1
|
Baldon L, de Mendonça S, Santos E, Marçal B, de Freitas AC, Rezende F, Moreira R, Sousa V, Comini S, Lima M, Ferreira F, de Almeida JP, Silva E, Amadou S, Rocha M, Leite T, Todjro Y, de Carvalho C, Santos V, Giovanetti M, Alcantara L, Moreira LA, Ferreira A. Suitable Mouse Model to Study Dynamics of West Nile Virus Infection in Culex quinquefasciatus Mosquitoes. Trop Med Infect Dis 2024; 9:201. [PMID: 39330890 PMCID: PMC11435581 DOI: 10.3390/tropicalmed9090201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
West Nile Virus (WNV) poses a significant global public health threat as a mosquito-borne pathogen. While laboratory mouse models have historically played a crucial role in understanding virus biology, recent research has focused on utilizing immunocompromised models to study arboviruses like dengue and Zika viruses, particularly their interactions with Aedes aegypti mosquitoes. However, there has been a shortage of suitable mouse models for investigating WNV and St. Louis encephalitis virus interactions with their primary vectors, Culex spp. mosquitoes. Here, we establish the AG129 mouse (IFN α/β/γ R-/-) as an effective vertebrate model for examining mosquito-WNV interactions. Following intraperitoneal injection, AG129 mice exhibited transient viremia lasting several days, peaking on the second or third day post-infection, which is sufficient to infect Culex quinquefasciatus mosquitoes during a blood meal. We also observed WNV replication in the midgut and dissemination to other tissues, including the fat body, in infected mosquitoes. Notably, infectious virions were present in the saliva of a viremic AG129 mouse 16 days post-exposure, indicating successful transmission capacity. These findings highlight the utility of AG129 mice for studying vector competence and WNV-mosquito interactions.
Collapse
Affiliation(s)
- Lívia Baldon
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil
| | - Silvana de Mendonça
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil
| | - Ellen Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha, Belo Horizonte 31270-901, Brazil
| | - Bruno Marçal
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil
| | - Amanda Cupertino de Freitas
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil
| | - Fernanda Rezende
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil
| | - Rafaela Moreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil
- Laboratório de Ecologia do Adoecimento & Florestas NUPEB/ICEB, Universidade Federal de Ouro Preto, Ouro Preto 35402-163, Brazil
| | - Viviane Sousa
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil
| | - Sara Comini
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil
| | - Mariana Lima
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil
| | - Flávia Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha, Belo Horizonte 31270-901, Brazil
| | - João Paulo de Almeida
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha, Belo Horizonte 31270-901, Brazil
| | - Emanuele Silva
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha, Belo Horizonte 31270-901, Brazil
| | - Siad Amadou
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha, Belo Horizonte 31270-901, Brazil
| | - Marcele Rocha
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil
| | - Thiago Leite
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha, Belo Horizonte 31270-901, Brazil
| | - Yaovi Todjro
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha, Belo Horizonte 31270-901, Brazil
| | - Camila de Carvalho
- Plataforma de Microscopia e Microanálises de Imagens, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil
| | - Viviane Santos
- Plataforma de PCR em Tempo Real, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil
| | - Marta Giovanetti
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil
- Department of Sciences and Technologies for Sustainable Development and One Health, University of Campus Bio-Medico, 00128 Rome, Italy
| | - Luiz Alcantara
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil
| | - Luciano A Moreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil
| | - Alvaro Ferreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil
| |
Collapse
|
2
|
Schneider CA, Leung JM, Valenzuela-Leon PC, Golviznina NA, Toso EA, Bosnakovski D, Kyba M, Calvo E, Peterson KE. Skin muscle is the initial site of viral replication for arboviral bunyavirus infection. Nat Commun 2024; 15:1121. [PMID: 38321047 PMCID: PMC10847502 DOI: 10.1038/s41467-024-45304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
The first step in disease pathogenesis for arboviruses is the establishment of infection following vector transmission. For La Crosse virus (LACV), the leading cause of pediatric arboviral encephalitis in North America, and other orthobunyaviruses, the initial course of infection in the skin is not well understood. Using an intradermal (ID) model of LACV infection in mice, we find that the virus infects and replicates nearly exclusively within skin-associated muscle cells of the panniculus carnosus (PC) and not in epidermal or dermal cells like most other arbovirus families. LACV is widely myotropic, infecting distal muscle cells of the peritoneum and heart, with limited infection of draining lymph nodes. Surprisingly, muscle cells are resistant to virus-induced cell death, with long term low levels of virus release progressing through the Golgi apparatus. Thus, skin muscle may be a key cell type for the initial infection and spread of arboviral orthobunyaviruses.
Collapse
Affiliation(s)
- Christine A Schneider
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jacqueline M Leung
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Paola Carolina Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | | | - Erik A Toso
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| | - Darko Bosnakovski
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Karin E Peterson
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
3
|
Körsten C, Reemtsma H, Ziegler U, Fischer S, Tews BA, Groschup MH, Silaghi C, Vasic A, Holicki CM. Cellular co-infections of West Nile virus and Usutu virus influence virus growth kinetics. Virol J 2023; 20:234. [PMID: 37833787 PMCID: PMC10576383 DOI: 10.1186/s12985-023-02206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The mosquito-borne flaviviruses West Nile virus (WNV) and Usutu virus (USUV) pose a significant threat to the health of humans and animals. Both viruses co-circulate in numerous European countries including Germany. Due to their overlapping host and vector ranges, there is a high risk of co-infections. However, it is largely unknown if WNV and USUV interact and how this might influence their epidemiology. Therefore, in-vitro infection experiments in mammalian (Vero B4), goose (GN-R) and mosquito cell lines (C6/36, CT) were performed to investigate potential effects of co-infections in vectors and vertebrate hosts. The growth kinetics of German and other European WNV and USUV strains were determined and compared. Subsequently, simultaneous co-infections were performed with selected WNV and USUV strains. The results show that the growth of USUV was suppressed by WNV in all cell lines. This effect was independent of the virus lineage but depended on the set WNV titre. The replication of WNV also decreased in co-infection scenarios on vertebrate cells. Overall, co-infections might lead to a decreased growth of USUV in mosquitoes and of both viruses in vertebrate hosts. These interactions can strongly affect the epidemiology of USUV and WNV in areas where they co-circulate.
Collapse
Affiliation(s)
- Christin Körsten
- Federal Research Institute for Animal Health, Institute of Infectology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Hannah Reemtsma
- Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Ute Ziegler
- Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Susanne Fischer
- Federal Research Institute for Animal Health, Institute of Infectology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Birke A Tews
- Federal Research Institute for Animal Health, Institute of Infectology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Cornelia Silaghi
- Federal Research Institute for Animal Health, Institute of Infectology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Ana Vasic
- Federal Research Institute for Animal Health, Institute of Infectology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
- Scientific Institute of Veterinary Medicine of Serbia, Belgrade, Serbia
| | - Cora M Holicki
- Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
4
|
AG129 Mice as a Comprehensive Model for the Experimental Assessment of Mosquito Vector Competence for Arboviruses. Pathogens 2022; 11:pathogens11080879. [PMID: 36015000 PMCID: PMC9412449 DOI: 10.3390/pathogens11080879] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Arboviruses (an acronym for “arthropod-borne virus”), such as dengue, yellow fever, Zika, and Chikungunya, are important human pathogens transmitted by mosquitoes. These viruses impose a growing burden on public health. Despite laboratory mice having been used for decades for understanding the basic biological phenomena of these viruses, it was only recently that researchers started to develop immunocompromised animals to study the pathogenesis of arboviruses and their transmission in a way that parallels natural cycles. Here, we show that the AG129 mouse (IFN α/β/γ R−/−) is a suitable and comprehensive vertebrate model for studying the mosquito vector competence for the major arboviruses of medical importance, namely the dengue virus (DENV), yellow fever virus (YFV), Zika virus (ZIKV), Mayaro virus (MAYV), and Chikungunya virus (CHIKV). We found that, after intraperitoneal injection, AG129 mice developed a transient viremia lasting several days, peaking on day two or three post infection, for all five arboviruses tested in this study. Furthermore, we found that the observed viremia was ample enough to infect Aedes aegypti during a blood meal from the AG129 infected mice. Finally, we demonstrated that infected mosquitoes could transmit each of the tested arboviruses back to naïve AG129 mice, completing a full transmission cycle of these vector-borne viruses. Together, our data show that A129 mice are a simple and comprehensive vertebrate model for studies of vector competence, as well as investigations into other aspects of mosquito biology that can affect virus–host interactions.
Collapse
|
5
|
Facile method for delivering chikungunya viral replicons into mosquitoes and mammalian cells. Sci Rep 2021; 11:12321. [PMID: 34112897 PMCID: PMC8192953 DOI: 10.1038/s41598-021-91830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/01/2021] [Indexed: 11/09/2022] Open
Abstract
Reverse genetics is an important tool in the elucidation of viral replication and the development of countermeasures; however, these methods are impeded by laborious and inefficient replicon delivery methods. This paper demonstrates the use of a baculovirus to facilitate the efficient delivery of autonomous CHIKV replicons into mosquito and mammalian cells in vitro as well as adult mosquitoes in vivo. The efficacy of this approach was verified via co-localization among an eGFP reporter, nsP1, and dsRNA as well as through the inhibition of an RNA-dependent RNA polymerase (RdRp) null mutation (DDAA) in nsP4, or the treatment of a known antiviral compound (6-azauridine). We also investigated the correlation between CHIKV replicon-launched eGFP expression and the effectiveness of CHIKV replicon variants in inducing IFN-β expression in human cell lines. This delivery method based on a single vector is applicable to mosquito and mammalian cells in seeking to decipher the mechanisms underlying CHIKV replication, elucidate virus-host interactions, and develop antivirals. This study presents an effective alternative to overcome many of the technological issues related to the study and utilization of autonomous arbovirus replicons.
Collapse
|
6
|
Weaver SC, Forrester NL, Liu J, Vasilakis N. Population bottlenecks and founder effects: implications for mosquito-borne arboviral emergence. Nat Rev Microbiol 2021; 19:184-195. [PMID: 33432235 PMCID: PMC7798019 DOI: 10.1038/s41579-020-00482-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 01/31/2023]
Abstract
Transmission of arthropod-borne viruses (arboviruses) involves infection and replication in both arthropod vectors and vertebrate hosts. Nearly all arboviruses are RNA viruses with high mutation frequencies, which leaves them vulnerable to genetic drift and fitness losses owing to population bottlenecks during vector infection, dissemination from the midgut to the salivary glands and transmission to the vertebrate host. However, despite these bottlenecks, they seem to avoid fitness declines that can result from Muller's ratchet. In addition, founder effects that occur during the geographic introductions of human-amplified arboviruses, including chikungunya virus and Zika virus, can affect epidemic and endemic circulation, as well as virulence. In this Review, we discuss the role of genetic drift following population bottlenecks and founder effects in arboviral evolution and spread, and the emergence of human disease.
Collapse
Affiliation(s)
- Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| | | | - Jianying Liu
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nikos Vasilakis
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
7
|
Abbasi R, Heschuk D, Kim B, Whyard S. A novel paperclip double-stranded RNA structure demonstrates clathrin-independent uptake in the mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103492. [PMID: 33096213 DOI: 10.1016/j.ibmb.2020.103492] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) has become a widely used technique of knocking down a gene's expression in insects, but its efficacy in some species is limited by a reduced ability of the cells to take in and disperse the double-stranded RNA (dsRNA) throughout the cytoplasm. While RNA transport proteins such as SID-1 and its orthologues can facilitate dsRNA uptake in some invertebrate species, dsRNA uptake in many insects examined to date appears to be facilitated by clathrin-mediated endocytosis (CME). In this study, we used pharmacological inhibitors and RNAi-mediated knockdown of endocytic genes to provide evidence that CME is the primary means of dsRNA uptake in the mosquito Aedes aegypti. Inhibition of clathrin-mediated endocytosis was sufficient to supress uptake of short (21 nt) interfering RNAs (siRNAs), short (23 nt) hairpin RNAs (shRNAs), and long (>200 nt) dsRNA molecules in Aedes aegypti cultured cells and larvae. In contrast, we observed that short (23 nt) "paperclip" RNAs (pcRNAs), with partially closed ends, efficiently enter cells via a clathrin-independent pathway and effectively facilitate transcript knockdown. This alternative dsRNA structure may prove useful in insects generally considered recalcitrant to RNAi and in insect populations where resistance to RNAi-insecticides may arise through changes in dsRNA uptake mechanisms.
Collapse
Affiliation(s)
- Roohollah Abbasi
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Daniel Heschuk
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Brandon Kim
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Steve Whyard
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
8
|
Growth and adaptation of Zika virus in mammalian and mosquito cells. PLoS Negl Trop Dis 2018; 12:e0006880. [PMID: 30418969 PMCID: PMC6258428 DOI: 10.1371/journal.pntd.0006880] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/26/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
The recent emergence of Zika virus (ZIKV) in the Americas coincident with increased caseloads of microcephalic infants and Guillain-Barre syndrome has prompted a flurry of research on ZIKV. Much of the research is difficult to compare or repeat because individual laboratories use different virus isolates, growth conditions, and quantitative assays. Here we obtained three readily available contemporary ZIKV isolates and the prototype Ugandan isolate. We generated stocks of each on Vero mammalian cells (ZIKVmam) and C6/36 mosquito cells (ZIKVmos), determined titers by different assays side-by-side, compared growth characteristics using one-step and multi-step growth curves on Vero and C6/36 cells, and examined plaque phenotype. ZIKV titers consistently peaked earlier on Vero cells than on C6/36 cells. Contemporary ZIKV isolates reached peak titer most quickly in a multi-step growth curve when the amplifying cell line was the same as the titering cell line (e.g., ZIKVmam titered on Vero cells). Growth of ZIKVmam on mosquito cells was particularly delayed. These data suggest that the ability to infect and/or replicate in insect cells is limited after growth in mammalian cells. In addition, ZIKVmos typically had smaller, more homogenous plaques than ZIKVmam in a standard plaque assay. We hypothesized that the plaque size difference represented early adaptation to growth in mammalian cells. We plaque purified representative-sized plaques from ZIKVmos and ZIKVmam. ZIKVmos isolates maintained the initial phenotype while plaques from ZIKVmam isolates became larger with passaging. Our results underscore the importance of the cells used to produce viral stocks and the potential for adaptation with minimal cell passages. In addition, these studies provide a foundation to compare current and emerging ZIKV isolates in vitro and in vivo.
Collapse
|
9
|
Fall G, Di Paola N, Faye M, Dia M, Freire CCDM, Loucoubar C, Zanotto PMDA, Faye O, Sall AA. Biological and phylogenetic characteristics of West African lineages of West Nile virus. PLoS Negl Trop Dis 2017; 11:e0006078. [PMID: 29117195 PMCID: PMC5695850 DOI: 10.1371/journal.pntd.0006078] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 11/20/2017] [Accepted: 10/27/2017] [Indexed: 11/19/2022] Open
Abstract
The West Nile virus (WNV), isolated in 1937, is an arbovirus (arthropod-borne virus) that infects thousands of people each year. Despite its burden on global health, little is known about the virus’ biological and evolutionary dynamics. As several lineages are endemic in West Africa, we obtained the complete polyprotein sequence from three isolates from the early 1990s, each representing a different lineage. We then investigated differences in growth behavior and pathogenicity for four distinct West African lineages in arthropod (Ap61) and primate (Vero) cell lines, and in mice. We found that genetic differences, as well as viral-host interactions, could play a role in the biological properties in different WNV isolates in vitro, such as: (i) genome replication, (ii) protein translation, (iii) particle release, and (iv) virulence. Our findings demonstrate the endemic diversity of West African WNV strains and support future investigations into (i) the nature of WNV emergence, (ii) neurological tropism, and (iii) host adaptation. The West Nile virus (WNV) can cause severe neurological diseases including meningitis, encephalitis, and acute flaccid paralysis. Differences in WNV genetics could play a role in the frequency of neurological symptoms from an infection. For the first time, we observed how geographically similar but genetically distinct lineages grow in cellular environments that agree with the transmission chain of West Nile virus—vertebrate-arthropod-vertebrate. We were able to connect our in vitro and in vivo results with relevant epidemiological and molecular data. Our findings highlight the existence of West African lineages with higher virulence and replicative efficiency in vitro and in vivo compared to lineages similar to circulating strains in the United States and Europe. Our investigation of four West African lineages of West Nile virus will help us better understand the biology of the virus and assess future epidemiological threats.
Collapse
Affiliation(s)
- Gamou Fall
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Nicholas Di Paola
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Martin Faye
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Moussa Dia
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | | | - Cheikh Loucoubar
- Groupe à 4 ans de Biostatistiques, Bioinformatique et modélisation, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Paolo Marinho de Andrade Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| | - Ousmane Faye
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Amadou Alpha Sall
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| |
Collapse
|
10
|
New reverse genetics and transfection methods to rescue arboviruses in mosquito cells. Sci Rep 2017; 7:13983. [PMID: 29070887 PMCID: PMC5656662 DOI: 10.1038/s41598-017-14522-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/11/2017] [Indexed: 01/04/2023] Open
Abstract
Reverse genetics is a critical tool to decrypt the biological properties of arboviruses. However, whilst reverse genetics methods have been usually applied to vertebrate cells, their use in insect cells remains uncommon due to the conjunction of laborious molecular biology techniques and of specific difficulties surrounding the transfection of such cells. To leverage reverse genetics studies in both vertebrate and mosquito cells, we designed an improved DNA transfection protocol for insect cells and then demonstrated that the simple and flexible ISA (Infectious Subgenomic Amplicons) reverse-genetics method can be efficiently applied to both mammalian and mosquito cells to generate in days recombinant infectious positive-stranded RNA viruses belonging to genera Flavivirus (Japanese encephalitis, Yellow fever, West Nile and Zika viruses) and Alphavirus (Chikungunya virus). This method represents an effective option to potentially overcome technological issues related to the study of arboviruses.
Collapse
|