062726 DOI: 10.3389/fimmu.2021.638020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
Chagas disease is a debilitating and neglected disease caused by the protozoan Trypanosoma cruzi. Soon after infection, interactions among T. cruzi and host innate immunity cells can drive/contribute to disease outcome. Dendritic cells (DCs), present in all tissues, are one of the first immune cells to interact with Trypanosoma cruzi metacyclic trypomastigotes. Elucidating the immunological events triggered immediately after parasite-human DCs encounter may aid in understanding the role of DCs in the establishment of infection and in the course of the disease. Therefore, we performed a transcriptomic analysis of a 12 h interaction between T. cruzi and MoDCs (monocyte-derived DCs) from three human donors. Enrichment analyses of the 468 differentially expressed genes (DEGs) revealed viral infection response as the most regulated pathway. Additionally, exogenous antigen processing and presentation through MHC-I, chemokine signaling, lymphocyte co-stimulation, metallothioneins, and inflammasome activation were found up-regulated. Notable, we were able to identify the increased gene expression of alternative inflammasome sensors such as AIM2, IFI16, and RIG-I for the first time in a T. cruzi infection. Both transcript and protein expression levels suggest proinflammatory cytokine production during early T. cruzi-DCs contact. Our transcriptome data unveil antiviral pathways as an unexplored process during T. cruzi-DC initial interaction, disclosing a new panorama for the study of Chagas disease outcomes.
Collapse
Affiliation(s)
- Natalia Gil-Jaramillo
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Amanda Pereira Rocha
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Tainá Raiol
- Fiocruz Brasília–Gerência Regional de Brasília (GEREB), Fundação Oswaldo Cruz (Fiocruz), Brasília, Brazil
| | - Flávia Nader Motta
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
- Faculdade de Ceilândia, Universidade de Brasília, Brasília, Brazil
| | - Cecília Favali
- Laboratório de Imunologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Marcelo M. Brigido
- Laboratório de Imunologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Izabela M. D. Bastos
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Jaime M. Santana
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
4
|
Kemmerling U, Osuna A, Schijman AG, Truyens C. Congenital Transmission of Trypanosoma cruzi: A Review About the Interactions Between the Parasite, the Placenta, the Maternal and the Fetal/Neonatal Immune Responses. Front Microbiol 2019; 10:1854. [PMID: 31474955 PMCID: PMC6702454 DOI: 10.3389/fmicb.2019.01854] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is considered a neglected tropical disease by the World Health Organization. Congenital transmission of CD is an increasingly relevant public health problem. It progressively becomes the main transmission route over others and can occur in both endemic and non-endemic countries. Though most congenitally infected newborns are asymptomatic at birth, they display higher frequencies of prematurity, low birth weight, and lower Apgar scores compared to uninfected ones, and some suffer from severe symptoms. If not diagnosed and treated, infected newborns are at risk of developing disabling and life-threatening chronic pathologies later in life. The success or failure of congenital transmission depends on interactions between the parasite, the placenta, the mother, and the fetus. We review and discuss here the current knowledge about these parameters, including parasite virulence factors such as exovesicles, placental tropism, potential placental defense mechanisms, the placental transcriptome of infected women, gene polymorphism, and the maternal and fetal/neonatal immune responses, that might modulate the risk of T. cruzi congenital transmission.
Collapse
Affiliation(s)
- Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular, Departamento de Parasitología, Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Alejandro Gabriel Schijman
- Molecular Biology of Chagas Disease Laboratory, Genetic Engineering and Molecular Biology Research Institute Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, Argentina
| | - Carine Truyens
- Laboratory of Parasitology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
5
|
Lovo-Martins MI, Malvezi AD, Zanluqui NG, Lucchetti BFC, Tatakihara VLH, Mörking PA, de Oliveira AG, Goldenberg S, Wowk PF, Pinge-Filho P. Extracellular Vesicles Shed By Trypanosoma cruzi Potentiate Infection and Elicit Lipid Body Formation and PGE 2 Production in Murine Macrophages. Front Immunol 2018; 9:896. [PMID: 29755471 PMCID: PMC5934475 DOI: 10.3389/fimmu.2018.00896] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022] Open
Abstract
During the onset of Trypanosoma cruzi infection, an effective immune response is necessary to control parasite replication and ensure host survival. Macrophages have a central role in innate immunity, acting as an important trypanocidal cell and triggering the adaptive immune response through antigen presentation and cytokine production. However, T. cruzi displays immune evasion mechanisms that allow infection and replication in macrophages, favoring its chronic persistence. One potential mechanism is the release of T. cruzi strain Y extracellular vesicle (EV Y), which participate in intracellular communication by carrying functional molecules that signal host cells and can modulate the immune response. The present work aimed to evaluate immune modulation by EV Y in C57BL/6 mice, a prototype resistant to infection by T. cruzi strain Y, and the effects of direct EV Y stimulation of macrophages in vitro. EV Y inoculation in mice prior to T. cruzi infection resulted in increased parasitemia, elevated cardiac parasitism, decreased plasma nitric oxide (NO), reduced NO production by spleen cells, and modulation of cytokine production, with a reduction in TNF-α in plasma and decreased production of TNF-α and IL-6 by spleen cells from infected animals. In vitro assays using bone marrow-derived macrophages showed that stimulation with EV Y prior to infection by T. cruzi increased the parasite internalization rate and release of infective trypomastigotes by these cells. In this same scenario, EV Y induced lipid body formation and prostaglandin E2 (PGE2) production by macrophages even in the absence of T. cruzi. In infected macrophages, EV Y decreased production of PGE2 and cytokines TNF-α and IL-6 24 h after infection. These results suggest that EV Y modulates the host response in favor of the parasite and indicates a role for lipid bodies and PGE2 in immune modulation exerted by EVs.
Collapse
Affiliation(s)
- Maria Isabel Lovo-Martins
- Instituto Carlos Chagas, Fiocruz - Paraná, Curitiba, Brazil.,Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Aparecida Donizette Malvezi
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Bruno Fernando Cruz Lucchetti
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Vera Lúcia Hideko Tatakihara
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Admilton Gonçalves de Oliveira
- Laboratório de Microscopia Eletrônica e Microanálises, Central de Laboratórios de Pesquisa Multiusuários, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Pryscilla Fanini Wowk
- Instituto Carlos Chagas, Fiocruz - Paraná, Curitiba, Brazil.,Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz - Paraná, Curitiba, Brazil
| | - Phileno Pinge-Filho
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
6
|
Heo JC, Kim B, Kim YN, Kim DK, Lee JH. Induction of Inflammation In Vivo by Electrocardiogram Sensor Operation Using Wireless Power Transmission. SENSORS 2017; 17:s17122905. [PMID: 29240666 PMCID: PMC5751571 DOI: 10.3390/s17122905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 12/04/2022]
Abstract
Prolonged monitoring by cardiac electrocardiogram (ECG) sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system.
Collapse
Affiliation(s)
- Jin-Chul Heo
- Department of Biomedical Engineering, School of Medicine, Keimyung University, Daegu 42601, Korea.
| | - Beomjoon Kim
- Department of Electronic and Electrical Engineering, School of Engineering, Keimyung University, Daegu 42601, Korea.
| | - Yoon-Nyun Kim
- Department of Internal Medicine, Dongsan Medical Center, Keimyung University, Daegu 41931, Korea.
| | - Dae-Kwang Kim
- Department of Medical Genetics, Hanvit Institution for Medical Genetics, Keimyung University, Daegu 42601, Korea.
| | - Jong-Ha Lee
- Department of Biomedical Engineering, School of Medicine, Keimyung University, Daegu 42601, Korea.
| |
Collapse
|
7
|
Wang J, Cao X, Zhao J, Zhao H, Wei J, Li Q, Qi X, Yang Z, Wang L, Zhang H, Bai L, Wu Z, Zhao L, Hong Z, Yin Z. Critical roles of conventional dendritic cells in promoting T cell-dependent hepatitis through regulating natural killer T cells. Clin Exp Immunol 2017; 188:127-137. [PMID: 27891589 DOI: 10.1111/cei.12907] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/12/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) play critical roles in initiating and regulating innate immunity as well as adaptive immune responses. However, the role of conventional dendritic cells (cDCs) in concanavalin A (ConA)-induced fulminant hepatitis is unknown. In this study, we demonstrated that depletion of cDCs using either CD11c-diphtheria toxin receptor transgenic mice (DTR Tg) mice or anti-CD11c antibody reduced the severity of liver injury significantly, indicating a detrimental role of cDCs in ConA-induced hepatitis. We elucidated further the pathological role of cDCs as being the critical source of interleukin (IL)-12, which induced the secretion of interferon (IFN)-γ by natural killer (NK) T cells. Reconstitution of cDCs-depleted mice with IL-12 restored ConA-induced hepatitis significantly. Furthermore, we determined that NK T cells were the target of DC-derived IL-12, and NK T cells contributed to liver inflammation and injury through production of IFN-γ. In summary, our study demonstrated a novel function of cDCs in mediating ConA-induced hepatitis through regulating IFN-γ secretion of NK T cells in an IL-12-dependent fashion. Targeting cDCs might provide potentially therapeutic applications in treating autoimmune related liver diseases.
Collapse
Affiliation(s)
- J Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - X Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - J Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - H Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - J Wei
- The First Affiliate Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| | - Q Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - X Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Z Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - L Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - H Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - L Bai
- Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Z Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - L Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Z Hong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Z Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA.,University of Science and Technology of China, Hefei City, Anhui, China
| |
Collapse
|
8
|
Pang X, Wang Z, Zhai N, Zhang Q, Song H, Zhang Y, Li T, Li H, Su L, Niu J, Tu Z. IL-10 plays a central regulatory role in the cytokines induced by hepatitis C virus core protein and polyinosinic acid:polycytodylic acid. Int Immunopharmacol 2016; 38:284-90. [PMID: 27337528 DOI: 10.1016/j.intimp.2016.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 12/24/2022]
Abstract
Hepatitis C virus (HCV) can cause persistent infection and chronic liver disease, and viral factors are involved in HCV persistence. HCV core protein, a highly conserved viral protein, not only elicits an immunoresponse, but it also regulates it. In addition, HCV core protein interacts with toll-like receptors (TLRs) on monocytes, inducing them to produce cytokines. Polyinosinic acid:polycytodylic acid (polyI:C) is a synthetic analogue of double-stranded RNA that binds to TLR3 and can induce secretion of type I IFN from monocytes. Cytokine response against HCV is likely to affect the natural course of infection as well as HCV persistence. However, possible effects of cytokines induced by HCV core protein and polyI:C remain to be investigated. In this study, we isolated CD14(+) monocytes from healthy donors, cultured them in the presence of HCV core protein and/or polyI:C, and characterized the induced cytokines, phenotypes and mechanisms. We demonstrated that HCV core protein- and polyI:C-stimulated CD14(+) monocytes secreted tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-10, and type I interferon (IFN). Importantly, TNF-α and IL-1β regulated the secretion of IL-10, which then influenced the expression of signal transducer and activator of transcription 1 (STAT1) and interferon regulatory factor 1 (IRF1) and subsequently the production of type I IFN. Interestingly, type I IFN also regulated the production of IL-10, which in turn inhibited the nuclear factor (NF)-κB subunit, reducing TNF-α and IL-1β levels. Therefore, IL-10 appears to play a central role in regulating the production of cytokines induced by HCV core protein and polyI:C.
Collapse
Affiliation(s)
- Xiaoli Pang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhaoxia Wang
- Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Naicui Zhai
- Translational Medicine Research Institute, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Qianqian Zhang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Hongxiao Song
- Translational Medicine Research Institute, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yujiao Zhang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Tianyang Li
- Translational Medicine Research Institute, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Haijun Li
- Translational Medicine Research Institute, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Zhengkun Tu
- Translational Medicine Research Institute, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
9
|
Carlier Y, Truyens C. Congenital Chagas disease as an ecological model of interactions between Trypanosoma cruzi parasites, pregnant women, placenta and fetuses. Acta Trop 2015; 151:103-15. [PMID: 26293886 DOI: 10.1016/j.actatropica.2015.07.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/31/2022]
Abstract
The aim of this paper is to discuss the main ecological interactions between the parasite Trypanosoma cruzi and its hosts, the mother and the fetus, leading to the transmission and development of congenital Chagas disease. One or several infecting strains of T. cruzi (with specific features) interact with: (i) the immune system of a pregnant woman whom responses depend on genetic and environmental factors, (ii) the placenta harboring its own defenses, and, finally, (iii) the fetal immune system displaying responses also susceptible to be modulated by maternal and environmental factors, as well as his own genetic background which is different from her mother. The severity of congenital Chagas disease depends on the magnitude of such final responses. The paper is mainly based on human data, but integrates also complementary observations obtained in experimental infections. It also focuses on important gaps in our knowledge of this congenital infection, such as the role of parasite diversity vs host genetic factors, as well as that of the maternal and placental microbiomes and the microbiome acquisition by infant in the control of infection. Investigations on these topics are needed in order to improve the programs aiming to diagnose, manage and control congenital Chagas disease.
Collapse
Affiliation(s)
- Yves Carlier
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (ULB), CP 616, Route de Lennik 808, 1070 Bruxelles, Belgium; Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, Suite 2210, 1440 Canal Street, New Orleans, LA 70112-2797, USA.
| | - Carine Truyens
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (ULB), CP 616, Route de Lennik 808, 1070 Bruxelles, Belgium.
| |
Collapse
|
10
|
Carlier Y, Sosa-Estani S, Luquetti AO, Buekens P. Congenital Chagas disease: an update. Mem Inst Oswaldo Cruz 2015; 110:363-8. [PMID: 25760448 PMCID: PMC4489473 DOI: 10.1590/0074-02760140405] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/10/2015] [Indexed: 12/17/2022] Open
Abstract
Congenital infection with Trypanosoma cruzi is a global problem, occurring on average
in 5% of children born from chronically infected mothers in endemic areas, with
variations depending on the region. This presentation aims to focus on and update
epidemiological data, research methods, involved factors, control strategy and
possible prevention of congenital infection with T. cruzi. Considering that
etiological treatment of the child is always effective if performed before one year
of age, the diagnosis of infection in pregnant women and their newborns has to become
the standard of care and integrated into the surveillance programs of syphilis and
human immunodeficiency virus. In addition to the standard tests, polymerase chain
reaction performed on blood of neonates of infected mothers one month after birth
might improve the diagnosis of congenital infection. Recent data bring out that its
transmission can be prevented through treatment of infected women before they become
pregnant. The role of parasite genotypes and host genetic factors in parasite
transmission and development of infection in foetuses/neonates has to be more
investigated in order to better estimate the risk factors and impact on health of
congenital infection with T. cruzi.
Collapse
Affiliation(s)
- Yves Carlier
- Faculté de Médecine, Université Libre de Bruxelles, Bruxelles, Belgique
| | - Sergio Sosa-Estani
- Instituto Nacional de Parasitología Dr Mario Fatala Chaben, Ministry of Health, Buenos Aires, Argentina
| | | | - Pierre Buekens
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
11
|
Rölle A, Pollmann J, Ewen EM, Le VTK, Halenius A, Hengel H, Cerwenka A. IL-12-producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion. J Clin Invest 2014; 124:5305-16. [PMID: 25384219 PMCID: PMC4348979 DOI: 10.1172/jci77440] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/09/2014] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection is the most common cause of congenital viral infections and a major source of morbidity and mortality after organ transplantation. NK cells are pivotal effector cells in the innate defense against CMV. Recently, hallmarks of adaptive responses, such as memory-like features, have been recognized in NK cells. HCMV infection elicits the expansion of an NK cell subset carrying an activating receptor heterodimer, comprising CD94 and NKG2C (CD94/NKG2C), a response that resembles the clonal expansion of adaptive immune cells. Here, we determined that expansion of this NKG2C(+) subset and general NK cell recovery rely on signals derived from CD14(+) monocytes. In a coculture system, a subset of CD14(+) cells with inflammatory monocyte features produced IL-12 in response to HCMV-infected fibroblasts, and neutralization of IL-12 in this model substantially reduced CD25 upregulation and NKG2C(+) subset expansion. Finally, blockade of CD94/NKG2C on NK cells or silencing of the cognate ligand HLA-E in infected fibroblasts greatly impaired expansion of NKG2C(+) NK cells. Together, our results reveal that IL-12, CD14(+) cells, and the CD94/NKG2C/HLA-E axis are critical for the expansion of NKG2C(+) NK cells in response to HCMV infection. Moreover, strategies targeting the NKG2C(+) NK cell subset have the potential to be exploited in NK cell-based intervention strategies against viral infections and cancer.
Collapse
Affiliation(s)
- Alexander Rölle
- Innate Immunity Group, German Cancer Research Center (DKFZ),
Heidelberg, Germany
| | - Julia Pollmann
- Innate Immunity Group, German Cancer Research Center (DKFZ),
Heidelberg, Germany
| | - Eva-Maria Ewen
- Innate Immunity Group, German Cancer Research Center (DKFZ),
Heidelberg, Germany
| | - Vu Thuy Khanh Le
- Institute for Virology, University Hospital Essen, University of
Duisburg-Essen, Essen, Germany
| | - Anne Halenius
- Institute of Virology, Albert-Ludwigs-University Freiburg,
Freiburg, Germany
| | - Hartmut Hengel
- Institute of Virology, Albert-Ludwigs-University Freiburg,
Freiburg, Germany
| | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center (DKFZ),
Heidelberg, Germany
| |
Collapse
|
12
|
Duriez M, Quillay H, Madec Y, El Costa H, Cannou C, Marlin R, de Truchis C, Rahmati M, Barré-Sinoussi F, Nugeyre MT, Menu E. Human decidual macrophages and NK cells differentially express Toll-like receptors and display distinct cytokine profiles upon TLR stimulation. Front Microbiol 2014; 5:316. [PMID: 25071732 PMCID: PMC4076550 DOI: 10.3389/fmicb.2014.00316] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/10/2014] [Indexed: 12/17/2022] Open
Abstract
Maternofetal pathogen transmission is partially controlled at the level of the maternal uterine mucosa at the fetal implantation site (the decidua basalis), where maternal and fetal cells are in close contact. Toll-like receptors (TLRs) may play an important role in initiating rapid immune responses against pathogens in the decidua basalis, however the tolerant microenvironment should be preserved in order to allow fetal development. Here we investigated the expression and functionality of TLRs expressed by decidual macrophages (dMs) and NK cells (dNKs), the major decidual immune cell populations. We report for the first time that both human dMs and dNK cells express mRNAs encoding TLRs 1-9, albeit with a higher expression level in dMs. TLR2, TLR3, and TLR4 protein expression checked by flow cytometry was positive for both dMs and dNK cells. In vitro treatment of primary dMs and dNK cells with specific TLR2, TLR3, TLR4, TLR7/8, and TLR9 agonists enhanced their secretion of pro- and anti-inflammatory cytokines, as well as cytokines and chemokines involved in immune cell crosstalk. Only dNK cells released IFN-γ, whereas only dMs released IL-1β, IL-10, and IL-12. TLR9 activation of dMs resulted in a distinct pattern of cytokine expression compared to the other TLRs. The cytokine profiles expressed by dMs and dNK cells upon TLR activation are compatible with maintenance of the fetotolerant immune environment during initiation of immune responses to pathogens at the maternofetal interface.
Collapse
Affiliation(s)
- Marion Duriez
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Département de Virologie Paris, France ; Centre d'Immunologie et des Maladies Infectieuses, INSERM U1135, Sorbonne Universités, UPMC Univ Paris 06 Paris, France
| | - Héloïse Quillay
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Département de Virologie Paris, France ; Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité Paris, France
| | - Yoann Madec
- Unité d'Epidémiologie des Maladies Emergentes, Institut Pasteur Paris, France
| | - Hicham El Costa
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Département de Virologie Paris, France
| | - Claude Cannou
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Département de Virologie Paris, France
| | - Romain Marlin
- UMR-CNRS-5164-CIRID, Université Bordeaux 2 Bordeaux, France
| | - Claire de Truchis
- Gynecology-Obstetrics Service, A. Béclère Hospital, AP-HP Clamart, France
| | - Mona Rahmati
- Gynecology-Obstetrics Service, Pitié Salpêtrière Hospital AP-HP Paris, France
| | - Françoise Barré-Sinoussi
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Département de Virologie Paris, France
| | - Marie-Thérèse Nugeyre
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Département de Virologie Paris, France
| | - Elisabeth Menu
- Unité de Régulation des Infections Rétrovirales, Institut Pasteur, Département de Virologie Paris, France
| |
Collapse
|
13
|
Redpath SA, Fonseca NM, Perona-Wright G. Protection and pathology during parasite infection: IL-10 strikes the balance. Parasite Immunol 2014; 36:233-52. [PMID: 24666543 DOI: 10.1111/pim.12113] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/18/2014] [Indexed: 12/16/2022]
Abstract
The host response to infection requires an immune response to be strong enough to control the pathogen but also restrained, to minimize immune-mediated pathology. The conflicting pressures of immune activation and immune suppression are particularly apparent in parasite infections, where co-evolution of host and pathogen has selected many different compromises between protection and pathology. Cytokine signals are critical determinants of both protective immunity and immunopathology, and, in this review, we focus on the regulatory cytokine IL-10 and its role in protozoan and helminth infections. We discuss the sources and targets of IL-10 during parasite infection, the signals that initiate and reinforce its action, and its impact on the invading parasite, on the host tissue, and on coincident immune responses.
Collapse
Affiliation(s)
- S A Redpath
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
14
|
Guilmot A, Carlier Y, Truyens C. Differential IFN-γ production by adult and neonatal blood CD56+ natural killer (NK) and NK-like-T cells in response to Trypanosoma cruzi and IL-15. Parasite Immunol 2014; 36:43-52. [PMID: 24102464 PMCID: PMC4285850 DOI: 10.1111/pim.12077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/12/2013] [Indexed: 12/02/2022]
Abstract
Early interferon-gamma (IFN-γ) release by innate cells is critical to direct type 1 immune response able to control intracellular pathogens like Trypanosoma cruzi. Although CD56bright natural killer (NK) cells are reported to be potent early IFN-γ producers, other CD56+ cells like CD56dim NK cells and NK-like T cells have recently been shown to also release IFN-γ. We have here studied the contribution of each CD56+ lymphocyte populations in early IFN-γ production in both adults and neonates. On this purpose, we analysed the kinetics of IFN-γ production by RT-PCR, ELISA and flow cytometry from 2 h onwards after T. cruzi and IL-15 stimulation and sought for the responding CD56+ cells. CD56bright and CD56dimCD16− NK cells were the more potent IFN-γ early producers in response to IL-15 and parasites in adults and neonates. In both age groups, the majority of IFN-γ producing cells were NK cells. However, on the contrary to neonates, CD3+CD56+ NK-like T cells and CD3+CD56− ‘classical’ T cells also contributed to early IFN-γ production in adults. Altogether, our results support that whereas NK cells responded almost similarly in neonates and adults, cord blood innate CD56+ and CD56− T cells displayed major quantitative and qualitative defects that could contribute to the well-known neonatal immune immaturity.
Collapse
Affiliation(s)
- A Guilmot
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | | | | |
Collapse
|