1
|
Chudy SFJ, Phanzu DM, Kolk AHJ, Sopoh GE, Barogui YT, Tzfadia O, Eddyani M, Fissette K, de Jong BC, Brinkman P. Volatile organic compound detection of Buruli ulcer disease: Headspace analysis of Mycobacterium ulcerans and used gauzes of Buruli-compatible ulcers. PLoS Negl Trop Dis 2024; 18:e0012514. [PMID: 39312571 PMCID: PMC11449299 DOI: 10.1371/journal.pntd.0012514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/03/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Diagnosing Buruli ulcer (BU) is complicated by limited access to the sensitive IS2404 qPCR. Experienced clinicians report a distinct odour of Buruli ulcers. We explored the potential of headspace analysis by thermal desorption-gas chromatography-mass spectrometry to detect volatile organic compounds (VOCs) from Mycobacterium ulcerans both in vitro and clinically. This study was conducted in two phases: a discovery and validation phase. During the discovery phase, VOCs that enable identification of M. ulcerans cultures were determined. During the validation phase, these VOCs were evaluated in clinical samples for which we used gauzes from patients with skin ulcerations in the Democratic Republic of Congo. Seven M. ulcerans headspace samples were compared with four from sterile growth medium and laboratory environmental air. The univariate analysis resulted in the selection of 24 retained VOC fragments and a perfect differentiation between cultures and controls. Sixteen of 24 fragments were identified, resulting in eleven unique compounds, mainly alkanes. Methylcyclohexane was the best performing compound. Based on these 24 fragments, headspace samples originating from gauzes of 50 open skin lesions (12 qPCR positive and 38 negative) were analysed and an AUC of 0.740 (95%-CI 0.583-0.897) was obtained. As this is an experimental study, future research has to confirm whether the identified compounds can serve as novel biomarkers.
Collapse
Affiliation(s)
- Stan F. J. Chudy
- Department of Respiratory Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | - Delphin M. Phanzu
- Institut Medical Evangélique de Kimpese (IME), Kimpese, Democratic Republic of Congo
- Centre de Recherche en Santé de Kimpese (CRSK), Kimpese, Democratic Republic of Congo
| | - Arend H. J. Kolk
- Department of Respiratory Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | - Ghislain E. Sopoh
- Centre De Dépistage et de Traitement de l’Ulcère de Buruli (CDTUB), Allada, Benin
| | | | - Oren Tzfadia
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Krista Fissette
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bouke C. de Jong
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Paul Brinkman
- Department of Respiratory Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Ahortor EK, Gwira TM, Mahazu S, Erber AC, Ablordey A. Evaluation of an electricity-independent method for IS2404 Loop-mediated isothermal amplification (LAMP) diagnosis of Buruli ulcer in resource-limited settings. PLoS Negl Trop Dis 2024; 18:e0012338. [PMID: 39141676 PMCID: PMC11346967 DOI: 10.1371/journal.pntd.0012338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/26/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024] Open
Abstract
INTRODUCTION Buruli ulcer (BU) caused by Mycobacterium ulcerans (MU) is a devastating necrotic skin disease. PCR, recommended for confirmation of BU by WHO, requires an adequately equipped laboratory, therefore often delaying timely diagnosis and treatment of BU patients in remote settings. Loop-mediated isothermal amplification (LAMP) is a PCR-based protocol for isothermal amplification of DNA that has been suggested for diagnosis of BU in low-resource settings. STUDY AIMS AND METHODS This is an exploratory diagnostic test evaluation study, with an embedded qualitative sub-study. Its aims are two-fold: First, to evaluate a simple rapid syringe-based DNA extraction method (SM) in comparison with a more elaborate conventional DNA extraction method (CM), followed by a LAMP assay targeting IS2404 for the detection of MU, either using a commercially available pocket warmer (pw) or a heat block (hb) for incubation. Second, to complement this by exploring the diagnostic workflow for BU at a community-based health centre in an endemic area in rural Ghana as an example of a potential target setting, using interviews with researchers and health care workers (HCWs). Diagnostic test evaluation results are discussed in relation to the requirements of a target product profile (TPP) for BU diagnosis and the target setting. RESULTS A protocol using SM for DNA extraction followed by IS2404 PCR (IS2404 PCRSM) was able to identify MU DNA in 73 out of 83 BU clinical specimens submitted for diagnosis. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of IS2404 PCRSM were 90.12%, 100%, 100% and 65.21% respectively, as compared to the reference standard IS2404 PCR in combination with a standard extraction protocol for mycobacterial DNA. Evaluation of the LAMP assay on 64 SM DNA extracts showed a sensitivity, specificity, PPV and NPV of 83.6%, 100%, 100% and 50%, respectively, using either pocket warmer (pwLAMPSM) or heat block (hbLAMPSM) for incubation of the reaction, as compared to the same reference standard. The limit of detection of pwLAMPSM was found to be 30 copies of the IS2404 target. Interview findings explored barriers to BU diagnosis and treatment, including perceptions of the disease, costs, and availability of transport. Participants confirmed that a diagnosis at the PoC, in addition to screening based on clinical criteria, would be advantageous in order to prevent delays and loss to follow-up. DISCUSSION AND CONCLUSIONS The high diagnostic and analytic accuracy of the pwLAMP, evaluated by us in combination with a syringe-based DNA extraction method, supports its potential use for the rapid detection of MU in suspected BU samples at the community or primary health care level without reliable electricity supply. Further optimization needs include a lysis buffer, evaluation directly at the PoC and/or other sites, assessing staff training requirements and quality control.
Collapse
Affiliation(s)
- Evans K. Ahortor
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, Wales, United Kingdom
| | - Theresa Manful Gwira
- Department of Biochemistry, Cell and Molecular Biology & West African Centre for Cell Biology of Infectious Pathogens, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Samiratu Mahazu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Astrid C. Erber
- Department of Epidemiology, Centre for Public Health, Medical University of Vienna, Vienna, Austria
- Infectious Diseases Data Observatory, Oxford, United Kingdom
| | - Anthony Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| |
Collapse
|
3
|
Foulon M, Robbe-Saule M, Manry J, Esnault L, Boucaud Y, Alcaïs A, Malloci M, Fanton d’Andon M, Beauvais T, Labarriere N, Jeannin P, Abel L, Saint-André JP, Croué A, Delneste Y, Boneca IG, Marsollier L, Marion E. Mycolactone toxin induces an inflammatory response by targeting the IL-1β pathway: Mechanistic insight into Buruli ulcer pathophysiology. PLoS Pathog 2020; 16:e1009107. [PMID: 33338061 PMCID: PMC7748131 DOI: 10.1371/journal.ppat.1009107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Mycolactone, a lipid-like toxin, is the major virulence factor of Mycobacterium ulcerans, the etiological agent of Buruli ulcer. Its involvement in lesion development has been widely described in early stages of the disease, through its cytotoxic and immunosuppressive activities, but less is known about later stages. Here, we revisit the role of mycolactone in disease outcome and provide the first demonstration of the pro-inflammatory potential of this toxin. We found that the mycolactone-containing mycobacterial extracellular vesicles produced by M. ulcerans induced the production of IL-1β, a potent pro-inflammatory cytokine, in a TLR2-dependent manner, targeting NLRP3/1 inflammasomes. We show our data to be relevant in a physiological context. The in vivo injection of these mycolactone-containing vesicles induced a strong local inflammatory response and tissue damage, which were prevented by corticosteroids. Finally, several soluble pro-inflammatory factors, including IL-1β, were detected in infected tissues from mice and Buruli ulcer patients. Our results revisit Buruli ulcer pathophysiology by providing new insight, thus paving the way for the development of new therapeutic strategies taking the pro-inflammatory potential of mycolactone into account. Buruli ulcer is a neglected tropical disease occurring mainly in poor rural areas of West and Central Africa. This cutaneous disease is caused by Mycobacterium ulcerans, a bacterium belonging to the same family as M. tuberculosis and M. leprae. The skin lesions are caused by a cytotoxic toxin named mycolactone, also known to act as an immunosuppressor and an anti-inflammatory molecule. However, Buruli ulcer lesions are characterized by a chronic cutaneous inflammation with a recruitment of cellular immune cells trying to counteract M. ulcerans. Our work allows for a reconcilitation of previous observations. We found by in vitro experiment on macrophages that the mycolactone-containing mycobacterial extracellular vesicles produced by M. ulcerans induced the production of IL-1β, a potent pro-inflammatory molecule, while other pro-inflammatory soluble factors are inhibited. We also detected IL-1β protein in a mouse model of M. ulcerans infection as well as in biopsies of Buruli ulcer patients. The pro-inflammatory potential of mycolacone has to be taken into account to understand the full pathophysiology of Buruli ulcer.
Collapse
Affiliation(s)
- M. Foulon
- Université d’Angers, INSERM, CRCINA, Angers, France
| | | | - J. Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France
- Université de Paris, Imagine Institute, France
| | - L. Esnault
- Université d’Angers, INSERM, CRCINA, Angers, France
| | - Y. Boucaud
- Université d’Angers, INSERM, CRCINA, Angers, France
| | - A. Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France
- Université de Paris, Imagine Institute, France
| | - M. Malloci
- Plateforme MicroPiCell, SFR santé François Bonamy, Nantes, France
| | - M. Fanton d’Andon
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; CNRS, INSERM, Équipe Avenir, Paris, France
| | - T. Beauvais
- Université de Nantes, INSERM, CRCINA, Nantes
| | | | - P. Jeannin
- Université d’Angers, INSERM, CRCINA, Angers, France
- Laboratoire d’Immunologie et Allergologie, CHU Angers, Angers, France
| | - L. Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Paris, France
- Université de Paris, Imagine Institute, France
| | - J. P. Saint-André
- Département de Pathologie Cellulaire et Tissulaire, CHU Angers, Angers, France
| | - A. Croué
- Département de Pathologie Cellulaire et Tissulaire, CHU Angers, Angers, France
| | - Y. Delneste
- Université d’Angers, INSERM, CRCINA, Angers, France
- Laboratoire d’Immunologie et Allergologie, CHU Angers, Angers, France
| | - I. G. Boneca
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; CNRS, INSERM, Équipe Avenir, Paris, France
| | | | - E. Marion
- Université d’Angers, INSERM, CRCINA, Angers, France
- * E-mail:
| |
Collapse
|