1
|
Kato H. Epidemiology of Leishmaniasis: Risk factors for its pathology and infection. Parasitol Int 2025; 105:102999. [PMID: 39592080 DOI: 10.1016/j.parint.2024.102999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. About 20 species of Leishmania are pathogenic to humans, with the specific infecting species playing a crucial role in determining clinical outcomes. There are three main forms of disease: cutaneous, mucocutaneous and visceral leishmaniasis. In addition to the infecting species, it has recently been suggested that parasite strains and genetic factors affect disease manifestation and response to treatment. This suggests that infecting parasites are a crucial risk factor for the pathology of leishmaniasis. These parasites are transmitted by sand flies, of which more than 1000 species have been recorded. However, only approximately 10 % of these species are responsible for transmitting Leishmania, with each sand fly species typically transmitting specific species of Leishmania. Most Leishmania species are zoonotically transmitted by sand flies, with reservoir animals playing a crucial role in disease transmission and endemicity. This aspect of the disease ecology highlights the importance of considering both vectors and reservoir animals in endemic areas as risk factors for leishmaniasis. Our epidemiological studies on leishmaniasis focus mainly on South American countries. This review describes the epidemiological aspects of leishmaniasis in Ecuador and Peru, with a focus on pathological and infectious risks.
Collapse
Affiliation(s)
- Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke city, Tochigi 329-0498, Japan.
| |
Collapse
|
2
|
Coser EM, Aoki JI, Saborito C, de la Roca S, Brufatto JPT, Angerami R, Stelini RF, Velho PENF, Coelho AC. Imported Cutaneous Leishmaniasis from Peru Caused by Leishmania (Viannia) guyanensis in a Brazilian Patient: Case Report and In Vitro Drug Susceptibility Analysis. Trop Med Infect Dis 2024; 9:264. [PMID: 39591270 PMCID: PMC11598126 DOI: 10.3390/tropicalmed9110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
In South America, cutaneous leishmaniasis is caused by several species of the parasite of the genus Leishmania. Here, we describe an imported case of cutaneous leishmaniasis acquired in Peru by a Brazilian patient during her travel to Iquitos. Infection by Leishmania parasites was confirmed by histopathologic examination, and the patient was treated with pentavalent antimony (Pentostam), without clinical response. Molecular typing was performed by sequencing the ribosomal DNA internal transcribed spacer and heat-shock protein 70 gene, which identified the parasites as Leishmania guyanensis. The clinical isolate was similarly susceptible to amphotericin B, pentamidine, and miltefosine as the reference strain, while for pentavalent antimony, this clinical isolate was more susceptible than the reference strain, even though its susceptibility in vitro was still considered low. The patient was then treated with liposomal amphotericin B, with clinical improvement of the lesions.
Collapse
Affiliation(s)
- Elizabeth M. Coser
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil; (E.M.C.); (J.I.A.)
| | - Juliana I. Aoki
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil; (E.M.C.); (J.I.A.)
| | - Cristiele Saborito
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil; (E.M.C.); (J.I.A.)
| | - Stephane de la Roca
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil; (E.M.C.); (J.I.A.)
| | - João Paulo T. Brufatto
- Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-894, Brazil (R.A.); (P.E.N.F.V.)
| | - Rodrigo Angerami
- Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-894, Brazil (R.A.); (P.E.N.F.V.)
| | - Rafael F. Stelini
- Departamento de Patologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-894, Brazil
| | - Paulo Eduardo N. F. Velho
- Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-894, Brazil (R.A.); (P.E.N.F.V.)
| | - Adriano C. Coelho
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil; (E.M.C.); (J.I.A.)
| |
Collapse
|
3
|
De los Santos MB, Loyola S, Perez-Velez ES, Santos RDP, Ramírez IM, Valdivia HO. Sampling is decisive to determination of Leishmania (Viannia) species. PLoS Negl Trop Dis 2024; 18:e0012113. [PMID: 38662642 PMCID: PMC11045131 DOI: 10.1371/journal.pntd.0012113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Accuracy of molecular tools for the identification of parasites that cause human cutaneous leishmaniasis (CL) could largely depend on the sampling method. Non-invasive or less-invasive sampling methods such as filter paper imprints and cotton swabs are preferred over punch biopsies and lancet scrapings for detection methods of Leishmania based on polymerase chain reaction (PCR) because they are painless, simple, and inexpensive, and of benefit to military and civilian patients to ensure timely treatment. However, different types of samples can generate false negatives and there is a clear need to demonstrate which sample is more proper for molecular assays. METHODOLOGY Here, we compared the sensitivity of molecular identification of different Leishmania (Viannia) species from Peru, using three types of sampling: punch biopsy, filter paper imprint and lancet scraping. Different composite reference standards and latent class models allowed to evaluate the accuracy of the molecular tools. Additionally, a quantitative PCR assessed variations in the results and parasite load in each type of sample. PRINCIPAL FINDINGS Different composite reference standards and latent class models determined higher sensitivity when lancet scrapings were used for sampling in the identification and determination of Leishmania (Viannia) species through PCR-based assays. This was consistent for genus identification through kinetoplastid DNA-PCR and for the determination of species using FRET probes-based Nested Real-Time PCR. Lack of species identification in some samples correlated with the low intensity of the PCR electrophoretic band, which reflects the low parasite load in samples. CONCLUSIONS The type of clinical sample can directly influence the detection and identification of Leishmania (Viannia) species. Here, we demonstrated that lancet scraping samples consistently allowed the identification of more leishmaniasis cases compared to filter paper imprints or biopsies. This procedure is inexpensive, painless, and easy to implement at the point of care and avoids the need for anesthesia, surgery, and hospitalization and therefore could be used in resource limited settings for both military and civilian populations.
Collapse
Affiliation(s)
- Maxy B. De los Santos
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Bellavista, Lima, Peru
| | - Steev Loyola
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Erika S. Perez-Velez
- Departamento Académico de Medicina Humana, Universidad Andina del Cusco, Cusco, Peru
| | | | - Ivonne Melissa Ramírez
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Cercado de Lima, Lima, Peru
| | - Hugo O. Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Bellavista, Lima, Peru
| |
Collapse
|
4
|
Gow I, Smith NC, Stark D, Ellis J. Laboratory diagnostics for human Leishmania infections: a polymerase chain reaction-focussed review of detection and identification methods. Parasit Vectors 2022; 15:412. [PMID: 36335408 PMCID: PMC9636697 DOI: 10.1186/s13071-022-05524-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/02/2022] [Indexed: 11/08/2022] Open
Abstract
Leishmania infections span a range of clinical syndromes and impact humans from many geographic foci, but primarily the world's poorest regions. Transmitted by the bite of a female sand fly, Leishmania infections are increasing with human movement (due to international travel and war) as well as with shifts in vector habitat (due to climate change). Accurate diagnosis of the 20 or so species of Leishmania that infect humans can lead to the successful treatment of infections and, importantly, their prevention through modelling and intervention programs. A multitude of laboratory techniques for the detection of Leishmania have been developed over the past few decades, and although many have drawbacks, several of them show promise, particularly molecular methods like polymerase chain reaction. This review provides an overview of the methods available to diagnostic laboratories, from traditional techniques to the now-preferred molecular techniques, with an emphasis on polymerase chain reaction-based detection and typing methods.
Collapse
Affiliation(s)
- Ineka Gow
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Nicholas C. Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Damien Stark
- Department of Microbiology, St Vincent’s Hospital Sydney, Darlinghurst, NSW 2010 Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| |
Collapse
|
5
|
Zorrilla VO, Lozano ME, Espada LJ, Kosoy M, McKee C, Valdivia HO, Arevalo H, Troyes M, Stoops CA, Fisher ML, Vásquez GM. Comparison of sand fly trapping approaches for vector surveillance of Leishmania and Bartonella species in ecologically distinct, endemic regions of Peru. PLoS Negl Trop Dis 2021; 15:e0009517. [PMID: 34260585 PMCID: PMC8279425 DOI: 10.1371/journal.pntd.0009517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In Peru, the information regarding sand fly vectors of leishmaniasis and bartonellosis in the Amazon region is limited. In this study, we carried out sand fly collections in Peruvian lowland and highland jungle areas using different trap type configurations and screened them for Leishmania and Bartonella DNA. METHODOLOGY/PRINCIPAL FINDINGS Phlebotomine sand flies were collected in Peruvian Amazon jungle and inter Andean regions using CDC light trap, UV and color LED traps, Mosquito Magnet trap, BG Sentinel trap, and a Shannon trap placed outside the houses. Leishmania spp. screening was performed by kDNA PCR and confirmed by a nested cytochrome B gene (cytB) PCR. Bartonella spp. screening was performed by ITS PCR and confirmed by citrate synthase gene (gltA). The PCR amplicons were sequenced to identify Leishmania and Bartonella species. UV and Blue LED traps collected the highest average number of sand flies per hour in low jungle; UV, Mosquito Magnet and Shannon traps in high jungle; and Mosquito Magnet in inter Andean region. Leishmania guyanensis in Lutzomyia carrerai carrerai and L. naiffi in Lu. hirsuta hirsuta were identified based on cytB sequencing. Bartonella spp. related to Bartonella bacilliformis in Lu. whitmani, Lu. nevesi, Lu. hirsuta hirsuta and Lu. sherlocki, and a Bartonella sp. related to Candidatus B. rondoniensis in Lu. nevesi and Lu. maranonensis were identified based on gltA gene sequencing. CONCLUSIONS/SIGNIFICANCE UV, Blue LED, Mosquito Magnet and Shannon traps were more efficient than the BG-Sentinel, Green, and Red LED traps. This is the first report of L. naiffi and of two genotypes of Bartonella spp. related to B. bacilliformis and Candidatus B. rondoniensis infecting sand fly species from the Amazon region in Peru.
Collapse
Affiliation(s)
- Victor O. Zorrilla
- Department of Entomology, U.S. Naval Medical Research Unit No.6, Bellavista, Peru
- * E-mail:
| | - Marisa E. Lozano
- Department of Entomology, U.S. Naval Medical Research Unit No.6, Bellavista, Peru
- Vysnova Partners, Lima, Peru
| | - Liz J. Espada
- Department of Entomology, U.S. Naval Medical Research Unit No.6, Bellavista, Peru
- Vysnova Partners, Lima, Peru
| | - Michael Kosoy
- KB One Health LLC, Fort Collins, Colorado, United States of America
| | - Clifton McKee
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Hugo O. Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit No.6, Bellavista, Peru
| | - Heriberto Arevalo
- Laboratorio Referencial de Salud, Tarapoto, Direccion Regional de Salud San Martin, Peru
| | | | - Craig A. Stoops
- Department of Entomology, U.S. Naval Medical Research Unit No.6, Bellavista, Peru
| | - Michael L. Fisher
- Department of Entomology, U.S. Naval Medical Research Unit No.6, Bellavista, Peru
| | - Gissella M. Vásquez
- Department of Entomology, U.S. Naval Medical Research Unit No.6, Bellavista, Peru
| |
Collapse
|
6
|
Torrico MC, Fernández-Arévalo A, Ballart C, Solano M, Rojas E, Ariza E, Tebar S, Lozano D, Abras A, Gascón J, Picado A, Muñoz C, Torrico F, Gállego M. Tegumentary leishmaniasis by Leishmania braziliensis complex in Cochabamba, Bolivia including the presence of L. braziliensis outlier: Tegumentary leishmaniasis in Cochabamba, Bolivia. Transbound Emerg Dis 2021; 69:2242-2255. [PMID: 34232559 DOI: 10.1111/tbed.14228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/27/2021] [Accepted: 07/05/2021] [Indexed: 01/07/2023]
Abstract
Leishmaniasis is caused by protozoans of the Leishmania genus, which includes more than 20 species capable of infecting humans worldwide. In the Americas, the most widespread specie is L. braziliensis, present in 18 countries including Bolivia. The taxonomic position of the L. braziliensis complex has been a subject of controversy, complicated further by the recent identification of a particular subpopulation named L. braziliensis atypical or outlier. The aim of this study was to carry out a systematic analysis of the L. braziliensis complex in Bolivia and to describe the associated clinical characteristics. Forty-one strains were analyzed by sequencing an amplified 1245 bp fragment of the hsp70 gene, which allowed its identification as: 24 (59%) L. braziliensis, 16 (39%) L. braziliensis outlier, and one (2%) L. peruviana. In a dendrogram constructed, L. braziliensis and L. peruviana are grouped in the same cluster, whilst L. braziliensis outlier appears in a separate branch. Sequence alignment allowed the identification of five non-polymorphic nucleotide positions (288, 297, 642, 993, and 1213) that discriminate L. braziliensis and L. peruviana from L. braziliensis outlier. Moreover, nucleotide positions 51 and 561 enable L. peruviana to be discriminated from the other two taxa. A greater diversity was observed in L. braziliensis outlier than in L. braziliensis-L. peruviana. The 41 strains came from 32 patients with tegumentary leishmaniasis, among which 22 patients (69%) presented cutaneous lesions (11 caused by L. braziliensis and 11 by L. braziliensis outlier) and 10 patients (31%) mucocutaneous lesions (eight caused by L. braziliensis, one by L. braziliensis outlier, and one by L. peruviana). Nine patients (28%) simultaneously provided two isolates, each from a separate lesion, and in each case the same genotype was identified in both. Treatment failure was observed in six patients infected with L. braziliensis and one patient with L. peruviana.
Collapse
Affiliation(s)
- Mary Cruz Torrico
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia.,Fundación CEADES y Medio Ambiente, Cochabamba, Bolivia.,Secció de Parasitología, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Anna Fernández-Arévalo
- Secció de Parasitología, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Biomèdica Sant Pau, Barcelona, Spain
| | - Cristina Ballart
- Secció de Parasitología, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain
| | - Marco Solano
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Ernesto Rojas
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Eva Ariza
- Secció de Parasitología, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Biomèdica Sant Pau, Barcelona, Spain
| | - Silvia Tebar
- Secció de Parasitología, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Daniel Lozano
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia.,Fundación CEADES y Medio Ambiente, Cochabamba, Bolivia
| | - Alba Abras
- Secció de Parasitología, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Biomèdica Sant Pau, Barcelona, Spain.,Laboratori d'Ictiologia Genètica, Departament de Biologia, Universitat de Girona, Girona, Spain
| | - Joaquim Gascón
- Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain
| | - Albert Picado
- Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain.,Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Carmen Muñoz
- Institut de Recerca Biomèdica Sant Pau, Barcelona, Spain.,Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau Barcelona, Barcelona, Spain.,Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Faustino Torrico
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia.,Fundación CEADES y Medio Ambiente, Cochabamba, Bolivia
| | - Montserrat Gállego
- Secció de Parasitología, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain
| |
Collapse
|
7
|
Arteaga-Livias K, Santos-Huerta M, Dámaso-Mata B, Panduro-Correa V, Gonzales-Zamora JA, Rodriguez-Morales AJ. Disseminated Cutaneous Leishmaniasis in a Pediatric Patient from Peru. J Trop Pediatr 2021; 67:fmaa051. [PMID: 32830256 DOI: 10.1093/tropej/fmaa051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Leishmaniasis is a disease predominantly prevalent in the tropics, considered as one of the primary neglected diseases, preferably affects individuals of low socioeconomic status. Although this condition is well described in children, disseminated cutaneous leishmaniasis is a rare form of increasing importance and multiple cases observed in the adult population; however, still little described in children. CASE We present the case of a 12-year-old male, who has multiple ulcerative and nodular lesions distributed throughout the body, of ∼1 year of evolution that did not respond to antimicrobial treatment. After the diagnostic process, positive serological tests were found for leishmaniasis, with improvement in the picture after the use of sodium stibogluconate. DISCUSSION Disseminated cutaneous leishmaniasis is a clinical form that is described with increasing frequency and should be recognized and treated appropriately, mainly in the pediatric population, avoiding complications and sequelae.
Collapse
Affiliation(s)
- Kovy Arteaga-Livias
- Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Perú
- Infectious Diseases, Hospital II EsSalud, Huànuco, Perú
| | - Mijael Santos-Huerta
- Facultad de Medicina, Universidad Nacional Hermilio Valdizán, Huánuco, Perú
- Sociedad Científica de Estudiantes de Medicina (SOCIEM-HCO), Huánuco, Perú
| | - Bernardo Dámaso-Mata
- Infectious Diseases, Hospital II EsSalud, Huànuco, Perú
- Facultad de Medicina, Universidad Nacional Hermilio Valdizán, Huánuco, Perú
| | - Vicky Panduro-Correa
- Facultad de Medicina, Universidad Nacional Hermilio Valdizán, Huánuco, Perú
- Hospital Regional Hermilio Valdizán, Huánuco, Perú
| | | | - Alfonso J Rodriguez-Morales
- Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Perú
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Colombia
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, Sede Pereira, Pereira, Risaralda, Colombia
| |
Collapse
|
8
|
Kato H, Seki C, Kubo M, Gonzales-Cornejo L, Caceres AG. Natural infections of Pintomyia verrucarum and Pintomyia maranonensis by Leishmania (Viannia) peruviana in the Eastern Andes of northern Peru. PLoS Negl Trop Dis 2021; 15:e0009352. [PMID: 33857155 PMCID: PMC8078796 DOI: 10.1371/journal.pntd.0009352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/27/2021] [Accepted: 04/01/2021] [Indexed: 12/03/2022] Open
Abstract
The natural infection of sand flies by Leishmania was investigated in Andean areas located between the Central and Eastern Cordilleras of northern Peru where cutaneous leishmaniasis caused by Leishmania (Viannia) peruviana is endemic. Sand flies were captured at five locations along the Utcubamba River in the Department of Amazonas, and morphologically identified under a microscope. Among 422 female sand flies dissected, the most dominant species was Pintomyia verrucarum (320 flies), followed by Pi. maranonensis (83 flies), Pi. robusta (13 flies), and Lutzomyia castanea (6 flies). Genetic analysis of sand flies from these areas together with those from other areas revealed that individuals of Pi. verrucarum were closely related regardless of morphological variation of their spermathecae. On the other hand, individuals of Pi. maranonensis collected in the study area were distant from those of other areas with genetic distances over the intraspecific level but mostly below the interspecific level, suggesting the unique characteristics of sand flies in this area. The natural infection of sand flies by flagellate parasites was detected mainly in the hindgut of each one of Pi. verrucarum and Pi. maranonensis. Both parasite species were identified as L. (V.) peruviana based on cytochrome b and mannose phosphate isomerase gene analyses. In addition, parasite species obtained from the lesion of a patient with cutaneous leishmaniasis in the study area in this period was identified as L. (V.) peruviana. These results strongly suggest that Pi. verrucarum and Pi. maranonensis are responsible for the transmission of L. (V.) peruviana in these areas. This is the first report of the natural infection of Pi. maranonensis by L. (V.) peruviana. Phlebotomine sand flies are tiny insects of the family Psychodidae in the order Diptera, and female sand flies suck blood for egg production. Approximately 1,020 sand fly species have been recorded in the world, of which about 550 species are in the New World. Only a part of them are associated with medically important infectious diseases such as leishmaniasis, and importantly, each vector species transmits specific species of Leishmania. Since the infecting Leishmania species is the major determinant of the clinical outcome and its endemicity is largely dependent on the prevalence of the vector species, the identification of circulating sand flies and vector species, which determine transmissible parasite species, is important to predict the risk and expansion of the disease in endemic and surrounding areas. However, the vector species involved in disease transmission remains unidentified in most endemic areas because the infection rate in sand fly populations is very low. In the present study, sand flies were investigated in the Department of Amazonas in the Eastern Andes of northern Peru, in which cutaneous leishmaniasis caused by Leishmania (Viannia) peruviana is endemic, to clarify the transmission mechanism of leishmaniasis in these areas. In addition, genetic analyses of circulating sand flies were performed to elucidate the characteristics of sand flies in these areas.
Collapse
Affiliation(s)
- Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
- * E-mail:
| | - Chisato Seki
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Makoto Kubo
- Division of Immunology, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
| | - Lizandro Gonzales-Cornejo
- Laboratorio Referencial de Salud Pública and Laboratorio de Entomología, Dirección Regional de Salud Amazonas, Peru
| | - Abraham G. Caceres
- Sección de Entomología, Instituto de Medicina Tropical “Daniel A. Carrión” y Departamento Académico de Microbiología Médica, Facultad de Medicina Humana, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Laboratorio de Entomología, Instituto Nacional de Salud, Lima, Peru
| |
Collapse
|
9
|
Kato H, Cáceres AG, Gomez EA, Tabbabi A, Mizushima D, Yamamoto DS, Hashiguchi Y. Prevalence of Genetically Complex Leishmania Strains With Hybrid and Mito-Nuclear Discordance. Front Cell Infect Microbiol 2021; 11:625001. [PMID: 33732663 PMCID: PMC7959773 DOI: 10.3389/fcimb.2021.625001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/14/2021] [Indexed: 12/02/2022] Open
Abstract
Approximately 20 Leishmania species are known to cause cutaneous, mucocutaneous, and visceral disorders in humans. Identification of the causative species in infected individuals is important for appropriate treatment and a favorable prognosis because infecting species are known to be the major determinant of clinical manifestations and may affect treatments for leishmaniasis. Although Leishmania species have been conventionally identified by multilocus enzyme electrophoresis, genetic analysis targeting kinetoplast and nuclear DNA (kDNA and nDNA, respectively) is now widely used for this purpose. Recently, we conducted countrywide epidemiological studies of leishmaniasis in Ecuador and Peru to reveal prevalent species using PCR-RFLP targeting nDNA, and identified unknown hybrid parasites in these countries together with species reported previously. Furthermore, comparative analyses of kDNA and nDNA revealed the distribution of parasites with mismatches between these genes, representing the first report of mito-nuclear discordance in protozoa. The prevalence of an unexpectedly high rate (~10%) of genetically complex strains including hybrid strains, in conjunction with the observation of mito-nuclear discordance, suggests that genetic exchange may occur more frequently than previously thought in natural Leishmania populations. Hybrid Leishmania strains resulting from genetic exchanges are suggested to cause more severe clinical symptoms when compared with parental strains, and to have increased transmissibility by vectors of the parental parasite species. Therefore, it is important to clarify how such genetic exchange influences disease progression and transmissibility by sand flies in nature. In addition, our aim was to identify where and how the genetic exchange resulting in the formation of hybrid and mito-nuclear discordance occurs.
Collapse
Affiliation(s)
- Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Abraham G Cáceres
- Sección de Entomología, Instituto de Medicina Tropical "Daniel A. Carrión" y Departamento Académico de Microbiología Médica, Facultad de Medicina Humana, Universidad Nacional Mayor de San Marcos, Lima, Peru.,Laboratorio de Entomología, Instituto Nacional de Salud, Lima, Peru
| | - Eduardo A Gomez
- Departamento de Parasitología y Medicina Tropical, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| | - Ahmed Tabbabi
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Daiki Mizushima
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Yoshihisa Hashiguchi
- Departamento de Parasitología y Medicina Tropical, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| |
Collapse
|
10
|
Abstract
Telomeres are the ends of linear eukaryotic chromosomes facilitating the resolution of the ‘end replication and protection’ problems, associated with linearity. At the nucleotide level, telomeres typically represent stretches of tandemly arranged telomeric repeats, which vary in length and sequence among different groups of organisms. Recently, a composition of the telomere-associated protein complex has been scrutinized in Trypanosoma brucei. In this work, we subjected proteins from that list to a more detailed bioinformatic analysis and delineated a core set of 20 conserved proteins putatively associated with telomeres in trypanosomatids. Out of these, two proteins (Ku70 and Ku80) are conspicuously missing in representatives of the genus Blastocrithidia, yet telomeres in these species do not appear to be affected. In this work, based on the analysis of a large set of trypanosomatids widely different in their phylogenetic position and life strategies, we demonstrated that telomeres of trypanosomatids are diverse in length, even within groups of closely related species. Our analysis showed that the expression of two proteins predicted to be associated with telomeres (those encoding telomerase and telomere-associated hypothetical protein orthologous to Tb927.6.4330) may directly affect and account for the differences in telomere length within the species of the Leishmania mexicana complex.
Collapse
|
11
|
Vásquez-Ocmín PG, Gadea A, Cojean S, Marti G, Pomel S, Van Baelen AC, Ruiz-Vásquez L, Ruiz Mesia W, Figadère B, Ruiz Mesia L, Maciuk A. Metabolomic approach of the antiprotozoal activity of medicinal Piper species used in Peruvian Amazon. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113262. [PMID: 32818574 DOI: 10.1016/j.jep.2020.113262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the Peruvian Amazon as in the tropical countries of South America, the use of medicinal Piper species (cordoncillos) is common practice, particularly against symptoms of infection by protozoal parasites. However, there is few documented information about the practical aspects of their use and few scientific validation. The starting point of this work was a set of interviews of people living in six rural communities from the Peruvian Amazon (Alto Amazonas Province) about their uses of plants from Piper genus: one community of Amerindian native people (Shawi community) and five communities of mestizos. Infections caused by parasitic protozoa take a huge toll on public health in the Amazonian communities, who partly fight it using traditional remedies. Validation of these traditional practices contributes to public health care efficiency and may help to identify new antiprotozoal compounds. AIMS OF STUDY To record and validate the use of medicinal Piper species by rural people of Alto Amazonas Province (Peru) and annotate active compounds using a correlation study and a data mining approach. MATERIALS AND METHODS Rural communities were interviewed about traditional medication against parasite infections with medicinal Piper species. Ethnopharmacological surveys were undertaken in five mestizo villages, namely: Nueva Arica, Shucushuyacu, Parinari, Lagunas and Esperanza, and one Shawi community (Balsapuerto village). All communities belong to the Alto Amazonas Province (Loreto region, Peru). Seventeen Piper species were collected according to their traditional use for the treatment of parasitic diseases, 35 extracts (leaves or leaves and stems) were tested in vitro on P. falciparum (3D7 chloroquine-sensitive strain and W2 chloroquine-resistant strain), Leishmania donovani LV9 strain and Trypanosoma brucei gambiense. Assessments were performed on HUVEC cells and RAW 264.7 macrophages. The annotation of active compounds was realized by metabolomic analysis and molecular networking approach. RESULTS Nine extracts were active (IC50 ≤ 10 μg/mL) on 3D7 P. falciparum and only one on W2 P. falciparum, six on L. donovani (axenic and intramacrophagic amastigotes) and seven on Trypanosoma brucei gambiense. Only one extract was active on all three parasites (P. lineatum). After metabolomic analyses and annotation of compounds active on Leishmania, P. strigosum and P. pseudoarboreum were considered as potential sources of leishmanicidal compounds. CONCLUSIONS This ethnopharmacological study and the associated in vitro bioassays corroborated the relevance of use of Piper species in the Amazonian traditional medicine, especially in Peru. A series of Piper species with few previously available phytochemical data have good antiprotozoal activity and could be a starting point for subsequent promising work. Metabolomic approach appears to be a smart, quick but still limited methodology to identify compounds with high probability of biological activity.
Collapse
Affiliation(s)
- Pedro G Vásquez-Ocmín
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France; UMR152 PHARMADEV, IRD, UPS, Université de Toulouse, Toulouse, France.
| | - Alice Gadea
- Université de Paris, CiTCoM, UMR CNRS 8038, Paris, France
| | - Sandrine Cojean
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France; CNR du Paludisme, AP-HP, Hôpital Bichat - Claude Bernard, F-75018, Paris, France
| | - Guillaume Marti
- Laboratoire de Recherche en Sciences Végétales UMR 5546 UPS/CNRS, Plateforme MetaboHUB - MetaToul - Métabolites Végétaux, Auzeville-Tolosan, France
| | - Sébastien Pomel
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | | | - Liliana Ruiz-Vásquez
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonia (LIPNAA), Universidad Nacional de la Amazonía Peruana (UNAP), AA. HH. "Nuevo San Lorenzo", Pasaje Paujiles S/N, San Juan, Iquitos, Peru
| | - Wilfredo Ruiz Mesia
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonia (LIPNAA), Universidad Nacional de la Amazonía Peruana (UNAP), AA. HH. "Nuevo San Lorenzo", Pasaje Paujiles S/N, San Juan, Iquitos, Peru
| | - Bruno Figadère
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Lastenia Ruiz Mesia
- Laboratorio de Investigación de Productos Naturales Antiparasitarios de la Amazonia (LIPNAA), Universidad Nacional de la Amazonía Peruana (UNAP), AA. HH. "Nuevo San Lorenzo", Pasaje Paujiles S/N, San Juan, Iquitos, Peru
| | - Alexandre Maciuk
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| |
Collapse
|
12
|
Nuclear and kinetoplast DNA analyses reveal genetically complex Leishmania strains with hybrid and mito-nuclear discordance in Peru. PLoS Negl Trop Dis 2020; 14:e0008797. [PMID: 33075058 PMCID: PMC7595639 DOI: 10.1371/journal.pntd.0008797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/29/2020] [Accepted: 09/16/2020] [Indexed: 02/05/2023] Open
Abstract
Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the mannose phosphate isomerase (mpi) gene was applied to 134 skin samples collected from patients with cutaneous leishmaniasis (CL) in Peru for identification of the infecting parasite at the species level, and the results were compared with those of cytochrome b (cyt b) gene sequencing obtained in previous studies. Although most results (121/134) including 4 hybrids of Leishmania (Viannia) braziliensis and L. (V.) peruviana corresponded to those obtained in the previous study, PCR-RFLP analyses revealed the distribution of putative hybrid strains between L. (V.) peruviana and L. (V.) lainsoni in two samples, which has never been reported. Moreover, parasite strains showing discordance between kinetoplast and nuclear genes (kDNA and nDNA), so-called mito-nuclear discordance, were identified in 11 samples. Of these, six strains had the kDNAs of L. (V.) braziliensis or L. (V.) peruviana and nDNAs of L. (V.) guyanensis, and three strains had the kDNAs of L. (V.) shawi and nDNAs of L. (V.) braziliensis. The rest were identified as mito-nuclear discordance strains having kDNAs of L. (V.) braziliensis or L. (V.) peruviana and nDNAs of L. (V.) lainsoni, and kDNAs of L. (V.) lainsoni and nDNAs of L. (V.) braziliensis. The results demonstrate that Leishmania strains in Peru are genetically more complex than previously considered. Protozoan parasites of the genus Leishmania are able to undergo genetic exchange during their growth. The previous description of hybrids in Peru and the recent discovery of unexpected genetically complex strains having characteristics of both hybrid and mito-nuclear discordance in its neighbouring country (Ecuador) with a similar eco-epidemiological situation led us to consider that the genetic structure of Leishmania strains in Peru is more complicated than previously thought. In an effort to revise the data on Leishmania strain dispersion in Peru and to search for evidence of genetic recombination, the present study was conducted. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis targeting the mannose phosphate isomerase (mpi) gene sequence was performed to identify the infecting parasite at the species level in 134 skin samples collected from patients with cutaneous leishmaniasis (CL) in Peru, and the results were compared with those of cytochrome b (cyt b) gene sequencing obtained in previous studies. Most results (121/134) including 4 hybrids between L. (V.) braziliensis and L. (V.) peruviana showed agreement between PCR-RFLP of the mpi gene and cyt b gene sequence analysis; however, 13 of 134 samples revealed the distribution of strains with hybrids and mito-nuclear discordance. The results demonstrate that genetically complex Leishmania strains are present in Peru. These findings indicate that Leishmania strain dispersion in Peru is genetically more complex than previously considered. Further prospective studies including larger samples and the isolation of parasite strains are required to update the available data.
Collapse
|
13
|
Ducharme O, Simon S, Ginouves M, Prévot G, Couppie P, Demar M, Blaizot R. Leishmania naiffi and lainsoni in French Guiana: Clinical features and phylogenetic variability. PLoS Negl Trop Dis 2020; 14:e0008380. [PMID: 32797078 PMCID: PMC7449503 DOI: 10.1371/journal.pntd.0008380] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 08/26/2020] [Accepted: 05/11/2020] [Indexed: 11/19/2022] Open
Abstract
In French Guiana, five species are associated with Cutaneous Leishmaniasis (CL). Though infections with Leishmania guyanensis, L. (V.) braziliensis and L. (L.) amazonensis have been extensively described, there are few available clinical and genetic data on L. (V.) lainsoni and L. (V.) naiffi. We determined the clinical and epidemiological features of all cases of CL due to L. (V.) naiffi and L. (V.) lainsoni diagnosed in French Guiana between 2003 and 2019. Phylogenetic analysis was performed by sequencing a portion of HSP70 and cyt b genes. Five cases of L. naiffi and 25 cases of L. lainsoni were reported. Patients infected by L. (V.) lainsoni were usually infected on gold camps, mostly along the Maroni river (60%), while L. naiffi was observed in French patients infected on the coast (100%). A high number of pediatric cases (n = 5; 20%) was observed for L. (V.) lainsoni. A mild clinical course was observed for all cases of L. (V.) naiffi. HSP70 and cyt b partial nucleotide sequence analysis revealed different geographical clusters within L. (V.) naiffi and L. (V.) lainsoni but no association were found between phylogenetic and clinical features. Our data suggest distinct socio-epidemiological features for these two Leishmania species. Patients seem to get infected with L. (V.) naiffi during leisure activities in anthropized coastal areas, while L. (V.) lainsoni shares common features with L. (V.) guyanensis and braziliensis and seems to be acquired during professional activities in primary forest regions. Phylogenetic analysis has provided information on the intraspecific genetic variability of L. (V.) naiffi and L. (V.) lainsoni and how these genotypes are distributed at the geographic level.
Collapse
Affiliation(s)
- Océane Ducharme
- Service de Dermatologie, Hôpital Andrée Rosemon, Cayenne, French Guiana
| | - Stéphane Simon
- Equipe EA3593, Ecosystèmes Amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, French Guiana
| | - Marine Ginouves
- Equipe EA3593, Ecosystèmes Amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, French Guiana
| | - Ghislaine Prévot
- Equipe EA3593, Ecosystèmes Amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, French Guiana
| | - Pierre Couppie
- Service de Dermatologie, Hôpital Andrée Rosemon, Cayenne, French Guiana
- Equipe EA3593, Ecosystèmes Amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, French Guiana
- Centre National de Référence des Leishmanioses, laboratoire associé, Hôpital Andrée Rosemon, Cayenne, French Guiana
| | - Magalie Demar
- Equipe EA3593, Ecosystèmes Amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, French Guiana
- Centre National de Référence des Leishmanioses, laboratoire associé, Hôpital Andrée Rosemon, Cayenne, French Guiana
- Laboratoire Hospitalo-Universitaire de Parasitologie-Mycologie, Hôpital Andrée Rosemon, Cayenne, French Guiana
| | - Romain Blaizot
- Service de Dermatologie, Hôpital Andrée Rosemon, Cayenne, French Guiana
- Equipe EA3593, Ecosystèmes Amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, French Guiana
- Centre National de Référence des Leishmanioses, laboratoire associé, Hôpital Andrée Rosemon, Cayenne, French Guiana
| |
Collapse
|