1
|
Mohanty A, Vekariya V, Yadav S, Agrawal-Rajput R. Natural phytochemicals reverting M2 to M1 macrophages: A novel alternative leishmaniasis therapy. Microb Pathog 2025; 200:107311. [PMID: 39863089 DOI: 10.1016/j.micpath.2025.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/29/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes. M1 macrophages are pro-inflammatory and promote parasite clearance, while M2 macrophages support tissue repair and parasite survival by facilitating promastigote entry and intracellular amastigote proliferation. PURPOSE The review focuses on discovering novel phytochemicals that exploit the immunomodulatory properties of macrophages, which can serve as an alternative antileishmanial treatments due to their diverse chemical structures and ability to modulate immune responses. It examines the immunomodulatory effects of phytochemicals that directly or indirectly promote antileishmanial activity by influencing macrophage polarisation and cytokine secretion. They can induce M1 macrophage polarisation to directly combat leishmaniasis or suppress M2 macrophages, thereby exerting indirect antileishmanial activity by influencing the release of M1-and M2-related cytokines. RESULTS & DISCUSSION Phytochemicals demonstrate antileishmanial effects through ROS production, M1 activation, and cytokine modulation. They regulate M1/M2-related cytokines and macrophage activity, influencing immune responses. Although their effects may be non-specific, targeted delivery strategies could overcome current therapeutic limitations, positioning phytochemicals as promising candidates for leishmaniasis treatment to counter the limitations of current medications.
Collapse
Affiliation(s)
- Aditya Mohanty
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Vasu Vekariya
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Shivani Yadav
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
2
|
Amaral M, Romanelli MM, Asiki H, Bicker J, Lage DP, Freitas CS, Taniwaki NN, Lago JHG, Coelho EAF, Falcão A, Fortuna A, Anderson EA, Tempone AG. Synthesis of a dehydrodieugenol B derivative as a lead compound for visceral leishmaniasis-mechanism of action and in vivo pharmacokinetic studies. Antimicrob Agents Chemother 2024; 68:e0083124. [PMID: 39382276 PMCID: PMC11539218 DOI: 10.1128/aac.00831-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Leishmaniasis is a parasitic neglected tropical disease, affecting 12 million people. Available treatments present several limitations, with an increasing number of resistance cases. In the search for new chemotherapies, the natural product dehydrodieugenol B was used as a scaffold for the synthesis of a series of derivatives, resulting in the discovery of the promising analog [4-(4-(5-allyl-3-methoxy-2-((4-methoxybenzyl)oxy)phenoxy)-3-methoxybenzyl)morpholine, 1]. In this work, we investigated the effect of compound 1 on cell signaling in Leishmania (L.) infantum, culminating in cell death, as well as its immunomodulatory effect in the host cell. Additionally, we performed a pharmacokinetic profile study in an animal model. After treatment, compound 1 induced the alkalinization of acidocalcisomes and concomitant Ca2+ release in the parasite. These events may induce depolarization of the mitochondrial potential, with successive collapse of the bioenergetic system, leading to a reduction of ATP and reactive oxygen species (ROS) levels. The analysis of total proteins and protein profile by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) demonstrated that compound 1 also altered the parasite proteins after treatment. Transmission electron microscopy studies revealed ultrastructural damage to mitochondria; together, these data suggest that compound 1 may promote autophagic cell death. Additionally, compound 1 also induced an immunomodulatory effect in host cells, with a reduction of Th1 and Th2 cytokine response, characterizing an anti-inflammatory compound. The obtained pharmacokinetic profile in rats enhances the potential of the compound, with a mean plasma half-life (T1/2) of 21 h. These data reinforce the potential of compound 1 as a new lead for future efficacy studies.
Collapse
Affiliation(s)
- Maiara Amaral
- Laboratory of Physiopathology, Instituto Butantan, São Paulo, Brazil
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maiara M. Romanelli
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Hannah Asiki
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Joana Bicker
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Daniela P. Lage
- Laboratório de Pesquisa do Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila S. Freitas
- Laboratório de Pesquisa do Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Noemi N. Taniwaki
- Laboratory of Electron Microscopy, Instituto Adolfo Lutz, São Paulo, Brazil
| | - Joao Henrique G. Lago
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, Brazil
| | - Eduardo A. F. Coelho
- Laboratório de Pesquisa do Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Amílcar Falcão
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Edward A. Anderson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Andre G. Tempone
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Baltazar F, Amaral M, Romanelli MM, de Castro Levatti EV, Ramos FF, Paulo Melchior de Oliveira Leão L, Chagas-Paula DA, Soares MG, Dias DF, Aranha CMS, dos Santos Fernandes JP, Lago JHG, Tempone AG. Toward New Therapeutics for Visceral Leishmaniasis: Efficacy and Mechanism of Action of Amides Inspired by Gibbilimbol B. ACS OMEGA 2024; 9:44385-44395. [PMID: 39524621 PMCID: PMC11541474 DOI: 10.1021/acsomega.4c05510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
The problems with current strategies to control canine visceral Leishmaniasis (CVL), which include the euthanasia of infected animals, and also the toxicity of the drugs currently used in human treatments for CVL, add urgency to the search for new therapeutic agents. This study aimed to evaluate the activity against Leishmania (L.) infantum of 12 amides that are chemically inspired by gibbilimbol B, a bioactive natural product that was initially obtained from Piper malacophyllum. Three of these compounds-N-(2-ethylhexyl)-4-chlorobenzamide (9), N-(2-ethylhexyl)-4-nitrobenzamide (10), and N-(2-ethylhexyl)-4-(tert-butyl)benzamide (12) -demonstrated activity against the intracellular amastigotes without toxicity to mammalian host cells (CC50 > 200 μM); compounds 9, 10, and 12 resulted in EC50 values of 12.7, 12.2, and 5.1 μM, respectively. In silico drug-likeness studies predicted that these compounds would show high levels of gastrointestinal absorption, would be able to penetrate the blood-brain barrier, would show moderate solubility, and would not show unwanted molecular interactions. Due to their promising pharmacological profiles, compounds 9 and 10 were selected for mechanism of action studies (MoA). The MoA studies in L. (L.) infantum revealed that neither of the compounds affected the permeabilization of the plasma membrane. Nevertheless, compound 9 induced strong alkalinization of acidocalcisomes, which resulted in a significant and rapid increase in intracellular Ca2+ levels, thereby causing the depolarization of the mitochondrial membrane potential and a reduction in the levels of reactive oxygen species (ROS). In contrast, compound 10 induced a gradual increase in intracellular Ca2+ levels and a similarly gradual reduction in ROS levels, but it caused neither acidocalcisome alkalinization nor mitochondrial membrane potential depolarization. Finally, the MALDI-TOF/MS assessment of protein alterations in L. (L.) infantum treated separately with compounds 9 and 10 revealed changes in mass spectral profiles from both treatments. These results highlight the anti-L. (L.) infantum potential of these amides-especially for compounds 9 and 10-and they suggest that these compounds could be promising candidates for future in vivo studies in VL-models.
Collapse
Affiliation(s)
- Fabio
Navarro Baltazar
- Pathophysiology
Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, São Paulo, Brazil
| | - Maiara Amaral
- Pathophysiology
Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, São Paulo, Brazil
| | - Maiara Maria Romanelli
- Pathophysiology
Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, São Paulo, Brazil
| | | | - Fernanda Fonseca Ramos
- Pathophysiology
Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, São Paulo, Brazil
- Department
of Pharmaceutical Sciences, Federal University
of São Paulo, Rua São Nicolau, 210, 09913030 Diadema, São Paulo, Brazil
| | | | - Daniela Aparecida Chagas-Paula
- Institute
of Chemistry, Federal University of Alfenas
(UNIFAL), R. Gabriel
Monteiro da Silva, 700, 37130-000 Alfenas, Minas Gerais, Brazil
| | - Marisi Gomes Soares
- Institute
of Chemistry, Federal University of Alfenas
(UNIFAL), R. Gabriel
Monteiro da Silva, 700, 37130-000 Alfenas, Minas Gerais, Brazil
| | - Danielle Ferreira Dias
- Institute
of Chemistry, Federal University of Alfenas
(UNIFAL), R. Gabriel
Monteiro da Silva, 700, 37130-000 Alfenas, Minas Gerais, Brazil
| | - Cecilia M. S.
Q. Aranha
- Department
of Medicine, Federal University of São
Paulo (UNIFESP), Av.
Dr. Arnaldo, 455, 01246-903 São Paulo, São Paulo, Brazil
| | - João Paulo dos Santos Fernandes
- Department
of Pharmaceutical Sciences, Federal University
of São Paulo, Rua São Nicolau, 210, 09913030 Diadema, São Paulo, Brazil
| | - Joao Henrique Ghilardi Lago
- Centre
of Natural Sciences and Humanities, Universidade
Federal do ABC, Av. dos Estados, 5001, 09210-580 Santo André, São Paulo, Brazil
| | - Andre Gustavo Tempone
- Pathophysiology
Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Chhajer R, Bhattacharyya A, Ali N. Cell Death in Leishmania donovani promastigotes in response to Mammalian Aurora Kinase B Inhibitor- Hesperadin. Biomed Pharmacother 2024; 177:116960. [PMID: 38936193 DOI: 10.1016/j.biopha.2024.116960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/29/2024] Open
Abstract
Deciphering how hesperadin, a repurposed mammalian aurora kinase B inhibitor, affects the cellular pathways in Leishmania donovani might be beneficial. This investigation sought to assess the physiological effects of hesperadin on promastigotes of L. donovani, by altering the duration of treatment following exposure to hesperadin. Groups pre-treated with inhibitors such as EGTA, NAC, and z-VAD-fmk before hesperadin exposure were also included. Morphological changes by microscopy, ATP and ROS changes by luminometry; DNA degradation using agarose gel electrophoresis and metacaspase levels through RT-PCR were assessed. Flow cytometry was used to study mitochondrial depolarization using JC-1 and MitoTracker Red; mitochondrial-superoxide accumulation using MitoSOX; plasma membrane modifications using Annexin-V and propidium iodide, and lastly, caspase activation using ApoStat. Significant alterations in promastigote morphology were noted. Caspase activity and mitochondrial-superoxide rose early after exposure whereas mitochondrial membrane potential demonstrated uncharacteristic variations, with significant functional disturbances such as leakage of superoxide radicals after prolonged treatments. ATP depletion and ROS accumulation demonstrated inverse patterns, genomic DNA showed fragmentation and plasma membrane showed Annexin-V binding, soon followed by propidium iodide uptake. Multilobed macronuclei and micronuclei accumulated in hesperadin exposed cells before they disintegrated into necrotic debris. The pathologic alterations were unlike the intrinsic or extrinsic pathways of classical apoptosis and suggest a caspase-mediated cell death most akin to mitotic-catastrophe. Most likely, a G2/M transition block caused accumulation of death signals, disorganized spindles and mechanical stresses, causing changes in morphology, organellar functions and ultimately promastigote death. Thus, death was a consequence of mitotic-arrest followed by ablation of kinetoplast functions, often implicated in L. donovani killing.
Collapse
Affiliation(s)
- Rudra Chhajer
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Anirban Bhattacharyya
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.
| |
Collapse
|
5
|
Majhi S, Awasthi BP, Sharma RK, Mitra K. Buparvaquone Induces Ultrastructural and Physiological Alterations Leading to Mitochondrial Dysfunction and Caspase-Independent Apoptotic Cell Death in Leishmania donovani. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:521-538. [PMID: 38709559 DOI: 10.1093/mam/ozae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/09/2024] [Accepted: 03/31/2024] [Indexed: 05/08/2024]
Abstract
Leishmaniasis is a neglected tropical disease (endemic in 99 countries) caused by parasitic protozoa of the genus Leishmania. As treatment options are limited, there is an unmet need for new drugs. The hydroxynaphthoquinone class of compounds demonstrates broad-spectrum activity against protozoan parasites. Buparvaquone (BPQ), a member of this class, is the only drug licensed for the treatment of theileriosis. BPQ has shown promising antileishmanial activity but its mode of action is largely unknown. The aim of this study was to evaluate the ultrastructural and physiological effects of BPQ for elucidating the mechanisms underlying the in vitro antiproliferative activity in Leishmania donovani. Transmission and scanning electron microscopy analyses of BPQ-treated parasites revealed ultrastructural effects characteristic of apoptosis-like cell death, which include alterations in the nucleus, mitochondrion, kinetoplast, flagella, and the flagellar pocket. Using flow cytometry, laser scanning confocal microscopy, and fluorometry, we found that BPQ induced caspase-independent apoptosis-like cell death by losing plasma membrane phospholipid asymmetry and cell cycle arrest at sub-G0/G1 phase. Depolarization of the mitochondrial membrane leads to the generation of oxidative stress and impaired ATP synthesis followed by disruption of intracellular calcium homeostasis. Collectively, these findings provide valuable mechanistic insights and demonstrate BPQ's potential for development as an antileishmanial agent.
Collapse
Affiliation(s)
- Swetapadma Majhi
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Bhanu Priya Awasthi
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Rakesh Kumar Sharma
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Kalyan Mitra
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
6
|
Ur Rahman M, Khan M, Khan SW, Khan RU, Sohail A, Zaman A, Alam N. Novel Schiff bases of Vanillin: potent inhibitors of macrophage harbored Leishmania tropica. J Parasit Dis 2023; 47:619-629. [PMID: 37520206 PMCID: PMC10382424 DOI: 10.1007/s12639-023-01594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 05/05/2023] [Indexed: 08/01/2023] Open
Abstract
Due to limited chemotherapeutic options for leishmaniasis, novel synthetic compounds are gaining attention for evaluation against leishmaniasis. This study aimed to synthesize the compound's Schiff bases of Vanillin to investigate and evaluate their anti-leishmanial potentials against intracellular protozoan parasites Leishmania tropica. In the current study, the phenomena of synergism by designing Schiff bases with Vanillin enhances their desired importance. A total of five compounds Schiff bases of Vanillin were synthesized using different aromatic amines and Vanillin. The structural analysis of all the compounds was done through FT-IR (Fourier Transformer-Infrared), thin layer chromatography, and spectroscopic techniques such as 13C-NMR, mass spectrometry, and 1H-NMR. The antimicrobial properties of all the compounds ZI-1, ZI-2, BS-1, KH-1, and FA-2 against promastigotes and amastigotes forms of L. tropica were analyzed at three different concentrations 25, 50, and 100 µg/ml. The in-vitro MTT assay was performed to calculate the percent inhibition, IC50 values, and their cytotoxicity. The highest percent inhibition values against promastigote form of L. tropica were BS-1 53.78% at 25 µg/ml, ZI-2 66.95% at 50 µg/ml, and again ZI-2 76.92% at 100 µg/ml. Similarly, the highest percent inhibition values against intracellular amastigote stage were BS-1 55.77% at 25 µg/ml, ZI-2 67.78% at 50 µg/ml and again ZI-2 84.93% 100 µg/ml. The highest potency was recorded for BS-1 in both stages, with IC50 values of 9.83 and 4.27 µg/ml against promastigotes and intracellular amastigotes, respectively. The percent hemolysis as toxicity; the lowest percent hemolysis was recorded for ZI-1 at three different concentrations of 25, 50, 100 µg/ml of 2.60, 3.50, and 6.31, respectively. These results suggested that all the compounds exhibited anti-leishmanial activity, with BS-1 as the most potent. Further studies are suggested to increase the activity of compounds with structural modifications by the addition of some other synergistic, novel, and analogue compounds.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Department of Medical Microbiology, Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa Pakistan
| | - Momin Khan
- Department of Medical Microbiology, Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa Pakistan
| | - Sher Wali Khan
- Department of Chemistry, Shaheed Benazir Bhutto University, Sheringal, Khyber Pakhtunkhwa Pakistan
| | - Rahat Ullah Khan
- Department of Medical Microbiology, Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa Pakistan
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Aamir Sohail
- Department of Medical Microbiology, Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa Pakistan
| | - Ali Zaman
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Naveed Alam
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| |
Collapse
|
7
|
Yu H, Hao Z, Liu X, Wei Z, Tan R, Liu X, Chen Q, Chen Y, Zhou H, Liu Y, Fu Z. Autophagy blockage and lysosomal dysfunction are involved in diallyl sulfide-induced inhibition of malignant growth in hepatocellular carcinoma cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:2100-2110. [PMID: 37209385 DOI: 10.1002/tox.23834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023]
Abstract
Diallyl sulfide (DAS), as a major component of garlic extracts, has been shown to inhibit growth of hepatocellular carcinoma cells (HCC), but the underlying mechanism is still elusive. In this study, we aimed to explore the involvement of autophagy in DAS-induced growth inhibition of HepG2 and Huh7 hepatocellular carcinoma cells. We studied growth of DAS-treated HepG2 and Huh7 cells using the MTS and clonogenic assays. Autophagic flux was examined by immunofluorescence and confocal microscopy. The expression levels of autophagy-related proteins AMPK, mTOR, p62, LC3-II, LAMP1, and cathepsin D in the HepG2 and Huh7 cells treated with DAS as well as the tumors formed by HepG2 cells in the nude mice in the presence or absence of DAS were examined using western blotting and immunohistochemistry analysis. We found that DAS treatment induced activation of AMPK/mTOR, and accumulation of LC3-II and p62 both in vivo and in vitro. DAS inhibited autophagic flux through blocking the fusion of autophagosomes with lysosomes. Furthermore, DAS induced an increase in lysosomal pH and inhibition of Cathepsin D maturation. Co-treatment with an autophagy inhibitor (Chloroquine, CQ) further enhanced the growth inhibitory activity of DAS in HCC cells. Thus, our findings indicate that autophagy is involved in DAS-mediated growth inhibition of HCC cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Zhiwei Hao
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Xuemin Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Zhixuan Wei
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Renming Tan
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Xiaotian Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Qiongxia Chen
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Ying Chen
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Hongyan Zhou
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Yuchen Liu
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| |
Collapse
|
8
|
Garcia AR, Amorim MMB, Amaral ACF, da Cruz JD, Vermelho AB, Nico D, Rodrigues IA. Anti- Leishmania amazonensis Activity, Cytotoxic Features, and Chemical Profile of Allium sativum (Garlic) Essential Oil. Trop Med Infect Dis 2023; 8:375. [PMID: 37505671 PMCID: PMC10384145 DOI: 10.3390/tropicalmed8070375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Human tegumentary leishmaniasis (HTL) is a serious tropical disease caused by Leishmania amazonensis. Developing new leishmanicidal agents can help overcome current treatment challenges, such as drug resistance and toxicity. Essential oils are a source of lipophilic substances with diverse therapeutic properties. This study aimed to determine the anti-L. amazonensis activity, cytotoxicity, and chemical profile of Allium sativum essential oil (ASEO). The effect of ASEO on parasite and mammalian cells viability was evaluated using resazurin and MTT assays, respectively. The oil's effect against intracellular amastigotes was also determined. Transmission electron microscopy was used to assess the ultrastructural changes induced by ASEO. In addition, the chemical constituents of ASEO were identified by gas chromatography-mass spectrometry (GC-MS). The cytotoxic potential was evaluated in vitro and in silico. The oil displayed IC50 of 1.76, 3.46, and 3.77 µg/mL against promastigotes, axenic, and intracellular amastigotes, respectively. Photomicrographs of treated parasites showed plasma membrane disruption, increased lipid bodies, and autophagic-like structures. ASEO chemical profiling revealed 1,2,4,6-tetrathiepane (24.84%) and diallyl disulfide (16.75%) as major components. Computational pharmacokinetics and toxicological analysis of ASEO's major components demonstrated good oral bioavailability and better toxicological endpoints than the reference drugs. Altogether, the results suggest that ASEO could be an alternative drug candidate against HTL.
Collapse
Affiliation(s)
- Andreza R Garcia
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Mariana M B Amorim
- Instituto Municipal de Vigilância Sanitária, Vigilância de Zoonoses e de Inspeção Agropecuária, Rio de Janeiro 22290-240, Brazil
| | - Ana Claudia F Amaral
- Departamento de Produtos Naturais, Farmanguinhos Fiocruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| | - Jefferson D da Cruz
- Departamento de Produtos Naturais, Farmanguinhos Fiocruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| | - Alane B Vermelho
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Dirlei Nico
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Igor A Rodrigues
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
9
|
Synthetic Analogues of Gibbilimbol B Induce Bioenergetic Damage and Calcium Imbalance in Trypanosoma cruzi. Life (Basel) 2023; 13:life13030663. [PMID: 36983820 PMCID: PMC10052702 DOI: 10.3390/life13030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/05/2023] Open
Abstract
Chagas disease is an endemic tropical disease caused by the protozoan Trypanosoma cruzi, which affects around 7 million people worldwide, mostly in development countries. The treatment relies on only two available drugs, with severe adverse effects and a limited efficacy. Therefore, the search for new therapies is a legitimate need. Within this context, our group reported the anti-Trypanosoma cruzi activity of gibbilimbol B, a natural alkylphenol isolated from the plant Piper malacophyllum. Two synthetic derivatives, LINS03018 (1) and LINS03024 (2), demonstrated a higher antiparasitic potency and were selected for mechanism of action investigations. Our studies revealed no alterations in the plasma membrane potential, but a rapid alkalinization of the acidocalcisomes. Nevertheless, compound 1 exhibit a pronounced effect in the bioenergetics metabolism, with a mitochondrial impairment and consequent decrease in ATP and reactive oxygen species (ROS) levels. Compound 2 only depolarized the mitochondrial membrane potential, with no interferences in the respiratory chain. Additionally, no macrophages response of nitric oxide (NO) was observed in both compounds. Noteworthy, simple structure modifications in these derivatives induced significant differences in their lethal effects. Thus, this work reinforces the importance of the mechanism of action investigations at the early phases of drug discovery and support further developments of the series.
Collapse
|
10
|
Chakrabarti A, Narayana C, Joshi N, Garg S, Garg LC, Ranganathan A, Sagar R, Pati S, Singh S. Metalloprotease Gp63-Targeting Novel Glycoside Exhibits Potential Antileishmanial Activity. Front Cell Infect Microbiol 2022; 12:803048. [PMID: 35601095 PMCID: PMC9115111 DOI: 10.3389/fcimb.2022.803048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Visceral leishmaniasis (VL) and post kala-azar dermal leishmaniasis (PKDL) affect most of the poor populations worldwide. The current treatment modalities include liposomal formulation or deoxycholate salt of amphotericin B, which has been associated with various complications and severe side effects. Encouraged from the recent marked antimalarial effects from plant-derived glycosides, in this study, we have exploited a green chemistry-based approach to chemically synthesize a library of diverse glycoside derivatives (Gly1–12) and evaluated their inhibitory efficacy against the AG83 strain of Leishmania donovani. Among the synthesized glycosides, the in vitro inhibitory activity of Glycoside-2 (Gly2) (1.13 µM IC50 value) on L. donovani promastigote demonstrated maximum cytotoxicity with ~94% promastigote death as compared to amphotericin B that was taken as a positive control. The antiproliferative effect of Gly2 on promastigote encouraged us to analyze the structure–activity relationship of Gly2 with Gp63, a zinc metalloprotease that majorly localizes at the surface of the promastigote and has a role in its development and multiplication. The result demonstrated the exceptional binding affinity of Gly2 toward the catalytic domain of Gp63. These data were thereafter validated through cellular thermal shift assay in a physiologically relevant cellular environment. Mechanistically, reduced multiplication of promastigotes on treatment with Gly2 induces the destabilization of redox homeostasis in promastigotes by enhancing reactive oxygen species (ROS), coupled with depolarization of the mitochondrial membrane. Additionally, Gly2 displayed strong lethal effects on infectivity and multiplication of amastigote inside the macrophage in the amastigote–macrophage infection model in vitro as compared to amphotericin B treatment. Gp63 is also known to bestow protection against complement-mediated lysis of parasites. Interestingly, Gly2 treatment enhances the complement-mediated lysis of L. donovani promastigotes in serum physiological conditions. In addition, Gly2 was found to be equally effective against the clinical promastigote forms of PKDL strain (IC50 value of 1.97 µM); hence, it could target both VL and PKDL simultaneously. Taken together, this study reports the serendipitous discovery of Gly2 with potent antileishmanial activity and proves to be a novel chemotherapeutic prototype against VL and PKDL.
Collapse
Affiliation(s)
- Amrita Chakrabarti
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Chintam Narayana
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Nishant Joshi
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Swati Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University (JNU), New Delhi, India
| | - Lalit C. Garg
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University (JNU), New Delhi, India
| | - Ram Sagar
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
- *Correspondence: Shailja Singh, ; Soumya Pati, ; Ram Sagar,
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
- *Correspondence: Shailja Singh, ; Soumya Pati, ; Ram Sagar,
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
- Special Centre for Molecular Medicine, Jawaharlal Nehru University (JNU), New Delhi, India
- *Correspondence: Shailja Singh, ; Soumya Pati, ; Ram Sagar,
| |
Collapse
|
11
|
Li Q, Zhang Y, Li W, Yan K, Liu Y, Xu H, Lu Y, Liang X, Yang X. Allicin protects porcine oocytes against LPS-induced defects during maturation in vitro. Theriogenology 2022; 182:138-147. [DOI: 10.1016/j.theriogenology.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
|
12
|
Conserva GA, Costa-Silva TA, Quirós-Guerrero LM, Marcourt L, Wolfender JL, Queiroz EF, Tempone AG, Lago JHG. Kaempferol-3-O-α-(3,4-di-E-p-coumaroyl)-rhamnopyranoside from Nectandra oppositifolia releases Ca 2+ from intracellular pools of Trypanosoma cruzi affecting the bioenergetics system. Chem Biol Interact 2021; 349:109661. [PMID: 34537181 DOI: 10.1016/j.cbi.2021.109661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/12/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Phytochemical analysis of EtOH extract from leaves of Nectandra oppositifolia afforded three flavonoids: kaempferol (1), kaempferol-3-O-α-rhamnopyranoside (2) and kaempferol-3-O-α-(3,4-di-E-p-coumaroyl)-rhamnopyranoside (3), which were characterized by NMR and ESI-HRMS. When tested against the protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, flavonoids 1 and 3 were effective to kill the trypomastigotes with IC50 values of 32.0 and 6.7 μM, respectively, while flavonoid 2 was inactive. Isolated flavonoids 1-3 were also tested in mammalian fibroblasts and showed CC50 values of 24.8, 48.7 and 153.1 μM, respectively. Chemically, these results suggested that the free aglycone plays an important role in the bioactivity while the presence of p-coumaroyl unities linked in the rhamnoside unity is important to enhance the antitrypanosomal activity and reduce the mammalian cytotoxicity. The mechanism of cellular death was investigated for the most potent flavonoid 3 in the trypomastigotes using fluorescent and luminescent-based assays. It indicated that this compound induced neither permeabilization of the plasma membrane nor depolarization of the membrane electric potential. However, early time incubation (20 min) with flavonoid 3 resulted in a constant elevation of the Ca2+ levels inside the parasite. This effect was followed by a mitochondrial imbalance, leading to a hyperpolarization and depolarization of the mitochondrial membrane potential, with reduction of the ATP levels. During this time, the levels of reactive oxygen species levels (ROS) were unaltered. The leakage of Ca2+ from the intracellular pools can affect the bioenergetics system of T. cruzi, leading to the parasite death. Therefore, flavonoid 3 can be a useful tool for future studies against T. cruzi parasites.
Collapse
Affiliation(s)
- Geanne A Conserva
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, SP, 09210-180, Brazil.
| | - Thais A Costa-Silva
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, SP, 09210-180, Brazil.
| | - Luis M Quirós-Guerrero
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, Geneva, Switzerland.
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, Geneva, Switzerland.
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, Geneva, Switzerland.
| | - Emerson F Queiroz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, Geneva, Switzerland.
| | - Andre G Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo, SP, 01246-000, Brazil.
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, SP, 09210-180, Brazil.
| |
Collapse
|
13
|
New insights into the mechanism of action of the cyclopalladated complex - CP2 in Leishmania: Calcium Dysregulation, Mitochondrial Dysfunction and Cell Death. Antimicrob Agents Chemother 2021; 66:e0076721. [PMID: 34633848 DOI: 10.1128/aac.00767-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current treatment of leishmaniasis is based on few drugs that present several drawbacks such as high toxicity, difficult administration route, and low efficacy. These disadvantages raise the necessity to develop novel antileishmanial compounds allied to a comprehensive understanding of their mechanisms of action. Here, we elucidate the probably mechanism of action of the antileishmanial binuclear cyclopalladated complex [Pd(dmba)(μ-N3)]2 (CP2) in Leishmania amazonensis. CP2 causes oxidative stress in the parasite resulting in disruption of mitochondrial Ca2+ homeostasis, cell cycle arrest at S-phase, increasing the ROS production and overexpression of stress-related and cell detoxification proteins, collapsing the Leishmania mitochondrial membrane potential and promotes apoptotic-like features in promastigotes leading to necrosis or directs programmed cell death (PCD)-committed cells toward necrotic-like destruction. Moreover, CP2 is able to reduce the parasite load in both liver and spleen in Leishmania infantum-infected hamsters when treated for 15 days with 1.5 mg/Kg/day CP2, expanding its potential application in addition to the already known effectiveness on cutaneous leishmaniasis for the treatment of visceral leishmaniasis, showing the broad spectrum of action of this cyclopalladated complex. The data herein presented bring new insights into the CP2 molecular mechanisms of action, assisting to promote its rational modification to improve both safety and efficacy.
Collapse
|
14
|
In vitro evaluation of hydroalcoholic extracts of Capparis Spinosa L., Ricinus communis, and Solanum luteum on Leishmania major (MRHO/IR/75/ER) promastigotes. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.115306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Plant extracts or compounds derived from plants are a valuable source for finding new anti-leishmaniasis drugs. Objective: In this study, Capparis spinosa L., Ricinus communis, and Solanum luteum were used as lethal agents for the promastigotes of Leishmania major parasites in the culture medium. Methods: Diluted extracts of 12.5, 100, and 500 mg/mL were prepared from medicinal plant dried extracts. Glucantime at a concentration of 500 mg/mL was used as a positive control. Results: For all three extracts, concentrations of 100 and 500 mg/mL could kill promastigotes at higher rates and speeds compared to other concentrations. The high concentrations of extracts (500 mg/mL) presented similar effects. According to the findings, hydroalcoholic extract of C. Spinosa L. presented considerably lower antiparasitic effects, and S. luteum and R. communis extracts were could kill most of the parasitic promastigotes at higher doses. The ANOVA test did not show any significant viability percentage difference of Leishmania extracts between different extract types. Conclusions: In this study, the lethal effects of R. communis and S. luteum hydroalcoholic extracts on L. major promastigotes were found to be stronger than the C. Spinosa L. extract.
Collapse
|
15
|
Londero VS, Costa-Silva TA, Antar GM, Baitello JB, de Oliveira LVF, Camilo FF, Batista ANL, Batista JM, Tempone AG, Lago JHG. Antitrypanosomal Lactones from Nectandra barbellata. JOURNAL OF NATURAL PRODUCTS 2021; 84:1489-1497. [PMID: 33857368 DOI: 10.1021/acs.jnatprod.0c01303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Twigs of Nectandra barbellata were extracted using a solution of the ionic liquid 1-butyl-3-methylimidazolium bromide (BMImBr) in H2O, assisted by microwave (MAE). After successive chromatographic steps, one sesquiterpene, costic acid, and three new related lactones, (R)-3(7)-Z-3-hexadec-21-enylidene-5-(hydroxymethyl)tetrahydrofuran-2-one (1), (R)-3(7)-Z-3-hexadecylidene-5-(hydroxymethyl)tetrahydrofuran-2-one (2), and (R)-3(7)-Z-3-docosylidene-5-(hydroxymethyl)tetrahydrofuran-2-one (3), were isolated. After structural elucidation using IR, UV, HRESIMS, NMR, ECD, and VCD, compounds 1-3 were tested against trypomastigote forms of Trypanosoma cruzi. The mechanism of action of bioactive isolated compounds was studied using different fluorescent-based approaches to investigate alterations of the plasma membrane, permeability/electric potential (ΔΨp), reactive oxygen species levels, mitochondria (electric membrane potential, ΔΨm/ATP levels), Ca2+ levels, and pH of the acidocalcisomes. In addition, in silico studies predicted no resemblance to pan assay interference compounds (PAINS).
Collapse
Affiliation(s)
- Vinicius S Londero
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo 05508-000, Brazil
| | - Thais A Costa-Silva
- Center for Natural and Human Sciences, Federal University of ABC, São Paulo 09210-170, Brazil
| | - Guilherme M Antar
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - João B Baitello
- Dasonomy Division, Instituto Florestal, São Paulo 02377-000, Brazil
| | - Larissa V F de Oliveira
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo 05508-000, Brazil
| | - Fernanda F Camilo
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo 05508-000, Brazil
| | - Andrea N L Batista
- Institute of Chemistry, Fluminense Federal University, Rio de Janeiro 24220-900, Brazil
| | - Joao M Batista
- Institute of Science and Technology, Federal University of São Paulo, São Paulo 12231-280, Brazil
| | - Andre G Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo 01246-902, Brazil
| | - Joao Henrique G Lago
- Center for Natural and Human Sciences, Federal University of ABC, São Paulo 09210-170, Brazil
| |
Collapse
|
16
|
Barbosa H, Costa-Silva TA, Alves Conserva GA, Araujo AJ, Lordello ALL, Antar GM, Amaral M, Soares MG, Tempone AG, Lago JHG. Aporphine Alkaloids from Ocotea puberula with Anti-Trypanosoma Cruzi Potential - Activity of Dicentrine-β-N-Oxide in the Plasma Membrane Electric Potentials. Chem Biodivers 2021; 18:e2001022. [PMID: 33635585 DOI: 10.1002/cbdv.202001022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/11/2021] [Indexed: 11/05/2022]
Abstract
One new aporphine, dicentrine-β-N-oxide (1), together with five related known alkaloids dehydrodicentrine (2), predicentrine (3), N-methyllaurotetanine (4), cassythicine (5), and dicentrine (6) were isolated from the leaves of Ocotea puberula (Lauraceae). Antiprotozoal activity of the isolated compounds was evaluated in vitro against trypomastigote forms of Trypanosoma cruzi. Among the tested compounds, alkaloid 1 exhibited higher potential with EC50 value of 18.2 μM and reduced toxicity against NCTC cells (CC50 >200 μM - SI>11.0), similar to positive control benznidazole (EC50 of 17.7 μM and SI=10.7). Considering the promising results of dicentrine-β-N-oxide (1) against trypomastigotes, the mechanism of parasite death caused by this alkaloid was investigated. As observed, this compound reached the plasma membrane electric potential directly after 2 h of incubation and triggered mitochondrial depolarization, which probably leads to trypomastigote death. Therefore, dicentrine-β-N-oxide (1), reported for the first time in this work, can contribute to future works for the development of new trypanocidal agents.
Collapse
Affiliation(s)
- Henrique Barbosa
- Center for Natural and Human Sciences, Federal University of ABC, 09210-580, Santo Andre, SP, Brazil
| | - Thais A Costa-Silva
- Center for Natural and Human Sciences, Federal University of ABC, 09210-580, Santo Andre, SP, Brazil
| | - Geanne A Alves Conserva
- Center for Natural and Human Sciences, Federal University of ABC, 09210-580, Santo Andre, SP, Brazil
| | - Adelson J Araujo
- Department of Chemistry, Federal University of Paraná, 81531-980, Curitiba, PR, Brazil
| | - Ana Luísa L Lordello
- Department of Chemistry, Federal University of Paraná, 81531-980, Curitiba, PR, Brazil
| | - Guilherme M Antar
- Institute of Biosciences, University of São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Maiara Amaral
- Center for Parasitology and Mycology, Instituto Adolfo Lutz, 01246-902, São Paulo, SP, Brazil
| | - Marisi G Soares
- Institute of Chemistry, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil
| | - Andre G Tempone
- Center for Parasitology and Mycology, Instituto Adolfo Lutz, 01246-902, São Paulo, SP, Brazil
| | - João Henrique G Lago
- Center for Natural and Human Sciences, Federal University of ABC, 09210-580, Santo Andre, SP, Brazil
| |
Collapse
|
17
|
The ultimate fate determinants of drug induced cell-death mechanisms in Trypanosomatids. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 15:81-91. [PMID: 33601284 PMCID: PMC7900639 DOI: 10.1016/j.ijpddr.2021.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Chemotherapy constitutes a major part of modern-day therapy for infectious and chronic diseases. A drug is said to be effective if it can inhibit its target, induce stress, and thereby trigger an array of cell death pathways in the form of programmed cell death, autophagy, necrosis, etc. Chemotherapy is the only treatment choice against trypanosomatid diseases like Leishmaniasis, Chagas disease, and sleeping sickness. Anti-trypanosomatid drugs can induce various cell death phenotypes depending upon the drug dose and growth stage of the parasites. The mechanisms and pathways triggering cell death in Trypanosomatids serve to help identify potential targets for the development of effective anti-trypanosomatids. Studies show that the key proteins involved in cell death of trypanosomatids are metacaspases, Endonuclease G, Apoptosis-Inducing Factor, cysteine proteases, serine proteases, antioxidant systems, etc. Unlike higher eukaryotes, these organisms either lack the complete set of effectors involved in cell death pathways, or are yet to be deciphered. A detailed summary of the existing knowledge of different drug-induced cell death pathways would help identify the lacuna in each of these pathways and therefore open new avenues for research and thereby new therapeutic targets to explore. The cell death pathway associated complexities in metazoans are absent in trypanosomatids; hence this summary can also help understand the trigger points as well as cross-talk between these pathways. Here we provide an in-depth overview of the existing knowledge of these drug-induced trypanosomatid cell death pathways, describe their associated physiological changes, and suggest potential interconnections amongst them.
Collapse
|
18
|
Karampetsou K, Koutsoni OS, Gogou G, Angelis A, Skaltsounis LA, Dotsika E. Total Phenolic Fraction (TPF) from Extra Virgin Olive Oil: Induction of apoptotic-like cell death in Leishmania spp. promastigotes and in vivo potential of therapeutic immunomodulation. PLoS Negl Trop Dis 2021; 15:e0008968. [PMID: 33428610 PMCID: PMC7799795 DOI: 10.1371/journal.pntd.0008968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Leishmaniasis is a serious multifactorial parasitic disease with limited treatment options. Current chemotherapy is mainly consisted of drugs with serious drawbacks such as toxicity, variable efficacy and resistance. Alternative bioactive phytocompounds may provide a promising source for discovering new anti-leishmanial drugs. Extra Virgin Olive Oil (EVOO), a key-product in the Mediterranean diet, is rich in phenols which are associated with anti-inflammatory, anti-cancer and anti-microbial effects. In this study, we investigate the anti-leishmanial effect of Total Phenolic Fraction (TPF) derived from EVOO in both in vitro and in vivo systems by investigating the contributing mechanism of action. METHODOLOGY/PRINCIPAL FINDINGS We tested the ability of TPF to cause apoptotic-like programmed cell death in L. infantum and L. major exponential-phase promastigotes by evaluating several apoptotic indices, such as reduction of proliferation rate, sub-G0/G1 phase cell cycle arrest, phosphatidylserine externalization, mitochondrial transmembrane potential disruption and increased ROS production, by using flow cytometry and microscopy techniques. Moreover, we assessed the therapeutic effect of TPF in L. major-infected BALB/c mice by determining skin lesions, parasite burden in popliteal lymph nodes, Leishmania-specific antibodies and biomarkers of tissue site cellular immune response, five weeks post-treatment termination. Our results show that TPF triggers cell-cycle arrest and apoptotic-like changes in Leishmania spp. promastigotes. Moreover, TPF treatment induces significant reduction of parasite burden in draining lymph nodes together with an antibody profile indicative of the polarization of Th1/Th2 immune balance towards the protective Th1-type response, characterized by the presence of IFN-γ-producing CD4+ T-cells and increased Tbx21/GATA-3 gene expression ratio in splenocytes. CONCLUSIONS/SIGNIFICANCE TPF exhibits chemotherapeutic anti-leishmanial activity by inducing programmed cell death on cell-free promastigotes and immunomodulatory properties that induce in vivo T cell-mediated responses towards the protective Th1 response in experimental cutaneous leishmaniasis. These findings enable deeper understanding of TPF's dual mode of action that encourages further studies.
Collapse
Affiliation(s)
- Kalliopi Karampetsou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Olga S. Koutsoni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Georgia Gogou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Apostolis Angelis
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Leandros-Alexios Skaltsounis
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Dotsika
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
19
|
Pramanik PK, Chakraborti S, Bagchi A, Chakraborti T. Bioassay-based Corchorus capsularis L. leaf-derived β-sitosterol exerts antileishmanial effects against Leishmania donovani by targeting trypanothione reductase. Sci Rep 2020; 10:20440. [PMID: 33235245 PMCID: PMC7686382 DOI: 10.1038/s41598-020-77066-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 10/26/2020] [Indexed: 11/23/2022] Open
Abstract
Leishmaniasis, a major neglected tropical disease, affects millions of individuals worldwide. Among the various clinical forms, visceral leishmaniasis (VL) is the deadliest. Current antileishmanial drugs exhibit toxicity- and resistance-related issues. Therefore, advanced chemotherapeutic alternatives are in demand, and currently, plant sources are considered preferable choices. Our previous report has shown that the chloroform extract of Corchorus capsularis L. leaves exhibits a significant effect against Leishmania donovani promastigotes. In the current study, bioassay-guided fractionation results for Corchorus capsularis L. leaf-derived β-sitosterol (β-sitosterolCCL) were observed by spectroscopic analysis (FTIR, 1H NMR, 13C NMR and GC–MS). The inhibitory efficacy of this β-sitosterolCCL against L. donovani promastigotes was measured (IC50 = 17.7 ± 0.43 µg/ml). β-SitosterolCCL significantly disrupts the redox balance via intracellular ROS production, which triggers various apoptotic events, such as structural alteration, increased storage of lipid bodies, mitochondrial membrane depolarization, externalization of phosphatidylserine and non-protein thiol depletion, in promastigotes. Additionally, the antileishmanial activity of β-sitosterolCCL was validated by enzyme inhibition and an in silico study in which β-sitosterolCCL was found to inhibit Leishmania donovani trypanothione reductase (LdTryR). Overall, β-sitosterolCCL appears to be a novel inhibitor of LdTryR and might represent a successful approach for treatment of VL in the future.
Collapse
Affiliation(s)
- Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
20
|
Pereira KLG, Vasconcelos NBR, Braz JVC, InÁcio JDF, Estevam CS, Correa CB, Fernandes RPM, Almeida-Amaral EE, Scher R. Ethanolic extract of Croton blanchetianus Ball induces mitochondrial defects in Leishmania amazonensis promastigotes. AN ACAD BRAS CIENC 2020; 92:e20180968. [PMID: 33146273 DOI: 10.1590/0001-3765202020180968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/06/2019] [Indexed: 01/18/2023] Open
Abstract
Leishmaniasis is a neglected disease caused by Leishmania. Chemotherapy remains the mainstay for leishmaniasis control; however, available drugs fail to provide a parasitological cure, and are associated with high toxicity. Natural products are promising leads for the development of novel chemotherapeutics against leishmaniasis. This work investigated the leishmanicidal properties of ethanolic extract of Croton blanchetianus (EECb) on Leishmania infantum and Leishmania amazonensis, and found that EECb, rich in terpenic compounds, was active against promastigote and amastigote forms of both Leishmania species. Leishmania infantum promastigotes and amastigotes presented IC50 values of 208.6 and 8.8 μg/mL, respectively, whereas Leishmania amazonensis promastigotes and amastigotes presented IC50 values of 73.6 and 3.1 μg/mL, respectively. Promastigotes exposed to EECb (100 µg/mL) had their body cellular volume reduced and altered to a round shape, and the flagellum was duplicated, suggesting that EECb may interfere with the process of cytokinesis, which could be the cause of the decline in the parasite multiplication rate. Regarding possible EECb targets, a marked depolarization of the mitochondrial membrane potential was observed. No cytotoxic effects of EECb were observed in murine macrophages at concentrations below 60 µg/mL, and the CC50 obtained was 83.8 µg/mL. Thus, the present results indicated that EECb had effective and selective effects against Leishmania infantum and Leishmania amazonensis, and that these effects appeared to be mediated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Katily L G Pereira
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Nancy B R Vasconcelos
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Juliana V C Braz
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Job D F InÁcio
- Instituto Oswaldo Cruz/FIOCRUZ, Av. Brasil, 4365, Manguinhos, 21040-900 Rio de Janeiro, Brazil
| | - Charles S Estevam
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Cristiane B Correa
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Roberta P M Fernandes
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| | - Elmo E Almeida-Amaral
- Instituto Oswaldo Cruz/FIOCRUZ, Av. Brasil, 4365, Manguinhos, 21040-900 Rio de Janeiro, Brazil
| | - Ricardo Scher
- Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, Rosa Elze, 49000-000 São Cristóvão, SE, Brazil
| |
Collapse
|
21
|
Choo S, Chin VK, Wong EH, Madhavan P, Tay ST, Yong PVC, Chong PP. Review: antimicrobial properties of allicin used alone or in combination with other medications. Folia Microbiol (Praha) 2020; 65:451-465. [DOI: 10.1007/s12223-020-00786-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
|
22
|
Allicin alleviates inflammation of diabetic macroangiopathy via the Nrf2 and NF-kB pathway. Eur J Pharmacol 2020; 876:173052. [PMID: 32135124 DOI: 10.1016/j.ejphar.2020.173052] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 01/04/2023]
Abstract
As diabetic macroangiopathy is becoming increasingly prevalent, it is urgent to explore preventive and therapeutic drugs and study the mechanism. Diabetic mice were induced by intraperitoneal injection of streptozotocin (STZ)for five consecutive days. Diabetic mice were divided into diabetic and allicin groups. After sacrifice, frozen aortic root sections were immunohistochemically stained for nuclear factor erythroid 2-related factor 2 (Nrf2) and inflammation cytokine-tumor necrosis factor α (TNF-α), and the remaining aortic tissues were analyzed by Western blot for the expression of proinflammation genes. In vitro, Nrf2 and inflammatory relative protein expression levels in Human Umbilical Vein Endothelial Cells (HUVECs) were examined. HUVECs proliferation and apoptosis were measured. TNF-α expression was increased in diabetic group compared to that in control group; this effect was alleviated in allicin-treated mice. Inflammation relative protein expression of Vascular Cell Adhesion Molecule 1(VCAM-1), Matrix metalloproteinase 2 (MMP-2), Inducible Nitric Oxide Synthase (iNOS), and monocyte chemotactic protein 1 (MCP-1) was higher in the diabetic group than in the control group; however, allicin treatment inhibited these diabetes-induced increase. In vitro, allicin treatment reversed the hyperglycemia-induced reduction in proliferation, and decreased the apoptosis induced by high glucose. Inflammation relative protein expression was consistent with that in vivo. Additionally, the expression of nuclear factor kappa-B (NF-κB)and Nrf2 was increased in both DM mice and HUVECs; allicin treatment induced a significant reduction in NF-κB level and improvement in Nrf2 level. Allicin alleviates inflammation caused by diabetic macroangiopathy, and the mechanism may occur via increasing Nrf2 and decreasing NF-κB.
Collapse
|
23
|
Intakhan N, Chanmol W, Somboon P, Bates MD, Yardley V, Bates PA, Jariyapan N. Antileishmanial Activity and Synergistic Effects of Amphotericin B Deoxycholate with Allicin and Andrographolide against Leishmania martiniquensis In Vitro. Pathogens 2020; 9:pathogens9010049. [PMID: 31936536 PMCID: PMC7168609 DOI: 10.3390/pathogens9010049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 11/16/2022] Open
Abstract
Leishmania (Mundinia) martiniquensis is a causative agent of visceral leishmaniasis, but in HIV-infected patients both visceral and disseminated cutaneous leishmaniasis are presented. Recurrence of the disease after treatment has been reported in some cases indicating that improved chemotherapy is required. In this study, the susceptibility of L. martiniquensis to Amphotericin B deoxycholate (AmB), allicin, and andrographolide was evaluated and the synergistic effects of allicin or andrographolide combined with AmB against L. martiniquensis intracellular amastigotes in mouse peritoneal exudate macrophages (PEMs) were investigated in vitro for the first time. The results showed that L. martiniquensis was highly susceptible to AmB as expected, but allicin and andrographolide had selectivity index (SI) values greater than 10, indicating promise in both compounds for treatment of host cells infected with L. martiniquensis. Four AmB/allicin combinations presented combination index (CI) values less than 1 (0.58–0.68) for intracellular amastigotes indicating synergistic effects. The combination with the highest dose reduction index (DRI) allowed an approximately four-fold reduction of AmB use in that combination. No synergistic effects were observed in AmB/andrographolide combinations. The data provided in this study leads for further study to develop novel therapeutic agents and improve the treatment outcome for leishmaniasis caused by this Leishmania species.
Collapse
Affiliation(s)
- Nuchpicha Intakhan
- Faculty of Medicine, Graduate PhD Degree Program in Parasitology, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wetpisit Chanmol
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.C.); (P.S.)
| | - Pradya Somboon
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.C.); (P.S.)
| | - Michelle D. Bates
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (M.D.B.); (P.A.B.)
| | - Vanessa Yardley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK;
| | - Paul A. Bates
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (M.D.B.); (P.A.B.)
| | - Narissara Jariyapan
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (W.C.); (P.S.)
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|
24
|
Anti-Trypanosoma cruzi activity of costic acid isolated from Nectandra barbellata (Lauraceae) is associated with alterations in plasma membrane electric and mitochondrial membrane potentials. Bioorg Chem 2020; 95:103510. [DOI: 10.1016/j.bioorg.2019.103510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/25/2019] [Accepted: 12/16/2019] [Indexed: 12/27/2022]
|
25
|
Manzano JI, Cueto-Díaz EJ, Olías-Molero AI, Perea A, Herraiz T, Torrado JJ, Alunda JM, Gamarro F, Dardonville C. Discovery and Pharmacological Studies of 4-Hydroxyphenyl-Derived Phosphonium Salts Active in a Mouse Model of Visceral Leishmaniasis. J Med Chem 2019; 62:10664-10675. [PMID: 31702921 DOI: 10.1021/acs.jmedchem.9b00998] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report the discovery of new 4-hydroxyphenyl phosphonium salt derivatives active in the submicromolar range (EC50 from 0.04 to 0.28 μM, SI > 10) against the protozoan parasite Leishmania donovani. The pharmacokinetics and in vivo oral efficacy of compound 1 [(16-(2,4-dihydroxyphenyl)-16-oxohexadecyl)triphenylphosphonium bromide] in a mouse model of visceral leishmaniasis were established. Compound 1 reduced the parasite load in spleen (98.9%) and liver (95.3%) of infected mice after an oral dosage of four daily doses of 1.5 mg/kg. Mode of action studies showed that compound 1 diffuses across the plasma membrane, as designed, and targets the mitochondrion of Leishmania parasites. Disruption of the energetic metabolism, with a decrease of intracellular ATP levels as well as mitochondrial depolarization together with a significant reactive oxygen species production, contributes to the leishmanicidal effect of 1. Importantly, this compound was equally effective against antimonials and miltefosine-resistant clinical isolates of Leishmania infantum, indicating its potential as antileishmanial lead.
Collapse
Affiliation(s)
- José Ignacio Manzano
- Instituto de Parasitología y Biomedicina "López Neyra", IPBLN-CSIC , Parque Tecnológico de Ciencias de la Salud , 18016 Granada , Spain
| | - Eduardo J Cueto-Díaz
- Instituto de Química Médica, IQM-CSIC , Juan de la Cierva 3 , E-28006 Madrid , Spain
| | - Ana Isabel Olías-Molero
- Departamento de Sanidad Animal, Facultad de Veterinaria , Universidad Complutense de Madrid , Avda. Puerta de Hierro s/n , 28040 Madrid , Spain
| | - Ana Perea
- Instituto de Parasitología y Biomedicina "López Neyra", IPBLN-CSIC , Parque Tecnológico de Ciencias de la Salud , 18016 Granada , Spain
| | - Tomás Herraiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC , Juan de la Cierva 3 , E-28006 Madrid , Spain
| | - Juan J Torrado
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia , Universidad Complutense de Madrid , Plaza de Ramón y Cajal s/n , 28040 Madrid , Spain
| | - José María Alunda
- Departamento de Sanidad Animal, Facultad de Veterinaria , Universidad Complutense de Madrid , Avda. Puerta de Hierro s/n , 28040 Madrid , Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina "López Neyra", IPBLN-CSIC , Parque Tecnológico de Ciencias de la Salud , 18016 Granada , Spain
| | | |
Collapse
|
26
|
Şen Ö, Emanet M, Çulha M. Stimulatory Effect of Hexagonal Boron Nitrides in Wound Healing. ACS APPLIED BIO MATERIALS 2019; 2:5582-5596. [DOI: 10.1021/acsabm.9b00669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Özlem Şen
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Ataşehir, Istanbul 34755, Turkey
| | - Melis Emanet
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Ataşehir, Istanbul 34755, Turkey
| | - Mustafa Çulha
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Ataşehir, Istanbul 34755, Turkey
| |
Collapse
|
27
|
Manzano JI, Konstantinović J, Scaccabarozzi D, Perea A, Pavić A, Cavicchini L, Basilico N, Gamarro F, Šolaja BA. 4-Aminoquinoline-based compounds as antileishmanial agents that inhibit the energy metabolism of Leishmania. Eur J Med Chem 2019; 180:28-40. [DOI: 10.1016/j.ejmech.2019.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 01/06/2023]
|
28
|
Mehwish S, Khan H, Rehman AU, Khan AU, Khan MA, Hayat O, Ahmad M, Wadood A, Ullah N. Natural compounds from plants controlling leishmanial growth via DNA damage and inhibiting trypanothione reductase and trypanothione synthetase: an in vitro and in silico approach. 3 Biotech 2019; 9:303. [PMID: 31355112 DOI: 10.1007/s13205-019-1826-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/07/2019] [Indexed: 12/01/2022] Open
Abstract
In the present study, four different natural compounds including quercetin, gallic acid, rutin, and lupeol were studied for their anti-leishmanial potentials with anticipated mechanism of action through in vitro and in silico approaches. Results showed that rutin was exceedingly active (IC50; 91.2 µg/ml) against the promastigote form of Leishmania tropica compared to quercetin (IC50; 182.3 µg/ml), gallic acid (IC50; 198.00 µg/ml) and lupeol (IC50; 200.77 µg/ml). Similarly, rutin was highly active against the amastigote form as well, followed by quercetin, gallic acid and lupeol with IC50 values of 101.3 µg/ml, 137.4 µg/ml, 277.2 µg/ml, and 298.9 µg/ml, respectively. These compounds were found to be nontoxic to human blood erythrocytes even at the highest concentration (1000 µg/ml) tested. Rutin and lupeol showed promising DNA degradation/fragmentation activity against the DNA of treated promastigotes which increased with the increase in concentration of the compounds. The in silico investigation revealed that these ligands have high affinity with the important catalytic residues of trypanothione reductase (Try-R) where, rutin showed the lowest docking score (i.e., - 6.191) followed by lupeol (- 5.799), gallic acid and quercetin. In case of ligands' interaction with trypanothione synthetase (Try-S), rutin again showed highest interaction with docking score of - 6.601 followed by quercetin (- 4.996), lupeol and gallic acid. The ADMET prediction of these compounds showed that all the parameters were within the acceptable range as defined for human use while molecular dynamics simulation supported the good interaction of quercetin and rutin against both enzymes. These findings suggest that the studied compounds may control leishmanial growth via DNA damage and inhibiting Try-R and Try-S, the two unique but critical enzymes for leishmania growth.
Collapse
Affiliation(s)
- Shaila Mehwish
- 1Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Huma Khan
- 2Department of Biochemistry, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ashfaq Ur Rehman
- 2Department of Biochemistry, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Asif Ullah Khan
- 2Department of Biochemistry, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mubarak Ali Khan
- 1Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Obaid Hayat
- 1Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mansoor Ahmad
- 1Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdul Wadood
- 2Department of Biochemistry, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Nazif Ullah
- 1Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
29
|
Chu CC, Zhao SZ. Pathophysiological Role and Drug Modulation of Calcium Transport in Ocular Surface Cells. Curr Med Chem 2019; 27:5078-5091. [PMID: 31237195 DOI: 10.2174/0929867326666190619114848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/28/2019] [Accepted: 05/21/2019] [Indexed: 11/22/2022]
Abstract
The ocular surface structure and extraocular accessory organs constitute the ocular surface system, which includes the cornea, conjunctiva, eyelids, lacrimal organs, and lacrimal passages. This system is composed of, and stabilized by, the corneal epithelium, conjunctival cells, conjunctival goblet cells, lacrimal acinar cells and Tenon's fibroblasts, all of which maintain the healthy eyeball surface system. Ocular surface diseases are commonly referred to corneal and conjunctival disease and external ocular disease, resulting from damage to the ocular surface structure. A growing body of evidence has indicated that abnormal activation of the KCa3.1 channel and Ca2+/ calmodulin-dependent kinase initiates ocular injury. Signaling pathways downstream of the irregular Ca2+ influx induce cell progression and migration, and impair tight junctions, epithelial transport and secretory function. In this overview, we summarize the current knowledge regarding ocular surface disease in terms of physical and pathological alteration of the ocular system. We dissect in-depth, the mechanisms underlying disease progression, and we describe the current calcium transport therapeutics and the obstacles that remain to be solved. Finally, we summarize how to integrate the research results into clinical practice in the future.
Collapse
Affiliation(s)
- Chen-Chen Chu
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, College of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, 300384, China
| | - Shao-Zhen Zhao
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, College of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, 300384, China
| |
Collapse
|
30
|
Conserva GAA, da Costa-Silva TA, Amaral M, Antar GM, Neves BJ, Andrade CH, Tempone AG, Lago JHG. Butenolides from Nectandra oppositifolia (Lauraceae) displayed anti-Trypanosoma cruzi activity via deregulation of mitochondria. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:302-307. [PMID: 30668381 DOI: 10.1016/j.phymed.2018.09.236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND From a previous screening of Brazilian biodiversity for antitrypanosomal activity, the n-hexane extract from twigs of Nectandra oppositifolia (Lauraceae) demonstrated in vitro activity against Trypanosoma cruzi. PURPOSE To perform the isolation and chemical characterization of bioactive compounds from n-hexane extract from twigs of N. oppositifolia and evaluate their therapeutical potential as well as to elucidate their mechanism of action against T. cruzi. METHODS/STUDY DESIGN Bioactivity-guided fractionation of the n-hexane extract from twigs of N. oppositifolia afforded three related butenolides: isolinderanolide D (1), isolinderanolide E (2) and secosubamolide A (3). These compounds were evaluated in vitro against T. cruzi (trypomastigote and amastigote forms) and against NCTC (L929) cells for mammalian cytotoxicity. Additionally, phenotypic analyzes of compounds-treated parasites were performed: alterations in the plasma membrane permeability, plasma membrane electric potential (ΔΨp), mitochondrial membrane potential (ΔΨm) and induction of ROS. RESULTS Compounds 1-3 were effective against T. cruzi, with IC50 values of 12.9, 29.9 and 12.5 µM for trypomastigotes and 25.3, 10.1 and 12.3 µM for intracellular amastigotes. Furthermore, it was observed alteration in the mitochondrial membrane potential (ΔΨm) of parasites treated with butenolides 1-3. These compounds caused no alteration to the parasite plasma membrane, and the deregulation of the mitochondria might be an early event to cell death. In addition, in silico studies showed that all butenolides were predicted to be non-mutagenic, non-carcinogenic, non hERG blockers, with acceptable human intestinal absorption, low inhibitory promiscuity with the main five CYP isoforms, and with high metabolic stability. Otherwise, tested butenolides showed unfavorable blood-brain barrier penetration (BBB+). CONCLUSION Our results demonstrated the anti-T. cruzi effects of compounds 1-3 isolated from N. oppositifolia and indicated that the lethal effect of these compounds in trypomastigotes of T. cruzi could be associated to the alteration in the mitochondrial membrane potential (ΔΨm).
Collapse
Affiliation(s)
- Geanne A Alves Conserva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-180, São Paulo, Brazil
| | - Thais A da Costa-Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-180, São Paulo, Brazil
| | - Maiara Amaral
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, 01246-902, São Paulo, Brazil
| | - Guilherme M Antar
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| | - Bruno J Neves
- Laboratorio de Quimioinformática, Centro Universitário de Anápolis - UniEVANGÉLICA, 75070-290, Goiás, Brazil; LabMol, Laboratorio de Modelagem Molecular e Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, 74605-170, Goiás, Brazil
| | - Carolina H Andrade
- LabMol, Laboratorio de Modelagem Molecular e Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, 74605-170, Goiás, Brazil
| | - Andre G Tempone
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, 01246-902, São Paulo, Brazil
| | - João Henrique G Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-180, São Paulo, Brazil.
| |
Collapse
|
31
|
Argüello-García R, de la Vega-Arnaud M, Loredo-Rodríguez IJ, Mejía-Corona AM, Melgarejo-Trejo E, Espinoza-Contreras EA, Fonseca-Liñán R, González-Robles A, Pérez-Hernández N, Ortega-Pierres MG. Activity of Thioallyl Compounds From Garlic Against Giardia duodenalis Trophozoites and in Experimental Giardiasis. Front Cell Infect Microbiol 2018; 8:353. [PMID: 30374433 PMCID: PMC6196658 DOI: 10.3389/fcimb.2018.00353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Fresh aqueous extracts (AGEs) and several thioallyl compounds (TACs) from garlic have an important antimicrobial activity that likely involves their interaction with exposed thiol groups at single aminoacids or target proteins. Since these groups are present in Giardia duodenalis trophozoites, in this work we evaluated the anti-giardial activity of AGE and several garlic's TACs. In vitro susceptibility assays showed that AGE affected trophozoite viability initially by a mechanism impairing cell integrity and oxidoreductase activities while diesterase activities were abrogated at higher AGE concentrations. The giardicidal activities of seven TACs were related to the molecular descriptor HOMO (Highest Occupied Molecular Orbital) energy and with their capacity to modify the -SH groups exposed in giardial proteins. Interestingly, the activity of several cysteine proteases in trophozoite lysates was inhibited by representative TACs as well as the cytopathic effect of the virulence factor giardipain-1. Of these, allicin showed the highest anti-giardial activity, the lower HOMO value, the highest thiol-modifying activity and the greatest inhibition of cysteine proteases. Allicin had a cytolytic mechanism in trophozoites with subsequent impairment of diesterase and oxidoreductase activities in a similar way to AGE. In addition, by electron microscopy a marked destruction of plasma membrane and endomembranes was observed in allicin-treated trophozoites while cytoskeletal elements were not affected. In further flow cytometry analyses pro-apoptotic effects of allicin concomitant to partial cell cycle arrest at G2 phase with the absence of oxidative stress were observed. In experimental infections of gerbils, the intragastric administration of AGE or allicin decreased parasite numbers and eliminated trophozoites in experimentally infected animals, respectively. These data suggest a potential use of TACs from garlic against G. duodenalis and in the treatment of giardiasis along with their additional benefits in the host's health.
Collapse
Affiliation(s)
- Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mariana de la Vega-Arnaud
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Iraís J. Loredo-Rodríguez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Adriana M. Mejía-Corona
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Elizabeth Melgarejo-Trejo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eulogia A. Espinoza-Contreras
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rocío Fonseca-Liñán
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Arturo González-Robles
- Departamento de Infectómica y Patogénesis Experimental, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Nury Pérez-Hernández
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - M. Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
32
|
In vitro leishmanicidal effects of the anti-fungal drug natamycin are mediated through disruption of calcium homeostasis and mitochondrial dysfunction. Apoptosis 2018; 23:420-435. [DOI: 10.1007/s10495-018-1468-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
CGA-N12, a peptide derived from chromogranin A, promotes apoptosis of Candida tropicalis by attenuating mitochondrial functions. Biochem J 2018; 475:1385-1396. [PMID: 29559502 PMCID: PMC5902677 DOI: 10.1042/bcj20170894] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 12/26/2022]
Abstract
CGA-N12 (the amino acid sequence from the 65th to the 76th residue of the N-terminus of chromagranin A) is an antifungal peptide derived from human chromogranin A (CGA). In our previous investigation, CGA-N12 was found to have specific anti-candidal activity, though the mechanism of action remained unclear. Here, we investigated the effects of CGA-N12 on mitochondria. We found that CGA-N12 induced an over-generation of intracellular reactive oxygen species and dissipation in mitochondrial membrane potential, in which the former plays key roles in the initiation of apoptosis and the latter is a sign of the cell apoptosis. Accordingly, we assessed the apoptosis features of Candida tropicalis cells after treatment with CGA-N12 and found the following: leakage of cytochrome c and uptake of calcium ions into mitochondria and the cytosol; metacaspase activation; and apoptotic phenotypes, such as chromatin condensation and DNA degradation. In conclusion, CGA-N12 is capable of inducing apoptosis in C. tropicalis cells through mitochondrial dysfunction and metacaspase activation. Antifungal peptide CGA-N12 from human CGA exhibits a novel apoptotic mechanism as an antifungal agent.
Collapse
|
34
|
Kong X, Gong S, Su L, Li C, Kong Y. Neuroprotective effects of allicin on ischemia-reperfusion brain injury. Oncotarget 2017; 8:104492-104507. [PMID: 29262656 PMCID: PMC5732822 DOI: 10.18632/oncotarget.22355] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/19/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Ischemia-reperfusion brain injury (IRBI) is an important cause for mortality and morbidity. Studies on humans and animals showed that oxidative stress (OS) plays a crucial role in ischemic stroke with or without reperfusion. Allicin is reported to be able to attenuate OS and has neuroprotective effects on rabbits' ischemia-reperfusion spinal cord injury. AIM To explore whether Allicin pretreatment has neuroprotective effects on IRBI in mice. METHODS AND RESULTS Transient middle cerebral artery occlusion (MCAO) was conducted to induce IRBI in mice. The mice were pretreated with either Allicin (MCAOA) or normal saline in the same volume (MCAONS). Sham-operated groups [Allicin group (SOA) and normal saline group (SONS)] were also set. Blood pressure and cerebral blood flow measurements revealed comparable hemodynamics. Via brain MRI and neuronal nuclear antigen (NeuN) immune-histochemical staining, MCAOA mice had a significantly reduced stroke size than MCAONS mice (P < 0.05, n = 15). Allicin pretreatment could attenuate the OS, the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, inflammation, dysfunction of mitochondrial respiratory chain, and apoptosis (all P < 0.05, n = 15). Furthermore, Allicin also increased the activities of endogenous antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX), and glutathione S-transferase (GST), and promoted the angiogenesis in the peri-infarct zone (all P < 0.05, n = 15). CONCLUSION We showed that Allicin could protect mice from IRBI through a series of mechanisms. Allicin represents a new therapeutic direction of IRBI.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Hutong, Dongcheng District, Beijing, P. R. China
- Department of Breast Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, P. R. China
| | - Shun Gong
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, PLA Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Lijuan Su
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Chen Li
- Cancer Epigenetic Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yanguo Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Hutong, Dongcheng District, Beijing, P. R. China
| |
Collapse
|
35
|
Synthesis and in vitro biological evaluation of thiosulfinate derivatives for the treatment of human multidrug-resistant breast cancer. Acta Pharmacol Sin 2017; 38:1353-1368. [PMID: 28858299 DOI: 10.1038/aps.2016.170] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
Abstract
Organosulfur compounds derived from Allium vegetables have long been recognized for various therapeutic effects, including anticancer activity. Allicin, one of the main biologically active components of garlic, shows promise as an anticancer agent; however, instability makes it unsuitable for clinical application. The aim of this study was to investigate the effect of stabilized allicin derivatives on human breast cancer cells in vitro. In this study, a total of 22 stabilized thiosulfinate derivatives were synthesized and screened for their in vitro antiproliferative activities against drug-sensitive (MCF-7) and multidrug-resistant (MCF-7/Dx) human adenocarcinoma breast cancer cells. Assays for cell death, apoptosis, cell cycle progression and mitochondrial bioenergetic function were performed. Seven compounds (4b, 7b, 8b, 13b, 14b, 15b and 18b) showed greater antiproliferative activity against MCF-7/Dx cells than allicin. These compounds were also selective towards multidrug-resistant (MDR) cells, a consequence attributed to collateral sensitivity. Among them, 13b exhibited the greatest anticancer activity in both MCF-7/Dx and MCF-7 cells, with IC50 values of 18.54±0.24 and 46.50±1.98 μmol/L, respectively. 13b altered cellular morphology and arrested the cell cycle at the G2/M phase. Additionally, 13b dose-dependently induced apoptosis, and inhibited cellular mitochondrial respiration in cells at rest and under stress. MDR presents a significant obstacle to the successful treatment of cancer clinically. These results demonstrate that thiosulfinate derivatives have potential as novel anticancer agents and may offer new therapeutic strategies for the treatment of chemoresistant cancers.
Collapse
|
36
|
Belkhelfa-Slimani R, Djerdjouri B. Caffeic acid and quercetin exert caspases-independent apoptotic effects on Leishmania major promastigotes, and reactivate the death of infected phagocytes derived from BALB/c mice. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
37
|
In vitro and in vivo susceptibility of Leishmania major to some medicinal plants. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2016.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
38
|
Das PN, Kumar A, Bairagi N, Chatterjee S. Restoring calcium homeostasis in diabetic cardiomyocytes: an investigation through mathematical modelling. MOLECULAR BIOSYSTEMS 2017; 13:2056-2068. [PMID: 28795720 DOI: 10.1039/c7mb00264e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Regulated calcium flux from sarcoplasmic reticulum could be a possible therapeutic strategy in diabetic cardiomyocyte problem.
Collapse
Affiliation(s)
| | - Ajay Kumar
- Drug Discovery Research Center
- Translational Health Science and Technology Institute
- Faridabad-121001
- India
| | | | - Samrat Chatterjee
- Drug Discovery Research Center
- Translational Health Science and Technology Institute
- Faridabad-121001
- India
| |
Collapse
|
39
|
Lee H, Lee DG. Fungicide Bac8c triggers attenuation of mitochondrial homeostasis and caspase-dependent apoptotic death. Biochimie 2016; 133:80-86. [PMID: 28027901 DOI: 10.1016/j.biochi.2016.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/22/2016] [Indexed: 12/18/2022]
Abstract
Bac8c (RIWVIWRR-NH2), an 8-mer peptide modified from amino acids 4-11 of Bac2a, shows broad-spectrum activity against pathogenic bacteria and yeast, and it has been the focus of attention owing to its low cost of synthesis. Although Bac8c is effective against Candida albicans, its mode of action needs to be investigated further. Bac8c causes yeast cell death in a dose-dependent manner by eliciting the production of reactive oxygen species, thereby attenuating the antioxidant defense system. It is also involved in Ca2+ signaling, and produces apoptotic features, such as phosphatidylserine externalization and DNA fragmentation. Bac8c induces cell death by oxidative stress-dependent apoptotic death via disruption of mitochondrial homeostasis and metacaspase activation. This suggests that the concentration of Bac8c is important for the induction of apoptotic death, which is not necessarily accompanied by cell cycle arrest in C. albicans.
Collapse
Affiliation(s)
- Heejeong Lee
- School of Life Sciences, BK 21 Plus KNU BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 Plus KNU BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| |
Collapse
|