1
|
Liang Y, Wang H, Sun K, Sun J, Soong L. Lack of the IFN-γ signal leads to lethal Orientia tsutsugamushi infection in mice with skin eschar lesions. PLoS Pathog 2024; 20:e1012020. [PMID: 38743761 PMCID: PMC11125519 DOI: 10.1371/journal.ppat.1012020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/24/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Scrub typhus is an acute febrile disease due to Orientia tsutsugamushi (Ot) infection and can be life-threatening with organ failure, hemorrhage, and fatality. Yet, little is known as to how the host reacts to Ot bacteria at early stages of infection; no reports have addressed the functional roles of type I versus type II interferon (IFN) responses in scrub typhus. In this study, we used comprehensive intradermal (i.d.) inoculation models and two clinically predominant Ot strains (Karp and Gilliam) to uncover early immune events. Karp infection induced sequential expression of Ifnb and Ifng in inflamed skin and draining lymph nodes at days 1 and 3 post-infection. Using double Ifnar1-/-Ifngr1-/- and Stat1-/- mice, we found that deficiency in IFN/STAT1 signaling resulted in lethal infection with profound pathology and skin eschar lesions, which resembled to human scrub typhus. Further analyses demonstrated that deficiency in IFN-γ, but not IFN-I, resulted in impaired NK cell and macrophage activation and uncontrolled bacterial growth and dissemination, leading to metabolic dysregulation, excessive inflammatory cell infiltration, and exacerbated tissue damage. NK cells were found to be the major cellular source of innate IFN-γ, contributing to the initial Ot control in the draining lymph nodes. In vitro studies with dendritic cell cultures revealed a superior antibacterial effect offered by IFN-γ than IFN-β. Comparative in vivo studies with Karp- and Gilliam-infection revealed a crucial role of IFN-γ signaling in protection against progression of eschar lesions and Ot infection lethality. Additionally, our i.d. mouse models of lethal infection with eschar lesions are promising tools for immunological study and vaccine development for scrub typhus.
Collapse
Affiliation(s)
- Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hui Wang
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Keer Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
2
|
Du Q, Zeng H, Pang X, Cao J, Xie B, Long C, Liang L, Deng F, Huang M, Li L, Huang F, Liu X, Hu Y, Lv J. CagA-positive Helicobacter pylori may promote and aggravate scrub typhus. Front Microbiol 2024; 15:1351784. [PMID: 38298891 PMCID: PMC10828044 DOI: 10.3389/fmicb.2024.1351784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
Helicobacter pylori (H. pylori) infection may alter the host's resistance to tsutsugamushi disease pathogens through the Th1 immune response, leading to potential synergistic pathogenic effects. A total of 117 scrub typhus cases at Beihai People's Hospital and affiliated hospitals of Youjiang University for Nationalities and Medical Sciences were studied from January to December 2022, alongside 130 healthy individuals forming the control group. All participants underwent serum H. pylori antibody testing. The prevalence of H. pylori infection was significantly higher among scrub typhus patients (89.7%) compared to healthy individuals (54.6%) (p < 0.05). Moreover, type I H. pylori infection was notably more prevalent in scrub typhus cases (67.5%) compared to healthy individuals (30%) (p < 0.05). Multifactorial analysis demonstrated type I H. pylori infection as an independent risk factor for scrub typhus (adjusted odds ratio: 2.407, 95% confidence interval: 1.249-4.64, p = 0.009). Among scrub typhus patients with multiple organ damage, the prevalence of type I H. pylori infection was significantly higher (50.6%) than type II H. pylori infection (15.4%) (χ2 = 4.735, p = 0.030). These results highlight a higher incidence of H. pylori infection in scrub typhus patients compared to the healthy population. Additionally, type I H. pylori strain emerged as an independent risk factor for scrub typhus development. Moreover, individuals infected with type I H. pylori are more susceptible to multiple organ damage. These findings suggest a potential role of H. pylori carrying the CagA gene in promoting and exacerbating scrub typhus.
Collapse
Affiliation(s)
- Qiuying Du
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Houyang Zeng
- Department of Infectious Diseases, Beihai People's Hospital, Beihai, Guangxi, China
| | - Xianwu Pang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, China
| | - Jianyu Cao
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Bo Xie
- Institute of Life Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Chunyi Long
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Liudan Liang
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Fenglian Deng
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Meijin Huang
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Li Li
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Fengyan Huang
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xinli Liu
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanling Hu
- Institute of Life Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiannan Lv
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
3
|
Thiriot JD, Liang Y, Gonzales C, Sun J, Yu X, Soong L. Differential cellular immune responses against Orientia tsutsugamushi Karp and Gilliam strains following acute infection in mice. PLoS Negl Trop Dis 2023; 17:e0011445. [PMID: 38091346 PMCID: PMC10752558 DOI: 10.1371/journal.pntd.0011445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/27/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023] Open
Abstract
Scrub typhus is a leading cause of febrile illness in endemic countries due to infection with Orientia tsutsugamushi (Ot), a seriously understudied intracellular bacterium. Pulmonary involvement associated with vascular parasitism in patients is common and can develop into life threatening interstitial pneumonia. The diverse antigenicity of Ot genotypes and inter-strain differences in genome content are connected to varied virulence and clinical outcomes; however, detailed studies of strain-related pulmonary immune responses in human patients or small animal models of infection are lacking. In this study, we have used two clinically prevalent bacterial strains (Karp and Gilliam) to reveal cellular immune responses in inflamed lungs and potential biomarkers of disease severity. The results demonstrate that outbred CD-1 mice are highly susceptible to both Karp and Gilliam strains; however, C57BL/6 (B6) mice were susceptible to Karp, but resistant to Gilliam (with self-limiting infection), corresponding to their tissue bacterial burdens and lung pathological changes. Multicolor flow cytometric analyses of perfused B6 mouse lungs revealed robust and sustained influx and activation of innate immune cells (macrophages, neutrophils, and NK cells), followed by CD4+ and CD8+ T cells, during Karp infection, but such responses were greatly attenuated during Gilliam infection. The robust cellular responses in Karp-infected B6 mice positively correlated with significantly early and high levels of serum cytokine/chemokine protein levels (CXCL1, CCL2/3/5, and G-CSF), as well as pulmonary gene expression (Cxcl1/2, Ccl2/3/4, and Ifng). In vitro infection of B6 mouse-derived primary macrophages also revealed bacterial strain-dependent immune gene expression profiles. This study provided the lines of evidence that highlighted differential tissue cellular responses against Karp vs. Gilliam infection, offering a framework for future investigation of Ot strain-related mechanisms of disease pathogenesis vs. infection control.
Collapse
Affiliation(s)
- Joseph D. Thiriot
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yuejin Liang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Casey Gonzales
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jiaren Sun
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xiaoying Yu
- Department of Biostatistics & Data Science, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
4
|
Inthawong M, Sunyakumthorn P, Wongwairot S, Anantatat T, Dunachie SJ, Im-Erbsin R, Jones JW, Mason CJ, Lugo LA, Blacksell SD, Day NPJ, Sonthayanon P, Richards AL, Paris DH. A time-course comparative clinical and immune response evaluation study between the human pathogenic Orientia tsutsugamushi strains: Karp and Gilliam in a rhesus macaque (Macaca mulatta) model. PLoS Negl Trop Dis 2022; 16:e0010611. [PMID: 35925895 PMCID: PMC9352090 DOI: 10.1371/journal.pntd.0010611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Scrub typhus is a vector-borne febrile illness caused by Orientia tsutsugamushi transmitted by the bite of Trombiculid mites. O. tsutsugamushi has a high genetic diversity and is increasingly recognized to have a wider global distribution than previously assumed. METHODOLOGY/PRINCIPLE FINDINGS We evaluated the clinical outcomes and host immune responses of the two most relevant human pathogenic strains of O. tsutsugamushi; Karp (n = 4) and Gilliam (n = 4) in a time-course study over 80 days post infection (dpi) in a standardized scrub typhus non-human primate rhesus macaque model. We observed distinct features in clinical progression and immune response between the two strains; Gilliam-infected macaques developed more pronounced systemic infection characterized by an earlier onset of bacteremia, lymph node enlargement, eschar lesions and higher inflammatory markers during the acute phase of infection, when compared to the Karp strain. C-reactive protein (CRP) plasma levels, interferon gamma (IFN-γ, interleukin-1 receptor antagonist (IL-1ra), IL-15 serum concentrations, CRP/IL10- and IFN-γ/IL-10 ratios correlated positively with bacterial load in blood, implying activation of the innate immune response and preferential development of a T helper-type 1 immune response. The O. tsutsugamushi-specific immune memory responses in cells isolated from skin and lymph nodes at 80 dpi were more markedly elevated in the Gilliam-infected macaques than in the Karp-infected group. The comparative cytokine response dynamics of both strains revealed significant up-regulation of IFN-γ, tumor necrosis factor (TNF), IL-15, IL-6, IL-18, regulatory IL-1ra, IL-10, IL-8 and granulocyte-colony-stimulating factor (G-CSF). These data suggest that the clinical outcomes and host immune responses to scrub typhus could be associated with counter balancing effects of pro- and anti-inflammatory cytokine-mediated responses. Currently, no data on characterized time-course comparisons of O. tsutsugamushi strains regarding measures of disease severity and immune response is available. Our study provides evidence for the strain-specificity of host responses in scrub typhus, which supports our understanding of processes at the initial inoculation site (eschar), systemic disease progression, protective and/or pathogenic host immune mechanisms and cellular immune memory function. CONCLUSIONS/SIGNIFICANCE This study characterised an improved intradermal rhesus macaque challenge model for scrub typhus, whereby the Gilliam strain infection associated with higher disease severity in the rhesus macaque model than the previous Karp strain infection. Difficulties associated with inoculum quantitation for obligate-intracellular bacteria were overcome by using functional inoculum titrations in outbred mice. The Gilliam-based rhesus macaque model provides improved endpoint measurements and contributes towards the identification of correlates of protection for future vaccine development.
Collapse
Affiliation(s)
- Manutsanun Inthawong
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Piyanate Sunyakumthorn
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Sirima Wongwairot
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tippawan Anantatat
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Susanna J. Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Rawiwan Im-Erbsin
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - James W. Jones
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Carl J. Mason
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Luis A. Lugo
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Stuart D. Blacksell
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Piengchan Sonthayanon
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Allen L. Richards
- Viral & Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Daniel H. Paris
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
- Department of Medicine, Swiss Tropical and Public Health Institute, Faculty of Medicine, University of Basel, Switzerland
- Department of Clinical Research, Faculty of Medicine, University of Basel, Switzerland
| |
Collapse
|
5
|
Liang Y, Fisher J, Gonzales C, Trent B, Card G, Sun J, Tumanov AV, Soong L. Distinct Role of TNFR1 and TNFR2 in Protective Immunity Against Orientia tsutsugamushi Infection in Mice. Front Immunol 2022; 13:867924. [PMID: 35479068 PMCID: PMC9035742 DOI: 10.3389/fimmu.2022.867924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Infection with Orientia tsutsugamushi, an obligate intracellular bacterium, can cause mild or severe scrub typhus. Some patients develop acute lung injury, multi-organ failure, and fatal infection; however, little is known regarding key immune mediators that mediate infection control or disease pathogenesis. Using murine models of scrub typhus, we demonstrated in this study the requirement of TNF-TNFR signaling in protective immunity against this infection. Mice lacking both TNF receptors (TNFR1 and TNFR2) were highly susceptible to O. tsutsugamushi infection, displaying significantly increased tissue bacterial burdens and succumbing to infection by day 9, while most wild-type mice survived through day 20. This increased susceptibility correlated with poor activation of cellular immunity in inflamed tissues. Flow cytometry of lung- and spleen-derived cells revealed profound deficiencies in total numbers and activation status of NK cells, neutrophils, and macrophages, as well as CD4 and CD8 T cells. To define the role of individual receptors in O. tsutsugamushi infection, we used mice lacking either TNFR1 or TNFR2. While deficiency in either receptor alone was sufficient to increase host susceptibility to the infection, TNFR1 and TNFR2 played a distinct role in cellular responses. TNF signaling through TNFR1 promoted inflammatory responses and effector T cell expansion, while TNFR2 signaling was associated with anti-inflammatory action and tissue homeostasis. Moreover, TNFRs played an intrinsic role in CD8+ T cell activation, revealing an indispensable role of TNF in protective immunity against O. tsutsugamushi infection.
Collapse
Affiliation(s)
- Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - James Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Casey Gonzales
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandon Trent
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Galen Card
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Alexei V. Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
6
|
Hong K, Shu Z, Li L, Zhong Y, Chen W, Nong C, Kong J. Diagnostic Value of CD4/CD8 in Scrub Typhus. Am J Trop Med Hyg 2022; 106:792-797. [PMID: 34902835 PMCID: PMC8922489 DOI: 10.4269/ajtmh.21-0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/20/2021] [Indexed: 11/07/2022] Open
Abstract
Scrub typhus is often misdiagnosed in febrile patients, leading to antibiotic abuse and multiple complications. We conducted a retrospective record review at the Fourth Affiliated Hospital of Guangxi Medical University in China. Data were collected on 52 patients with a confirmed diagnosis of scrub typhus and complete clinical data. In addition, data were collected on 52 patients with bloodstream infection, 25 patients with HIV infection, 112 patients with common community-acquired pneumonia (CCAP), and 36 patients with severe community-acquired pneumonia (SCAP) to serve as control groups. The peripheral blood CD4 and CD8 counts, CD4/CD8 ratio, C-reactive protein, procalcitonin, alanine aminotransferase, aspartate aminotransferase, creatinine, and β2 microglobulin levels; and the white blood cell count and neutrophil percentage were compared between the scrub typhus and the control groups. The value of these biomarkers in the diagnosis of scrub typhus was assessed using receiver-operating characteristic curve analysis. The scrub typhus group had a significantly lower CD4 count and CD4/CD8 ratio than the bloodstream infection, CCAP, and SCAP groups, and a significantly greater CD4 count and CD4/CD8 ratio than the HIV infection group. In contrast, the scrub typhus group had a significantly greater CD8 count than the bloodstream infection and CCAP and SCAP groups, and it had a lower level of CD8 than the HIV infection group. The areas under the curve of CD4/CD8 were more than 0.93 in the receiver-operating characteristic curve analysis. These findings suggest that the CD4/CD8 ratio is a useful ancillary test for diagnosing scrub typhus.
Collapse
Affiliation(s)
- Kangkang Hong
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China;,Department of Geriatric Medicine, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Ziping Shu
- Pulmonary and Critical Care Medicine Ward, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Laodong Li
- Pulmonary and Critical Care Medicine Ward, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Yu Zhong
- Department of Emergency, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Weiqian Chen
- Department of Geriatric Medicine, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Cunli Nong
- Department of Infectious Diseases, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Jinliang Kong
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China;,Address correspondence to Jinliang Kong, The First Affiliated Hospital of Guangzi Medical University, Shuangyong Rd., Nanning, China 540000. E-mail:
| |
Collapse
|
7
|
Kang SJ, Park KJ, Jin HM, Cho YN, Oh TH, Kim SE, Kim UJ, Park KH, Jung SI, Kim TO, Kim HS, Jo YG, Ju JK, Kee SJ, Park YW. Circulating Plasmacytoid and Conventional Dendritic Cells Are Numerically and Functionally Deficient in Patients With Scrub Typhus. Front Immunol 2021; 12:700755. [PMID: 34276693 PMCID: PMC8281928 DOI: 10.3389/fimmu.2021.700755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Background Dendritic cells (DCs) are specialized antigen-presenting cells known to bridge innate and adaptive immune reactions. However, the relationship between circulating DCs and Orientia tsutsugamushi infection is unclear. Therefore, this study aimed to examine the level and function of plasmacytoid DCs (pDCs) and conventional DCs (cDCs), two subsets of circulating DCs, in scrub typhus patients. Methods The study included 35 scrub typhus patients and 35 healthy controls (HCs). pDC and cDC levels, CD86 and CD274 expression, and cytokine levels were measured using flow cytometry. Results Circulating pDC and cDC levels were found to be significantly reduced in scrub typhus patients, which were correlated with disease severity. The patients displayed increased percentages of CD86+ pDCs, CD274+ pDCs, and CD274+ cDCs in the peripheral blood. The alterations in the levels and surface phenotypes of pDCs and cDCs were recovered in the remission state. In addition, the production of interferon (IFN)-α and tumor necrosis factor (TNF)-α by circulating pDCs, and interleukin (IL)-12 and TNF-α by circulating cDCs was reduced in scrub typhus patients. Interestingly, our in vitro experiments showed that the percentages of CD86+ pDCs, CD274+ pDCs, and CD274+ cDCs were increased in cultures treated with cytokines including IFN-γ, IL-12, and TNF-α. Conclusions This study demonstrates that circulating pDCs and cDCs are numerically deficient and functionally impaired in scrub typhus patients. In addition, alterations in the expression levels of surface phenotypes of pDCs and cDCs could be affected by pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Seung-Ji Kang
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Ki-Jeong Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Hye-Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Young-Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Tae Hoon Oh
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Seong Eun Kim
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Uh Jin Kim
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Kyung-Hwa Park
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Sook-In Jung
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Tae-Ok Kim
- Department of Pulmonology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Hyo Shin Kim
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Young-Goun Jo
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Jae Kyun Ju
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Yong-Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| |
Collapse
|
8
|
Muhialdin BJ, Zawawi N, Abdull Razis AF, Bakar J, Zarei M. Antiviral activity of fermented foods and their probiotics bacteria towards respiratory and alimentary tracts viruses. Food Control 2021; 127:108140. [PMID: 33867696 PMCID: PMC8036130 DOI: 10.1016/j.foodcont.2021.108140] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/09/2021] [Accepted: 04/04/2021] [Indexed: 02/06/2023]
Abstract
The recent COVID-19, a viral outbreak calls for a high demand for non-conventional antiviral agents that can reduce the risk of infections and promote fast recovery. Fermented foods and their probiotics bacteria have recently received increasing interest due to the reported potential of high antiviral activity. Several probiotics strains demonstrated broad range of antiviral activities and different mechanisms of action. This article will review the diversity, health benefits, interaction with immune system and antiviral activity of fermented foods and their probiotics bacteria. In addition, the mechanisms of action will be reviewed to determine the broad range potential antiviral activity against the respiratory and alimentary tracts viruses. The probiotics bacteria and bioactive compounds in fermented foods demonstrated antiviral activities against respiratory and alimentary tracts viruses. The mechanism of action was reported to be due to the stimulation of the immune system function via enhancing natural killers cell toxicity, enhance the production of pro-inflammatory cytokines, and increasing the cytotoxic of T lymphocytes (CD3+, CD16+, CD56+). However, further studies are highly recommended to determine the potential antiviral activity for traditional fermented foods.
Collapse
Affiliation(s)
- Belal J Muhialdin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Halal Products Research Institute, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Norhasnida Zawawi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Natural Medicines and Product Research Laboratory, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Natural Medicines and Product Research Laboratory, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Jamilah Bakar
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Mohammad Zarei
- Department of Food Science and Technology, School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia
| |
Collapse
|
9
|
Bachiller M, Battram AM, Perez-Amill L, Martín-Antonio B. Natural Killer Cells in Immunotherapy: Are We Nearly There? Cancers (Basel) 2020; 12:E3139. [PMID: 33120910 PMCID: PMC7694052 DOI: 10.3390/cancers12113139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells are potent anti-tumor and anti-microbial cells of our innate immune system. They are equipped with a vast array of receptors that recognize tumor cells and other pathogens. The innate immune activity of NK cells develops faster than the adaptive one performed by T cells, and studies suggest an important immunoregulatory role for each population against the other. The association, observed in acute myeloid leukemia patients receiving haploidentical killer-immunoglobulin-like-receptor-mismatched NK cells, with induction of complete remission was the determinant to begin an increasing number of clinical studies administering NK cells for the treatment of cancer patients. Unfortunately, even though transfused NK cells demonstrated safety, their observed efficacy was poor. In recent years, novel studies have emerged, combining NK cells with other immunotherapeutic agents, such as monoclonal antibodies, which might improve clinical efficacy. Moreover, genetically-modified NK cells aimed at arming NK cells with better efficacy and persistence have appeared as another option. Here, we review novel pre-clinical and clinical studies published in the last five years administering NK cells as a monotherapy and combined with other agents, and we also review chimeric antigen receptor-modified NK cells for the treatment of cancer patients. We then describe studies regarding the role of NK cells as anti-microbial effectors, as lessons that we could learn and apply in immunotherapy applications of NK cells; these studies highlight an important immunoregulatory role performed between T cells and NK cells that should be considered when designing immunotherapeutic strategies. Lastly, we highlight novel strategies that could be combined with NK cell immunotherapy to improve their targeting, activity, and persistence.
Collapse
Affiliation(s)
| | | | | | - Beatriz Martín-Antonio
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (M.B.); (A.M.B.); (L.P.-A.)
| |
Collapse
|
10
|
Torina A, Villari S, Blanda V, Vullo S, La Manna MP, Shekarkar Azgomi M, Di Liberto D, de la Fuente J, Sireci G. Innate Immune Response to Tick-Borne Pathogens: Cellular and Molecular Mechanisms Induced in the Hosts. Int J Mol Sci 2020; 21:ijms21155437. [PMID: 32751625 PMCID: PMC7432002 DOI: 10.3390/ijms21155437] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Many pathogens are transmitted by tick bites, including Anaplasma spp., Ehrlichia spp., Rickettsia spp., Babesia and Theileria sensu stricto species. These pathogens cause infectious diseases both in animals and humans. Different types of immune effector mechanisms could be induced in hosts by these microorganisms, triggered either directly by pathogen-derived antigens or indirectly by molecules released by host cells binding to these antigens. The components of innate immunity, such as natural killer cells, complement proteins, macrophages, dendritic cells and tumor necrosis factor alpha, cause a rapid and intense protection for the acute phase of infectious diseases. Moreover, the onset of a pro-inflammatory state occurs upon the activation of the inflammasome, a protein scaffold with a key-role in host defense mechanism, regulating the action of caspase-1 and the maturation of interleukin-1β and IL-18 into bioactive molecules. During the infection caused by different microbial agents, very similar profiles of the human innate immune response are observed including secretion of IL-1α, IL-8, and IFN-α, and suppression of superoxide dismutase, IL-1Ra and IL-17A release. Innate immunity is activated immediately after the infection and inflammasome-mediated changes in the pro-inflammatory cytokines at systemic and intracellular levels can be detected as early as on days 2–5 after tick bite. The ongoing research field of “inflammasome biology” focuses on the interactions among molecules and cells of innate immune response that could be responsible for triggering a protective adaptive immunity. The knowledge of the innate immunity mechanisms, as well as the new targets of investigation arising by bioinformatics analysis, could lead to the development of new methods of emergency diagnosis and prevention of tick-borne infections.
Collapse
Affiliation(s)
- Alessandra Torina
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (A.T.); (S.V.); (S.V.)
| | - Sara Villari
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (A.T.); (S.V.); (S.V.)
| | - Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (A.T.); (S.V.); (S.V.)
- Correspondence:
| | - Stefano Vullo
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90100 Palermo, Italy; (A.T.); (S.V.); (S.V.)
| | - Marco Pio La Manna
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (M.S.A.); (D.D.L.); (G.S.)
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (M.S.A.); (D.D.L.); (G.S.)
| | - Diana Di Liberto
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (M.S.A.); (D.D.L.); (G.S.)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain;
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Guido Sireci
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), BIND, University Hospital “Paolo Giaccone”, Università degli studi di Palermo, Via del Vespro 129, 90100 Palermo, Italy; (M.P.L.M.); (M.S.A.); (D.D.L.); (G.S.)
| |
Collapse
|
11
|
Magnusson L, Barcenilla H, Pihl M, Bensing S, Espes D, Carlsson PO, Casas R. Mass Cytometry Studies of Patients With Autoimmune Endocrine Diseases Reveal Distinct Disease-Specific Alterations in Immune Cell Subsets. Front Immunol 2020; 11:288. [PMID: 32153591 PMCID: PMC7047233 DOI: 10.3389/fimmu.2020.00288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/05/2020] [Indexed: 01/10/2023] Open
Abstract
Although there is evidence that autoimmune diseases share similar immunogenetic mechanisms, studies comparing peripheral CD45+ cells from patients with autoimmune endocrine diseases in parallel are limited. In this study, we applied high-dimensional single-cell mass cytometry to phenotypically characterize PBMC from patients with new-onset (N-T1D) and long-standing type 1 diabetes, Hashimoto's thyroiditis (HT), Graves' disease and autoimmune Addison's disease (AD), as well as healthy controls. The frequency of CD20loCD27hiCD38hiHLA-DRint plasmablasts, CD86+CD14loCD16+ non-classical monocytes and two subsets of CD56dimHLA-DR+IFN-γ+ NK cells were increased in patients with HT. Subsets of CD56dimCD69+HLA-DR- NK cells and CD8+ TEMRA cells, both expressing IFN-γ, were expanded and reduced, respectively, in the N-T1D group. In addition, patients with AD were characterized by an increased percentage of central memory CD8+ T cells that expressed CCR4, GATA3, and IL-2. We demonstrate that patients with N-T1D, HT, and AD had altered frequencies of distinct subsets within antigen-presenting and cytotoxic cell lineages. Previously unreported alterations of specific cell subsets were identified in samples from patients with HT and AD. Our study might contribute to a better understanding of shared and diverging immunological features between autoimmune endocrine diseases.
Collapse
Affiliation(s)
- Louise Magnusson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Division of Children and Women Health, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hugo Barcenilla
- Division of Children and Women Health, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mikael Pihl
- Core Facility Flow Cytometry Unit, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Sophie Bensing
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Espes
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Rosaura Casas
- Division of Children and Women Health, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Kang SJ, Jin HM, Cho YN, Oh TH, Kim SE, Kim UJ, Park KH, Jang HC, Jung SI, Kee SJ, Park YW. Dysfunction of Circulating Natural Killer T Cells in Patients With Scrub Typhus. J Infect Dis 2019; 218:1813-1821. [PMID: 29982731 DOI: 10.1093/infdis/jiy402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/28/2018] [Indexed: 01/01/2023] Open
Abstract
Background Human natural killer T (NKT) cells are known to serve as regulatory and/or effector cells in infectious diseases. However, little is known about the role of NKT cells in Orientia tsutsugamushi infection. Accordingly, the objective of this study was to examine the level and function of NKT cells in patients with scrub typhus. Methods This study included 62 scrub typhus patients and 62 healthy controls (HCs). NKT cell level and function in peripheral blood samples were measured by flow cytometry. Results Proliferation of NKT cells and their ability to produce interferon-γ and interleukin-4 (IL-4) were significantly lower in scrub typhus patients compared to those in HCs. However, circulating NKT cell levels were comparable between patients and HCs. Expression levels of CD69, programmed death-1 (PD-1), lymphocyte activation gene-3 (LAG-3), and T-cell immunoglobulin domain and mucin domain-containing molecule-3 (TIM-3) were significantly increased in scrub typhus patients. Elevated expression of CD69, PD-1, LAG-3, and TIM-3, impaired proliferation, and decreased IL-4 production by NKT cells were recovered in the remission phase. Conclusions This study demonstrates that circulating NKT cells are numerically preserved but functionally impaired in scrub typhus patients. In addition, NKT cell dysfunction is recovered in the remission phase.
Collapse
Affiliation(s)
- Seung-Ji Kang
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hye-Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Young-Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Tae-Hoon Oh
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seong Eun Kim
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Uh Jin Kim
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Kyung-Hwa Park
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hee-Chang Jang
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Sook-In Jung
- Department of Infectious Diseases, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| |
Collapse
|
13
|
Kumar V. Natural killer cells in sepsis: Underprivileged innate immune cells. Eur J Cell Biol 2019; 98:81-93. [DOI: 10.1016/j.ejcb.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
|
14
|
Soong L. Dysregulated Th1 Immune and Vascular Responses in Scrub Typhus Pathogenesis. THE JOURNAL OF IMMUNOLOGY 2019; 200:1233-1240. [PMID: 29431689 DOI: 10.4049/jimmunol.1701219] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/30/2017] [Indexed: 12/25/2022]
Abstract
Scrub typhus is an emerging, insect-transmitted disease caused by Orientia tsutsugamushi, a Gram- and LPS-negative bacterium that replicates freely within professional phagocytes and endothelial cells. Scrub typhus is prevalent with high mortality rates, but information regarding its molecular pathogenesis, microbial virulence determinants, and key immune responses is limited. Improved animal models have recently been developed that respectively resemble the pathological features of self-limiting or severe scrub typhus in humans. Strong activation of Th1 and CD8, but not Th2 and regulatory T, immune responses, accompanied by altered angiopoietin/Tie2-related regulation, are hallmarks of lethal infection in murine models. This review, based primarily on recent advances from clinical and experimental studies, highlights tissue- and endothelial cell-specific biomarkers that are indicative of immune dysregulation. The potential roles of neutrophils and damage-associated molecular pattern molecules at late stages of disease are discussed in the context of vascular leakage, pulmonary and renal injury, and scrub typhus pathogenesis.
Collapse
Affiliation(s)
- Lynn Soong
- Department of Microbiology and Immunology, Center for Tropical Diseases, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555; and .,Department of Pathology, Center for Tropical Diseases, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
15
|
The Obligate Intracellular Bacterium Orientia tsutsugamushi Targets NLRC5 To Modulate the Major Histocompatibility Complex Class I Pathway. Infect Immun 2019; 87:IAI.00876-18. [PMID: 30559222 DOI: 10.1128/iai.00876-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Orientia tsutsugamushi is an obligate intracellular bacterium that infects mononuclear and endothelial cells to cause the emerging global health threat scrub typhus. The ability of O. tsutsugamushi to survive in monocytes facilitates bacterial dissemination to endothelial cells, which can subsequently lead to several potentially fatal sequelae. As a strict intracellular pathogen that lives in the cytoplasm of host cells, O. tsutsugamushi has evolved to counter adaptive immunity. How the pathogen does so and the outcome of this strategy in monocytes versus endothelial cells are poorly understood. This report demonstrates that O. tsutsugamushi reduces cellular levels of NOD-, LRR-, and CARD-containing 5 (NLRC5), a recently identified specific transactivator of major histocompatibility complex class I (MHC-I) component gene expression, to inhibit MHC-I biosynthesis. Importantly, the efficacy of this approach varies with the host cell type infected. In nonprofessional antigen-presenting HeLa and primary human aortic endothelial cells, the O. tsutsugamushi-mediated reduction of NLRC5 results in lowered MHC-I component transcription and, consequently, lower total and/or surface MHC-I levels throughout 72 h of infection. However, in infected THP-1 monocytes, which are professional antigen-presenting cells, the reductions in NLRC5 and MHC-I observed during the first 24 h reverse thereafter. O. tsutsugamushi is the first example of a microbe that targets NLRC5 to modulate the MHC-I pathway. The differential ability of O. tsutsugamushi to modulate this pathway in nonprofessional versus professional antigen-presenting cells could influence morbidity and mortality from scrub typhus.
Collapse
|
16
|
Ha NY, Kim Y, Min CK, Kim HI, Yen NTH, Choi MS, Kang JS, Kim YS, Cho NH. Longevity of antibody and T-cell responses against outer membrane antigens of Orientia tsutsugamushi in scrub typhus patients. Emerg Microbes Infect 2017; 6:e116. [PMID: 29259327 PMCID: PMC5750460 DOI: 10.1038/emi.2017.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 01/30/2023]
Abstract
Scrub typhus, caused by Orientia tsutsugamushi infection, has been a serious public health issue in the Asia-Pacific region, with rising incidence and sporadic outbreaks. However, human protective immunity against specific antigens has been poorly characterized for this bacterium. In addition, immunity produced in early vaccine trials or even after natural infections, did not last long and had poor cross-reactivity among various genotypes. Here, we systematically investigated the kinetics and magnitude of specific adaptive immunity against two membrane antigens, 56 kDa type-specific antigen (TSA56) and surface cell antigen A (ScaA), that are involved in bacterial adhesion and invasion of the host in 64 recovered scrub typhus patients. Antibody responses to the bacterial antigens in patients were generally short-lived and waned to baseline levels 2 years after recovery. The anti-TSA56 IgG responses were predominantly composed of the IgG1 and IgG3 subclasses and persisted for up to 1 year after recovery, whereas IgG specific to ScaA primarily consisted of more transient IgG1, with limited responses by other subclasses. Cellular immunity, including CD4 and CD8 T-cells specific to membrane antigens, also rapidly declined from 1 year after infection, as measured by enzyme-linked immunospot (ELISPOT) assays and flow cytometry. The short longevity of antigen-specific adaptive immunity might be attributable to limited memory responses, as observed in earlier vaccine studies using whole bacterial antigens. Finally, we identified HLA-A*0201-restricted and highly conserved CD8 T-cell epitopes in the TSA56 antigen, which may be valuable tools for assessing cellular immunity against O. tsutsugamushi and developing an effective scrub typhus vaccine.
Collapse
Affiliation(s)
- Na-Young Ha
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yuri Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chan-Ki Min
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hong-Il Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Nguyen Thi Hai Yen
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Myung-Sik Choi
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jae-Seung Kang
- Department of Microbiology, Inha University School of Medicine, Incheon 22212, Republic of Korea
| | - Yeon-Sook Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|