1
|
Crump RE, Aliee M, Sutherland SA, Huang CI, Crowley EH, Spencer SEF, Keeling MJ, Shampa C, Mwamba Miaka E, Rock KS. Modelling timelines to elimination of sleeping sickness in the Democratic Republic of Congo, accounting for possible cryptic human and animal transmission. Parasit Vectors 2024; 17:332. [PMID: 39123265 PMCID: PMC11313002 DOI: 10.1186/s13071-024-06404-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/13/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Sleeping sickness (gambiense human African trypanosomiasis, gHAT) is a vector-borne disease targeted for global elimination of transmission (EoT) by 2030. There are, however, unknowns that have the potential to hinder the achievement and measurement of this goal. These include asymptomatic gHAT infections (inclusive of the potential to self-cure or harbour skin-only infections) and whether gHAT infection in animals can contribute to the transmission cycle in humans. METHODS Using modelling, we explore how cryptic (undetected) transmission impacts the monitoring of progress towards and the achievement of the EoT goal. We have developed gHAT models that include either asymptomatic or animal transmission, and compare these to a baseline gHAT model without either of these transmission routes, to explore the potential role of cryptic infections on the EoT goal. Each model was independently calibrated to five different health zones in the Democratic Republic of the Congo (DRC) using available historical human case data for 2000-2020 (obtained from the World Health Organization's HAT Atlas). We applied a novel Bayesian sequential updating approach for the asymptomatic model to enable us to combine statistical information about this type of transmission from each health zone. RESULTS Our results suggest that, when matched to past case data, we estimated similar numbers of new human infections between model variants, although human infections were slightly higher in the models with cryptic infections. We simulated the continuation of screen-confirm-and-treat interventions, and found that forward projections from the animal and asymptomatic transmission models produced lower probabilities of EoT than the baseline model; however, cryptic infections did not prevent EoT from being achieved eventually under this approach. CONCLUSIONS This study is the first to simulate an (as-yet-to-be available) screen-and-treat strategy and found that removing a parasitological confirmation step was predicted to have a more noticeable benefit to transmission reduction under the asymptomatic model compared with the others. Our simulations suggest vector control could greatly impact all transmission routes in all models, although this resource-intensive intervention should be carefully prioritised.
Collapse
Affiliation(s)
- Ronald E Crump
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Mathematics Institute, University of Warwick, Academic Loop Road, Coventry, UK
| | - Maryam Aliee
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Mathematics Institute, University of Warwick, Academic Loop Road, Coventry, UK
| | - Samuel A Sutherland
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Ching-I Huang
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Mathematics Institute, University of Warwick, Academic Loop Road, Coventry, UK
| | - Emily H Crowley
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Mathematics Institute, University of Warwick, Academic Loop Road, Coventry, UK
| | - Simon E F Spencer
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Department of Statistics, University of Warwick, Academic Loop Road, Coventry, UK
| | - Matt J Keeling
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Mathematics Institute, University of Warwick, Academic Loop Road, Coventry, UK
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Chansy Shampa
- Programme National de Lutte Contre la Trypanosomiase Humaine Africaine (PNLTHA)-DRC, Kinshasa, Democratic Republic of Congo
| | - Erick Mwamba Miaka
- Programme National de Lutte Contre la Trypanosomiase Humaine Africaine (PNLTHA)-DRC, Kinshasa, Democratic Republic of Congo
| | - Kat S Rock
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK.
- Mathematics Institute, University of Warwick, Academic Loop Road, Coventry, UK.
| |
Collapse
|
2
|
Barrett MP, Priotto G, Franco JR, Lejon V, Lindner AK. Elimination of human African trypanosomiasis: The long last mile. PLoS Negl Trop Dis 2024; 18:e0012091. [PMID: 38691551 PMCID: PMC11062537 DOI: 10.1371/journal.pntd.0012091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Affiliation(s)
- Michael P. Barrett
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gerardo Priotto
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Jose R. Franco
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Veerle Lejon
- UMR177 Intertryp, Institut de Recherche pour le Développement, CIRAD, University of Montpellier, Montpellier, France
| | - Andreas K. Lindner
- Charité - Universitätsmedizin Berlin, Charité Center for Global Health, Institute of International Health, Berlin, Germany
| |
Collapse
|
3
|
Davis CN, Crump RE, Sutherland SA, Spencer SEF, Corbella A, Chansy S, Lebuki J, Miaka EM, Rock KS. Comparison of stochastic and deterministic models for gambiense sleeping sickness at different spatial scales: A health area analysis in the DRC. PLoS Comput Biol 2024; 20:e1011993. [PMID: 38557869 PMCID: PMC11008881 DOI: 10.1371/journal.pcbi.1011993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/11/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
The intensification of intervention activities against the fatal vector-borne disease gambiense human African trypanosomiasis (gHAT, sleeping sickness) in the last two decades has led to a large decline in the number of annually reported cases. However, while we move closer to achieving the ambitious target of elimination of transmission (EoT) to humans, pockets of infection remain, and it becomes increasingly important to quantitatively assess if different regions are on track for elimination, and where intervention efforts should be focused. We present a previously developed stochastic mathematical model for gHAT in the Democratic Republic of Congo (DRC) and show that this same formulation is able to capture the dynamics of gHAT observed at the health area level (approximately 10,000 people). This analysis was the first time any stochastic gHAT model has been fitted directly to case data and allows us to better quantify the uncertainty in our results. The analysis focuses on utilising a particle filter Markov chain Monte Carlo (MCMC) methodology to fit the model to the data from 16 health areas of Mosango health zone in Kwilu province as a case study. The spatial heterogeneity in cases is reflected in modelling results, where we predict that under the current intervention strategies, the health area of Kinzamba II, which has approximately one third of the health zone's cases, will have the latest expected year for EoT. We find that fitting the analogous deterministic version of the gHAT model using MCMC has substantially faster computation times than fitting the stochastic model using pMCMC, but produces virtually indistinguishable posterior parameterisation. This suggests that expanding health area fitting, to cover more of the DRC, should be done with deterministic fits for efficiency, but with stochastic projections used to capture both the parameter and stochastic variation in case reporting and elimination year estimations.
Collapse
Affiliation(s)
- Christopher N. Davis
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Ronald E. Crump
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Samuel A. Sutherland
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Simon E. F. Spencer
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Department of Statistics, The University of Warwick, Coventry, United Kingdom
| | - Alice Corbella
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Department of Statistics, The University of Warwick, Coventry, United Kingdom
| | - Shampa Chansy
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Junior Lebuki
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Kat S. Rock
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
4
|
Ajayi O, Metibemu DS, Crown O, Adeyinka OS, Kaiser M, Shoji N, Silva M, Rodriguez A, Ogungbe IV. Discovery of an orally active nitrothiophene-based antitrypanosomal agent. Eur J Med Chem 2024; 263:115954. [PMID: 37984297 PMCID: PMC10843616 DOI: 10.1016/j.ejmech.2023.115954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Human African Trypanosomiasis (HAT), caused by Trypanosoma brucei gambiense and rhodesiense, is a parasitic disease endemic to sub-Saharan Africa. Untreated cases of HAT can be severely debilitating and fatal. Although the number of reported cases has decreased progressively over the last decade, the number of effective and easily administered medications is very limited. In this work, we report the antitrypanosomal activity of a series of potent compounds. A subset of molecules in the series are highly selective for trypanosomes and are metabolically stable. One of the compounds, (E)-N-(4-(methylamino)-4-oxobut-2-en-1-yl)-5-nitrothiophene-2-carboxamide (10), selectively inhibited the growth of T. b. brucei, T. b. gambiense and T. b. rhodesiense, have excellent oral bioavailability and was effective in treating acute infection of HAT in mouse models. Based on its excellent bioavailability, compound 10 and its analogs are candidates for lead optimization and pre-clinical investigations.
Collapse
Affiliation(s)
- Oluwatomi Ajayi
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA
| | - Damilohun S Metibemu
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA; Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Olamide Crown
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA; Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Olawale S Adeyinka
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA; Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland; University of Basel, 4001, Basel, Switzerland
| | - Nathalie Shoji
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10010, USA
| | | | - Ana Rodriguez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10010, USA
| | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217, USA; Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|
5
|
Hagos B, Zerihun Z. 'Self-stigma' of people with cutaneous leishmaniasis the unrecognized one: what do we think; what do we know; what can we prove? Int J Equity Health 2023; 22:180. [PMID: 37670383 PMCID: PMC10478415 DOI: 10.1186/s12939-023-01998-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
Cutaneous leishmaniasis (CL) refers to a group of parasitic infections caused by the protozoan parasite Leishmania spp. Lack of knowledge and awareness regarding this disease creates a burden for patients with CL to deal with self-stigma. The aim of this ethnographic study is to provide an analysis of self-stigma experienced by patients with CL through an in-depth understanding of the self-stigma experienced by patients with cutaneous leishmaniasis. A qualitative data analysis approach was used for this study. Semi-structured interviews and participant observation were conducted with 33 individuals with CL, and data were analyzed using a thematic analysis method. Interviews revealed that individuals with CL experience severe self-stigma. The participants spoke of their struggle to live with physical appearances that differed from societal norms. Furthermore, they also highlighted that people with CL are often viewed as unclean and contagious, which further adds to their self-stigma. Fear of social exclusion often forced individuals with CL to isolate themselves, leading to a detrimental impact on their mental health and quality of life. This study provides valuable insights into the experiences of patients with CL who are subjected to self-stigma. The findings suggest that the lack of knowledge and the considerable misconceptions surrounding CL create barriers for patients to deal with the condition and the self-stigma attached to it. To address this issue, there is a need for dedicated public health campaigns and health education that increase awareness about CL and provide appropriate support and care for those affected.
Collapse
Affiliation(s)
- Binega Hagos
- Department of Social work, Mekelle University, Tigrai, Mekelle, Ethiopia.
| | - Zenawi Zerihun
- Department of Psychology, Mekelle University, Tigrai, Mekelle, Ethiopia
| |
Collapse
|
6
|
Kaba D, Koffi M, Kouakou L, N’Gouan EK, Djohan V, Courtin F, N’Djetchi MK, Coulibaly B, Adingra GP, Berté D, Ta BTD, Koné M, Traoré BM, Sutherland SA, Crump RE, Huang CI, Madan J, Bessell PR, Barreaux A, Solano P, Crowley EH, Rock KS, Jamonneau V. Towards the sustainable elimination of gambiense human African trypanosomiasis in Côte d'Ivoire using an integrated approach. PLoS Negl Trop Dis 2023; 17:e0011514. [PMID: 37523361 PMCID: PMC10443840 DOI: 10.1371/journal.pntd.0011514] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/22/2023] [Accepted: 07/07/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Human African trypanosomiasis is a parasitic disease caused by trypanosomes among which Trypanosoma brucei gambiense is responsible for a chronic form (gHAT) in West and Central Africa. Its elimination as a public health problem (EPHP) was targeted for 2020. Côte d'Ivoire was one of the first countries to be validated by WHO in 2020 and this was particularly challenging as the country still reported around a hundred cases a year in the early 2000s. This article describes the strategies implemented including a mathematical model to evaluate the reporting results and infer progress towards sustainable elimination. METHODS The control methods used combined both exhaustive and targeted medical screening strategies including the follow-up of seropositive subjects- considered as potential asymptomatic carriers to diagnose and treat cases- as well as vector control to reduce the risk of transmission in the most at-risk areas. A mechanistic model was used to estimate the number of underlying infections and the probability of elimination of transmission (EoT) was met between 2000-2021 in two endemic and two hypo-endemic health districts. RESULTS Between 2015 and 2019, nine gHAT cases were detected in the two endemic health districts of Bouaflé and Sinfra in which the number of cases/10,000 inhabitants was far below 1, a necessary condition for validating EPHP. Modelling estimated a slow but steady decline in transmission across the health districts, bolstered in the two endemic health districts by the introduction of vector control. The decrease in underlying transmission in all health districts corresponds to a high probability that EoT has already occurred in Côte d'Ivoire. CONCLUSION This success was achieved through a multi-stakeholder and multidisciplinary one health approach where research has played a major role in adapting tools and strategies to this large epidemiological transition to a very low prevalence. This integrated approach will need to continue to reach the verification of EoT in Côte d'Ivoire targeted by 2025.
Collapse
Affiliation(s)
- Dramane Kaba
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Mathurin Koffi
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Lingué Kouakou
- Programme National d’Élimination de la Trypanosomiase Humaine Africaine, Abidjan, Côte d’Ivoire
| | | | - Vincent Djohan
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Fabrice Courtin
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| | - Martial Kassi N’Djetchi
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Bamoro Coulibaly
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Guy Pacôme Adingra
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Djakaridja Berté
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Bi Tra Dieudonné Ta
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Minayégninrin Koné
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Barkissa Mélika Traoré
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Samuel A. Sutherland
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematical Sciences Building, The University of Warwick, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Ronald E. Crump
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematical Sciences Building, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, Zeeman Building, The University of Warwick, Coventry, United Kingdom
| | - Ching-I Huang
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematical Sciences Building, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, Zeeman Building, The University of Warwick, Coventry, United Kingdom
| | - Jason Madan
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematical Sciences Building, The University of Warwick, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | - Antoine Barreaux
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| | - Philippe Solano
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| | - Emily H. Crowley
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematical Sciences Building, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, Zeeman Building, The University of Warwick, Coventry, United Kingdom
| | - Kat S. Rock
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematical Sciences Building, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, Zeeman Building, The University of Warwick, Coventry, United Kingdom
| | - Vincent Jamonneau
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| |
Collapse
|
7
|
Meisner J, Kato A, Lemerani MM, Miaka EM, Ismail AT, Wakefield J, Rowhani-Rahbar A, Pigott D, Mayer JD, Lorton C, Rabinowitz PM. Does a One Health approach to human African trypanosomiasis control hasten elimination? A stochastic compartmental modeling approach. Acta Trop 2023; 240:106804. [PMID: 36682395 PMCID: PMC9992224 DOI: 10.1016/j.actatropica.2022.106804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND . In response to large strides in the control of human African trypanosomiasis (HAT), in the early 2000s the WHO set targets for elimination of both the gambiense (gHAT) and rhodesiense (rHAT) forms as a public health (EPHP) problem by 2020, and elimination of gHAT transmisson (EOT) by 2030. While global EPHP targets have been met, and EOT appears within reach, current control strategies may fail to achieve gHAT EOT in the presence of animal reservoirs, the role of which is currently uncertain. Furthermore, rHAT is not targeted for EOT due to the known importance of animal reservoirs for this form. METHODS . To evaluate the utility of a One Health approach to gHAT and rHAT EOT, we built and parameterized a compartmental stochastic model, using the Institute for Disease Modeling's Compartmental Modeling Software, to six HAT epidemics: the national rHAT epidemics in Uganda and Malawi, the national gHAT epidemics in Uganda and South Sudan, and two separate gHAT epidemics in Democratic Republic of Congo distinguished by dominant vector species. In rHAT foci the reservoir animal sub-model was stratified on four species groups, while in gHAT foci domestic swine were assumed to be the only competent reservoir. The modeled time horizon was 2005-2045, with calibration performed using HAT surveillance data and Optuna. Interventions included insecticide and trypanocide treatment of domestic animal reservoirs at varying coverage levels. RESULTS . Validation against HAT surveillance data indicates favorable performance overall, with the possible exception of DRC. EOT was not observed in any modeled scenarios for rHAT, however insecticide treatment consistently performed better than trypanocide treatment in terms of rHAT control. EOT was not observed for gHAT at 0% coverage of domestic reservoirs with trypanocides or insecticides, but was observed by 2030 in all test scenarios; again, insecticides demonstrated superior performance to trypanocides. CONCLUSIONS EOT likely cannot be achieved for rHAT without control of wildlife reservoirs, however insecticide treatment of domestic animals holds promise for improved control. In the presence of domestic animal reservoirs, gHAT EOT may not be achieved under current control strategies.
Collapse
Affiliation(s)
- Julianne Meisner
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | | | - Marshall M Lemerani
- Trypanosomiasis Control Programme, Malawi Ministry of Health, Lilongwe, Malawi
| | - Erick M Miaka
- Trypanosomiasis Control Programme, Malawi Ministry of Health, Lilongwe, Malawi
| | - Acaga T Ismail
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Kinshasa, DRC
| | - Jonathan Wakefield
- Department of Statistics, University of Washington, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - David Pigott
- Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
| | - Jonathan D Mayer
- Department of Epidemiology, University of Washington, Seattle, WA, USA; Department of Geography, University of Washington, Seattle, WA, USA
| | | | - Peter M Rabinowitz
- Department of Environmental and Occupational Health Sciences, Seattle, WA, USA
| |
Collapse
|
8
|
Huang CI, Crump RE, Brown PE, Spencer SEF, Miaka EM, Shampa C, Keeling MJ, Rock KS. Identifying regions for enhanced control of gambiense sleeping sickness in the Democratic Republic of Congo. Nat Commun 2022; 13:1448. [PMID: 35304479 PMCID: PMC8933483 DOI: 10.1038/s41467-022-29192-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Gambiense human African trypanosomiasis (sleeping sickness, gHAT) is a disease targeted for elimination of transmission by 2030. While annual new cases are at a historical minimum, the likelihood of achieving the target is unknown. We utilised modelling to study the impacts of four strategies using currently available interventions, including active and passive screening and vector control, on disease burden and transmission across 168 endemic health zones in the Democratic Republic of the Congo. Median projected years of elimination of transmission show only 98 health zones are on track despite significant reduction in disease burden under medical-only strategies (64 health zones if > 90% certainty required). Blanket coverage with vector control is impractical, but is predicted to reach the target in all heath zones. Utilising projected disease burden under the uniform medical-only strategy, we provide a priority list of health zones for consideration for supplementary vector control alongside medical interventions.
Collapse
Affiliation(s)
- Ching-I Huang
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, UK.
- Mathematics Institute, The University of Warwick, Coventry, UK.
| | - Ronald E Crump
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, UK
- Mathematics Institute, The University of Warwick, Coventry, UK
- The School of Life Sciences, The University of Warwick, Coventry, UK
| | - Paul E Brown
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, UK
- Mathematics Institute, The University of Warwick, Coventry, UK
| | - Simon E F Spencer
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, UK
- The Department of Statistics, The University of Warwick, Coventry, UK
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Chansy Shampa
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Matt J Keeling
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, UK
- Mathematics Institute, The University of Warwick, Coventry, UK
- The School of Life Sciences, The University of Warwick, Coventry, UK
| | - Kat S Rock
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, UK
- Mathematics Institute, The University of Warwick, Coventry, UK
| |
Collapse
|
9
|
Davis CN, Keeling MJ, Rock KS. Modelling gambiense human African trypanosomiasis infection in villages of the Democratic Republic of Congo using Kolmogorov forward equations. J R Soc Interface 2021; 18:20210419. [PMID: 34610258 PMCID: PMC8492173 DOI: 10.1098/rsif.2021.0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Stochastic methods for modelling disease dynamics enable the direct computation of the probability of elimination of transmission. For the low-prevalence disease of human African trypanosomiasis (gHAT), we develop a new mechanistic model for gHAT infection that determines the full probability distribution of the gHAT infection using Kolmogorov forward equations. The methodology allows the analytical investigation of the probabilities of gHAT elimination in the spatially connected villages of different prevalence health zones of the Democratic Republic of Congo, and captures the uncertainty using exact methods. Our method provides a more realistic approach to scaling the probability of elimination of infection between single villages and much larger regions, and provides results comparable to established models without the requirement of detailed infection structure. The novel flexibility allows the interventions in the model to be implemented specific to each village, and this introduces the framework to consider the possible future strategies of test-and-treat or direct treatment of individuals living in villages where cases have been found, using a new drug.
Collapse
Affiliation(s)
- Christopher N. Davis
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
- Zeeman Institute (SBIDER), University of Warwick, Coventry CV4 7AL, UK
| | - Matt J. Keeling
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
- Zeeman Institute (SBIDER), University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Kat S. Rock
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
- Zeeman Institute (SBIDER), University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
10
|
Aliee M, Keeling MJ, Rock KS. Modelling to explore the potential impact of asymptomatic human infections on transmission and dynamics of African sleeping sickness. PLoS Comput Biol 2021; 17:e1009367. [PMID: 34516544 PMCID: PMC8459990 DOI: 10.1371/journal.pcbi.1009367] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/23/2021] [Accepted: 08/20/2021] [Indexed: 01/20/2023] Open
Abstract
Gambiense human African trypanosomiasis (gHAT, sleeping sickness) is one of several neglected tropical diseases (NTDs) where there is evidence of asymptomatic human infection but there is uncertainty of the role it plays in transmission and maintenance. To explore possible consequences of asymptomatic infections, particularly in the context of elimination of transmission—a goal set to be achieved by 2030—we propose a novel dynamic transmission model to account for the asymptomatic population. This extends an established framework, basing infection progression on a number of experimental and observation gHAT studies. Asymptomatic gHAT infections include those in people with blood-dwelling trypanosomes, but no discernible symptoms, or those with parasites only detectable in skin. Given current protocols, asymptomatic infection with blood parasites may be diagnosed and treated, based on observable parasitaemia, in contrast to many other diseases for which treatment (and/or diagnosis) may be based on symptomatic infection. We construct a model in which exposed people can either progress to either asymptomatic skin-only parasite infection, which would not be diagnosed through active screening algorithms, or blood-parasite infection, which is likely to be diagnosed if tested. We add extra parameters to the baseline model including different self-cure, recovery, transmission and detection rates for skin-only or blood infections. Performing sensitivity analysis suggests all the new parameters introduced in the asymptomatic model can impact the infection dynamics substantially. Among them, the proportion of exposures resulting in initial skin or blood infection appears the most influential parameter. For some plausible parameterisations, an initial fall in infection prevalence due to interventions could subsequently stagnate even under continued screening due to the formation of a new, lower endemic equilibrium. Excluding this scenario, our results still highlight the possibility for asymptomatic infection to slow down progress towards elimination of transmission. Location-specific model fitting will be needed to determine if and where this could pose a threat. Gambiense African sleeping sickness is an infectious disease targeted for elimination of transmission by 2030. Despite this there is still some uncertainty how frequently some infected people who may not have symptoms could “self-cure” without ever having disease and whether some types of infections, such as infections only in the skin, but not the blood, could still contribute to transmission, yet go undiagnosed. To explore how problematic these asymptomatic infections could be in terms of the elimination goal, we use a mathematical model which quantitatively describes changes to infection and transmission over time and includes these different types of infection. We use results of published experimental or field studies as inputs for the model parameters governing asymptomatic infections. We examined the impact of asymptomatic infections when control interventions are put in place. Compared to a baseline model with no asymptomatics, including asymptomatic infection using plausible biological parameters can have a profound impact on transmission and slow progress towards elimination. In some instances it could be possible that even after initial decline in sleeping sickness cases, progress could stagnate without reaching the elimination goal at all, however location-specific modelling will be needed to determine if and where this could pose a threat.
Collapse
Affiliation(s)
- Maryam Aliee
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
- * E-mail:
| | - Matt J. Keeling
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Kat S. Rock
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
11
|
Davis CN, Castaño MS, Aliee M, Patel S, Miaka EM, Keeling MJ, Spencer SEF, Chitnis N, Rock KS. Modelling to Quantify the Likelihood that Local Elimination of Transmission has Occurred Using Routine Gambiense Human African Trypanosomiasis Surveillance Data. Clin Infect Dis 2021; 72:S146-S151. [PMID: 33905480 PMCID: PMC8201550 DOI: 10.1093/cid/ciab190] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background The gambiense human African trypanosomiasis (gHAT) elimination programme in the Democratic Republic of Congo (DRC) routinely collects case data through passive surveillance and active screening, with several regions reporting no cases for several years, despite being endemic in the early 2000s. Methods We use mathematical models fitted to longitudinal data to estimate the probability that selected administrative regions have already achieved elimination of transmission (EOT) of gHAT. We examine the impact of active screening coverage on the certainty of model estimates for transmission and therefore the role of screening in the measurement of EOT. Results In 3 example health zones of Sud-Ubangi province, we find there is a moderate (>40%) probability that EOT has been achieved by 2018, based on 2000–2016 data. Budjala and Mbaya reported zero cases during 2017–18, and this further increases our respective estimates to 99.9% and 99.6% (model S) and to 87.3% and 92.1% (model W). Bominenge had recent case reporting, however, that if zero cases were found in 2021, it would substantially raise our certainty that EOT has been met there (99.0% for model S and 88.5% for model W); this could be higher with 50% coverage screening that year (99.1% for model S and 94.0% for model W). Conclusions We demonstrate how routine surveillance data coupled with mechanistic modeling can estimate the likelihood that EOT has already been achieved. Such quantitative assessment will become increasingly important for measuring local achievement of EOT as 2030 approaches.
Collapse
Affiliation(s)
- Christopher N Davis
- Mathematics Institute, University of Warwick, Coventry, United Kingdom.,Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
| | - María Soledad Castaño
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Maryam Aliee
- Mathematics Institute, University of Warwick, Coventry, United Kingdom.,Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
| | - Swati Patel
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom.,Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Kinshasa, the Democratic Republic of the Congo
| | - Matt J Keeling
- Mathematics Institute, University of Warwick, Coventry, United Kingdom.,Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom.,School of Life Science, University of Warwick, Coventry, United Kingdom
| | - Simon E F Spencer
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom.,Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Nakul Chitnis
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Kat S Rock
- Mathematics Institute, University of Warwick, Coventry, United Kingdom.,Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
| |
Collapse
|
12
|
Davis CN, Rock KS, Antillón M, Miaka EM, Keeling MJ. Cost-effectiveness modelling to optimise active screening strategy for gambiense human African trypanosomiasis in endemic areas of the Democratic Republic of Congo. BMC Med 2021; 19:86. [PMID: 33794881 PMCID: PMC8017623 DOI: 10.1186/s12916-021-01943-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Gambiense human African trypanosomiasis (gHAT) has been brought under control recently with village-based active screening playing a major role in case reduction. In the approach to elimination, we investigate how to optimise active screening in villages in the Democratic Republic of Congo, such that the expenses of screening programmes can be efficiently allocated whilst continuing to avert morbidity and mortality. METHODS We implement a cost-effectiveness analysis using a stochastic gHAT infection model for a range of active screening strategies and, in conjunction with a cost model, we calculate the net monetary benefit (NMB) of each strategy. We focus on the high-endemicity health zone of Kwamouth in the Democratic Republic of Congo. RESULTS High-coverage active screening strategies, occurring approximately annually, attain the highest NMB. For realistic screening at 55% coverage, annual screening is cost-effective at very low willingness-to-pay thresholds (20.4 per disability adjusted life year (DALY) averted), only marginally higher than biennial screening (14.6 per DALY averted). We find that, for strategies stopping after 1, 2 or 3 years of zero case reporting, the expected cost-benefits are very similar. CONCLUSIONS We highlight the current recommended strategy-annual screening with three years of zero case reporting before stopping active screening-is likely cost-effective, in addition to providing valuable information on whether transmission has been interrupted.
Collapse
Affiliation(s)
- Christopher N Davis
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK.
- Zeeman Institute (SBIDER), University of Warwick, Coventry, CV4 7AL, UK.
| | - Kat S Rock
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
- Zeeman Institute (SBIDER), University of Warwick, Coventry, CV4 7AL, UK
| | - Marina Antillón
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel, 4051, Switzerland
- University of Basel, Petersplatz 1, Basel, 4051, Switzerland
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ave Coisement Liberation et Bd Triomphal No 1, Commune de Kasavubu, Kinshasa, Democratic Republic of Congo
| | - Matt J Keeling
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
- Zeeman Institute (SBIDER), University of Warwick, Coventry, CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
13
|
Solano P. Need of entomological criteria to assess zero transmission of gambiense HAT. PLoS Negl Trop Dis 2021; 15:e0009235. [PMID: 33765067 PMCID: PMC7993614 DOI: 10.1371/journal.pntd.0009235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Philippe Solano
- Institut de Recherche pour le Développement, UMR INTERTRYP IRD-CIRAD, Université de Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
14
|
Aliee M, Castaño S, Davis CN, Patel S, Miaka EM, Spencer SEF, Keeling MJ, Chitnis N, Rock KS. Predicting the impact of COVID-19 interruptions on transmission of gambiense human African trypanosomiasis in two health zones of the Democratic Republic of Congo. Trans R Soc Trop Med Hyg 2021; 115:245-252. [PMID: 33611586 PMCID: PMC7928583 DOI: 10.1093/trstmh/trab019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
Many control programmes against neglected tropical diseases have been interrupted due to the coronavirus disease 2019 (COVID-19) pandemic, including those that rely on active case finding. In this study we focus on gambiense human African trypanosomiasis (gHAT), where active screening was suspended in the Democratic Republic of Congo (DRC) due to the pandemic. We use two independent mathematical models to predict the impact of COVID-19 interruptions on transmission and reporting and achievement of the 2030 elimination of transmission (EOT) goal for gHAT in two moderate-risk regions of the DRC. We consider different interruption scenarios, including reduced passive surveillance in fixed health facilities, and whether this suspension lasts until the end of 2020 or 2021. Our models predict an increase in the number of new infections in the interruption period only if both active screening and passive surveillance were suspended, and with a slowed reduction—but no increase—if passive surveillance remains fully functional. In all scenarios, the EOT may be slightly pushed back if no mitigation, such as increased screening coverage, is put in place. However, we emphasise that the biggest challenge will remain in the higher-prevalence regions where EOT is already predicted to be behind schedule without interruptions unless interventions are bolstered.
Collapse
Affiliation(s)
- Maryam Aliee
- Zeeman Institute (SBIDER), University of Warwick, Mathematical Sciences Building, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Soledad Castaño
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, Postfach, CH-4002 Basel, Switzerland
| | - Christopher N Davis
- Zeeman Institute (SBIDER), University of Warwick, Mathematical Sciences Building, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Swati Patel
- Department of Statistics, University of Warwick, Mathematical Sciences Building, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Erick Mwamba Miaka
- Programme National de lutte contre la THA (PNLTHA), Kinshasa 2, Democratic Republic of the Congo
| | - Simon E F Spencer
- Department of Statistics, University of Warwick, Mathematical Sciences Building, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Matt J Keeling
- Zeeman Institute (SBIDER), University of Warwick, Mathematical Sciences Building, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Nakul Chitnis
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, Postfach, CH-4002 Basel, Switzerland
| | - Kat S Rock
- Zeeman Institute (SBIDER), University of Warwick, Mathematical Sciences Building, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
15
|
Crump RE, Huang CI, Knock ES, Spencer SEF, Brown PE, Mwamba Miaka E, Shampa C, Keeling MJ, Rock KS. Quantifying epidemiological drivers of gambiense human African Trypanosomiasis across the Democratic Republic of Congo. PLoS Comput Biol 2021; 17:e1008532. [PMID: 33513134 PMCID: PMC7899378 DOI: 10.1371/journal.pcbi.1008532] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/22/2021] [Accepted: 11/12/2020] [Indexed: 11/18/2022] Open
Abstract
Gambiense human African trypanosomiasis (gHAT) is a virulent disease declining in burden but still endemic in West and Central Africa. Although it is targeted for elimination of transmission by 2030, there remain numerous questions about the drivers of infection and how these vary geographically. In this study we focus on the Democratic Republic of Congo (DRC), which accounted for 84% of the global case burden in 2016, to explore changes in transmission across the country and elucidate factors which may have contributed to the persistence of disease or success of interventions in different regions. We present a Bayesian fitting methodology, applied to 168 endemic health zones (∼100,000 population size), which allows for calibration of a mechanistic gHAT model to case data (from the World Health Organization HAT Atlas) in an adaptive and automated framework. It was found that the model needed to capture improvements in passive detection to match observed trends in the data within former Bandundu and Bas Congo provinces indicating these regions have substantially reduced time to detection. Health zones in these provinces generally had longer burn-in periods during fitting due to additional model parameters. Posterior probability distributions were found for a range of fitted parameters in each health zone; these included the basic reproduction number estimates for pre-1998 (R0) which was inferred to be between 1 and 1.14, in line with previous gHAT estimates, with higher median values typically in health zones with more case reporting in the 2000s. Previously, it was not clear whether a fall in active case finding in the period contributed to the declining case numbers. The modelling here accounts for variable screening and suggests that underlying transmission has also reduced greatly-on average 96% in former Equateur, 93% in former Bas Congo and 89% in former Bandundu-Equateur and Bandundu having had the highest case burdens in 2000. This analysis also sets out a framework to enable future predictions for the country.
Collapse
Affiliation(s)
- Ronald E. Crump
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
- The School of Life Sciences, The University of Warwick, Coventry, United Kingdom
- * E-mail:
| | - Ching-I Huang
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Edward S. Knock
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- The Department of Statistics, The University of Warwick, Coventry, United Kingdom
| | - Simon E. F. Spencer
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- The Department of Statistics, The University of Warwick, Coventry, United Kingdom
| | - Paul E. Brown
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, D.R.C.
| | - Chansy Shampa
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, D.R.C.
| | - Matt J. Keeling
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
- The School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Kat S. Rock
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
16
|
Aliee M, Rock KS, Keeling MJ. Estimating the distribution of time to extinction of infectious diseases in mean-field approaches. J R Soc Interface 2020; 17:20200540. [PMID: 33292098 PMCID: PMC7811583 DOI: 10.1098/rsif.2020.0540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A key challenge for many infectious diseases is to predict the time to extinction under specific interventions. In general, this question requires the use of stochastic models which recognize the inherent individual-based, chance-driven nature of the dynamics; yet stochastic models are inherently computationally expensive, especially when parameter uncertainty also needs to be incorporated. Deterministic models are often used for prediction as they are more tractable; however, their inability to precisely reach zero infections makes forecasting extinction times problematic. Here, we study the extinction problem in deterministic models with the help of an effective ‘birth–death’ description of infection and recovery processes. We present a practical method to estimate the distribution, and therefore robust means and prediction intervals, of extinction times by calculating their different moments within the birth–death framework. We show that these predictions agree very well with the results of stochastic models by analysing the simplified susceptible–infected–susceptible (SIS) dynamics as well as studying an example of more complex and realistic dynamics accounting for the infection and control of African sleeping sickness (Trypanosoma brucei gambiense).
Collapse
Affiliation(s)
- Maryam Aliee
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK.,Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry CV4 7AL, UK
| | - Kat S Rock
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK.,Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry CV4 7AL, UK
| | - Matt J Keeling
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK.,Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
17
|
Zhang H, Collins J, Nyamwihura R, Crown O, Ajayi O, Ogungbe IV. Vinyl sulfone-based inhibitors of trypanosomal cysteine protease rhodesain with improved antitrypanosomal activities. Bioorg Med Chem Lett 2020; 30:127217. [PMID: 32527539 PMCID: PMC7305937 DOI: 10.1016/j.bmcl.2020.127217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 01/19/2023]
Abstract
The number of reported cases of Human African Trypanosmiasis (HAT), caused by kinetoplastid protozoan parasite Trypanosoma brucei, is declining in sub-Saharan Africa. Historically, such declines are generally followed by periods of higher incidence, and one of the lingering public health challenges of HAT is that its drug development pipeline is historically sparse. As a continuation of our work on new antitrypanosomal agents, we found that partially saturated quinoline-based vinyl sulfone compounds selectively inhibit the growth of T. brucei but displayed relatively weak inhibitory activity towards T. brucei's cysteine protease rhodesain. While two nitroaromatic analogues of the quinoline-based vinyl sulfone compounds displayed potent inhibition of T. brucei and rhodesain. The quinoline derivatives and the nitroaromatic-based compounds discovered in this work can serve as leads for ADME-based optimization and pre-clinical investigations.
Collapse
Affiliation(s)
- Huaisheng Zhang
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Jasmine Collins
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Rogers Nyamwihura
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Olamide Crown
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA; Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Oluwatomi Ajayi
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA
| | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA.
| |
Collapse
|
18
|
Castaño MS, Aliee M, Mwamba Miaka E, Keeling MJ, Chitnis N, Rock KS. Screening Strategies for a Sustainable Endpoint for Gambiense Sleeping Sickness. J Infect Dis 2020; 221:S539-S545. [PMID: 31876949 PMCID: PMC7289553 DOI: 10.1093/infdis/jiz588] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Gambiense human African trypanosomiasis ([gHAT] sleeping sickness) is a vector-borne disease that is typically fatal without treatment. Intensified, mainly medical-based, interventions in endemic areas have reduced the occurrence of gHAT to historically low levels. However, persistent regions, primarily in the Democratic Republic of Congo (DRC), remain a challenge to achieving the World Health Organization's goal of global elimination of transmission (EOT). METHODS We used stochastic models of gHAT transmission fitted to DRC case data and explored patterns of regional reporting and extinction. The time to EOT at a health zone scale (~100 000 people) and how an absence of reported cases informs about EOT was quantified. RESULTS Regional epidemiology and level of active screening (AS) both influenced the predicted time to EOT. Different AS cessation criteria had similar expected infection dynamics, and recrudescence of infection was unlikely. However, whether EOT has been achieved when AS ends is critically dependent on the stopping criteria. Two or three consecutive years of no detected cases provided greater confidence of EOT compared with a single year (~66%-75% and ~82%-84% probability of EOT, respectively, compared with 31%-51%). CONCLUSIONS Multiple years of AS without case detections is a valuable measure to assess the likelihood that the EOT target has been met locally.
Collapse
Affiliation(s)
- M Soledad Castaño
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Maryam Aliee
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Kinshasa, the Democratic Republic of the Congo
| | - Matt J Keeling
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
- School of Life Science, University of Warwick, Coventry, United Kingdom
| | - Nakul Chitnis
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Kat S Rock
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
| |
Collapse
|
19
|
Pilotte N, Cook DA, Pryce J, Zulch MF, Minetti C, Reimer LJ, Williams SA. Laboratory evaluation of molecular xenomonitoring using mosquito and tsetse fly excreta/feces to amplify Plasmodium, Brugia, and Trypanosoma DNA. Gates Open Res 2020; 3:1734. [PMID: 32596646 PMCID: PMC7308644 DOI: 10.12688/gatesopenres.13093.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Results from an increasing number of studies suggest that mosquito excreta/feces (E/F) testing has considerable potential to serve as a supplement for traditional molecular xenomonitoring techniques. However, as the catalogue of possible use-cases for this methodology expands, and the list of amenable pathogens grows, a number of fundamental methods-based questions remain. Answering these questions is critical to maximizing the utility of this approach and to facilitating its successful implementation as an effective tool for molecular xenomonitoring. Methods: Utilizing E/F produced by mosquitoes or tsetse flies experimentally exposed to Brugia malayi, Plasmodium falciparum, or Trypanosoma brucei brucei, factors such as limits of detection, throughput of testing, adaptability to use with competent and incompetent vector species, and effects of additional blood feedings post parasite-exposure were evaluated. Two platforms for the detection of pathogen signal (quantitative real-time PCR and digital PCR (dPCR)) were also compared, with strengths and weaknesses examined for each. Results: Experimental results indicated that high throughput testing is possible when evaluating mosquito E/F for the presence of either B. malayi or P. falciparum from both competent and incompetent vector mosquito species. Furthermore, following exposure to pathogen, providing mosquitoes with a second, uninfected bloodmeal did not expand the temporal window for E/F collection during which pathogen detection was possible. However, this collection window did appear longer in E/F collected from tsetse flies following exposure to T. b. brucei. Testing also suggested that dPCR may facilitate detection through its increased sensitivity. Unfortunately, logistical obstacles will likely make the large-scale use of dPCR impractical for this purpose. Conclusions: By examining many E/F testing variables, expansion of this technology to a field-ready platform has become increasingly feasible. However, translation of this methodology from the lab to the field will first require field-based pilot studies aimed at assessing the efficacy of E/F screening.
Collapse
Affiliation(s)
- Nils Pilotte
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Darren A.N. Cook
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Joseph Pryce
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Michael F. Zulch
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
| | - Corrado Minetti
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Lisa J. Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Steven A. Williams
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
20
|
Insights from quantitative and mathematical modelling on the proposed 2030 goal for gambiense human African trypanosomiasis (gHAT). Gates Open Res 2020; 3:1553. [PMID: 32411945 PMCID: PMC7193711 DOI: 10.12688/gatesopenres.13070.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2020] [Indexed: 11/20/2022] Open
Abstract
Gambiense human African trypanosomiasis (gHAT) is a parasitic, vector-borne neglected tropical disease that has historically affected populations across West and Central Africa and can result in death if untreated. Following from the success of recent intervention programmes against gHAT, the World Health Organization (WHO) has defined a 2030 goal of global elimination of transmission (EOT). The key proposed indicator to measure achievement of the goal is zero reported cases. Results of previous mathematical modelling and quantitative analyses are brought together to explore both the implications of the proposed indicator and the feasibility of achieving the WHO goal. Whilst the indicator of zero case reporting is clear and measurable, it is an imperfect proxy for EOT and could arise either before or after EOT is achieved. Lagging reporting of infection and imperfect diagnostic specificity could result in case reporting after EOT, whereas the converse could be true due to underreporting, lack of coverage, and cryptic human and animal reservoirs. At the village-scale, the WHO recommendation of continuing active screening until there are three years of zero cases yields a high probability of local EOT, but extrapolating this result to larger spatial scales is complex. Predictive modelling of gHAT has consistently found that EOT by 2030 is unlikely across key endemic regions if current medical-only strategies are not bolstered by improved coverage, reduced time to detection and/or complementary vector control. Unfortunately, projected costs for strategies expected to meet EOT are high in the short term and strategies that are cost-effective in reducing burden are unlikely to result in EOT by 2030. Future modelling work should aim to provide predictions while taking into account uncertainties in stochastic dynamics and infection reservoirs, as well as assessment of multiple spatial scales, reactive strategies, and measurable proxies of EOT.
Collapse
|
21
|
Pilotte N, Cook DA, Pryce J, Zulch MF, Minetti C, Reimer LJ, Williams SA. Laboratory evaluation of molecular xenomonitoring using mosquito excreta/feces to amplify Plasmodium, Brugia, and Trypanosoma DNA. Gates Open Res 2019; 3:1734. [PMID: 32596646 PMCID: PMC7308644 DOI: 10.12688/gatesopenres.13093.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 03/30/2024] Open
Abstract
Background: Results from an increasing number of studies suggest that mosquito excreta/feces (E/F) testing has considerable potential to serve as a supplement for traditional molecular xenomonitoring techniques. However, as the catalogue of possible use-cases for this methodology expands, and the list of amenable pathogens grows, a number of fundamental methods-based questions remain. Answering these questions is critical to maximizing the utility of this approach and to facilitating its successful implementation as an effective tool for molecular xenomonitoring. Methods: Utilizing E/F produced by mosquitoes or tsetse flies experimentally exposed to Brugia malayi, Plasmodium falciparum, or Trypanosoma brucei brucei, factors such as limits of detection, throughput of testing, adaptability to use with competent- and incompetent-vector species, and effects of additional blood feedings post parasite-exposure were evaluated. Two platforms for the detection of pathogen signal (quantitative real-time PCR and digital PCR [dPCR]) were also compared, with strengths and weaknesses examined for each. Results: Experimental results indicated that high throughput testing is possible when evaluating mosquito E/F for the presence of either B. malayi or P. falciparum from both competent- and incompetent-vector mosquito species. Furthermore, following exposure to pathogen, providing mosquitoes with a second, uninfected bloodmeal did not expand the temporal window for E/F collection during which pathogen detection was possible. However, this collection window did appear longer in E/F collected from tsetse flies following exposure to T. b. brucei. Testing also suggested that dPCR may facilitate detection through its increased sensitivity. Unfortunately, logistical obstacles will likely make the large-scale use of dPCR impractical for this purpose. Conclusions: By examining many E/F testing variables, expansion of this technology to a field-ready platform has become increasingly feasible. However, translation of this methodology from the lab to the field will first require the completion of field-based pilot studies aimed at assessing the efficacy of E/F screening.
Collapse
Affiliation(s)
- Nils Pilotte
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Darren A.N. Cook
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Joseph Pryce
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Michael F. Zulch
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
| | - Corrado Minetti
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Lisa J. Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Steven A. Williams
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
22
|
Ndeffo-Mbah ML, Pandey A, Atkins KE, Aksoy S, Galvani AP. The impact of vector migration on the effectiveness of strategies to control gambiense human African trypanosomiasis. PLoS Negl Trop Dis 2019; 13:e0007903. [PMID: 31805051 PMCID: PMC6894748 DOI: 10.1371/journal.pntd.0007903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background Several modeling studies have been undertaken to assess the feasibility of the WHO goal of eliminating gambiense human African trypanosomiasis (g-HAT) by 2030. However, these studies have generally overlooked the effect of vector migration on disease transmission and control. Here, we evaluated the impact of vector migration on the feasibility of interrupting transmission in different g-HAT foci. Methods We developed a g-HAT transmission model of a single tsetse population cluster that accounts for migration of tsetse fly into this population. We used a model calibration approach to constrain g-HAT incidence to ranges expected for high, moderate and low transmission settings, respectively. We used the model to evaluate the effectiveness of current intervention measures, including medical intervention through enhanced screening and treatment, and vector control, for interrupting g-HAT transmission in disease foci under each transmission setting. Results We showed that, in low transmission settings, under enhanced medical intervention alone, at least 70% treatment coverage is needed to interrupt g-HAT transmission within 10 years. In moderate transmission settings, a combination of medical intervention and a vector control measure with a daily tsetse mortality greater than 0.03 is required to achieve interruption of disease transmission within 10 years. In high transmission settings, interruption of disease transmission within 10 years requires a combination of at least 70% medical intervention coverage and at least 0.05 tsetse daily mortality rate from vector control. However, the probability of achieving elimination in high transmission settings decreases with an increased tsetse migration rate. Conclusion Our results suggest that the WHO 2030 goal of G-HAT elimination is, at least in theory, achievable. But the presence of tsetse migration may reduce the probability of interrupting g-HAT transmission in moderate and high transmission foci. Therefore, optimal vector control programs should incorporate monitoring and controlling of vector density in buffer areas around foci of g-HAT control efforts. Gambian human African trypanosomiasis (g-HAT), also known as sleeping sickness, is a vector-borne parasitic disease transmitted by tsetse flies. If untreated, g-HAT infection will usually result in death. Recently, the World Health Organization (WHO) has targeted g-HAT for elimination through achieving interruption of transmission by 2030. To help inform elimination efforts, mathematical models have been used to evaluate the feasibility of the WHO goals in different g-HAT transmission foci. However, these mathematical models have generally ignored the role that tsetse migration may have in the spread and reemergence of g-HAT. Using a mathematical model, we evaluate the impact of tsetse migration on the effectiveness of current intervention measures for achieving interruption of g-HAT transmission in different transmission foci. We consider different interventions such as enhanced screening and treatment and vector control. We show that vector control has a great potential for reducing transmission. Still, the presence and intensity of tsetse migration can undermine its effectiveness for interrupting disease transmission, especially in high transmission foci. Our results indicate the need of accounting for tsetse surveillance and migration data in designing vector control efforts for g-HAT elimination.
Collapse
Affiliation(s)
- Martial L. Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Department of Epidemiology and Biostatistics, Texas A&M School of Public Health, College Station, TX, United States of America
- * E-mail:
| | - Abhishek Pandey
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, United States of America
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Katherine E. Atkins
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for Global Health, The Usher Institute for Population Health Sciences and Informatics, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Serap Aksoy
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Alison P. Galvani
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, United States of America
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| |
Collapse
|