1
|
Correa-Morales F, González-Acosta C, Ibarra-Ojeda D, Moreno-García M. West Nile virus in Mexico: Why vectors matter for explaining the current absence of epidemics. Acta Trop 2024; 249:107065. [PMID: 37926384 DOI: 10.1016/j.actatropica.2023.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
Since 2002, West Nile Virus (WNV) has been reported in 18 states in Mexico, either by PCR or serological testing. However, it is believed that the virus is present in more states. Only four states (out of 32) have reported confirmed human cases, and one state has serological evidence. In the country, WNV is present in mainly horses and birds, but its presence extends to crocodiles, felines, canines, swines, donkeys, caprines, antilopes, cattle, bats, and camelids. Positive mosquito species include Aedes and Culex spp. Different hypotheses have been proposed to explain the absence of WNV epidemics in Latin America. Since some regions of Mexico and the United States share ecological and climatic conditions, these hypotheses may not be sufficient to account for the absence of WNV outbreaks or epidemics. This paper discusses the proposed ideas and attempts to contextualize them for Mexico, particularly for the U.S.-Mexico border, where WNV infections have been reported in humans, horses, and mosquitoes. We propose that integration of urban ecology and entomology knowledge is needed to better understand the absence of WN cases in Mexico.
Collapse
Affiliation(s)
- Fabián Correa-Morales
- Centro Nacional de Programas Preventivos y Control de Enfermedades. Benjamín Franklin 132, Escandón, Ciudad de México C.P. 11800, Mexico
| | - Cassandra González-Acosta
- Centro Nacional de Programas Preventivos y Control de Enfermedades. Benjamín Franklin 132, Escandón, Ciudad de México C.P. 11800, Mexico
| | - David Ibarra-Ojeda
- Instituto de Servicios de Salud Pública del Estado de Baja California. Palacio Federal, 3er piso. Av. De los Pioneros #1005. Centro Cívico, Mexicali, Baja California 21000, Mexico
| | - Miguel Moreno-García
- Centro Nacional de Programas Preventivos y Control de Enfermedades. Benjamín Franklin 132, Escandón, Ciudad de México C.P. 11800, Mexico.
| |
Collapse
|
2
|
Gutierrez B, da Silva Candido D, Bajaj S, Rodriguez Maldonado AP, Ayala FG, Rodriguez MDLLT, Rodriguez AA, Arámbula CW, González ER, Martínez IL, Díaz-Quiñónez JA, Pichardo MV, Hill SC, Thézé J, Faria NR, Pybus OG, Preciado-Llanes L, Reyes-Sandoval A, Kraemer MUG, Escalera-Zamudio M. Convergent trends and spatiotemporal patterns of Aedes-borne arboviruses in Mexico and Central America. PLoS Negl Trop Dis 2023; 17:e0011169. [PMID: 37672514 PMCID: PMC10506721 DOI: 10.1371/journal.pntd.0011169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/18/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Aedes-borne arboviruses cause both seasonal epidemics and emerging outbreaks with a significant impact on global health. These viruses share mosquito vector species, often infecting the same host population within overlapping geographic regions. Thus, comparative analyses of the virus evolutionary and epidemiological dynamics across spatial and temporal scales could reveal convergent trends. METHODOLOGY/PRINCIPAL FINDINGS Focusing on Mexico as a case study, we generated novel chikungunya and dengue (CHIKV, DENV-1 and DENV-2) virus genomes from an epidemiological surveillance-derived historical sample collection, and analysed them together with longitudinally-collected genome and epidemiological data from the Americas. Aedes-borne arboviruses endemically circulating within the country were found to be introduced multiple times from lineages predominantly sampled from the Caribbean and Central America. For CHIKV, at least thirteen introductions were inferred over a year, with six of these leading to persistent transmission chains. For both DENV-1 and DENV-2, at least seven introductions were inferred over a decade. CONCLUSIONS/SIGNIFICANCE Our results suggest that CHIKV, DENV-1 and DENV-2 in Mexico share evolutionary and epidemiological trajectories. The southwest region of the country was determined to be the most likely location for viral introductions from abroad, with a subsequent spread into the Pacific coast towards the north of Mexico. Virus diffusion patterns observed across the country are likely driven by multiple factors, including mobility linked to human migration from Central towards North America. Considering Mexico's geographic positioning displaying a high human mobility across borders, our results prompt the need to better understand the role of anthropogenic factors in the transmission dynamics of Aedes-borne arboviruses, particularly linked to land-based human migration.
Collapse
Affiliation(s)
- Bernardo Gutierrez
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Darlan da Silva Candido
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sumali Bajaj
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | | | - Fabiola Garces Ayala
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE) "Dr. Manuel Martínez Báez", Secretaría de Salud, Mexico City, México
| | - María de la Luz Torre Rodriguez
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE) "Dr. Manuel Martínez Báez", Secretaría de Salud, Mexico City, México
| | - Adnan Araiza Rodriguez
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE) "Dr. Manuel Martínez Báez", Secretaría de Salud, Mexico City, México
| | - Claudia Wong Arámbula
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE) "Dr. Manuel Martínez Báez", Secretaría de Salud, Mexico City, México
| | - Ernesto Ramírez González
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE) "Dr. Manuel Martínez Báez", Secretaría de Salud, Mexico City, México
| | - Irma López Martínez
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE) "Dr. Manuel Martínez Báez", Secretaría de Salud, Mexico City, México
| | - José Alberto Díaz-Quiñónez
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE) "Dr. Manuel Martínez Báez", Secretaría de Salud, Mexico City, México
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca de Soto, Mexico
| | - Mauricio Vázquez Pichardo
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE) "Dr. Manuel Martínez Báez", Secretaría de Salud, Mexico City, México
| | - Sarah C. Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Julien Thézé
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint-Genès-Champanelle, France
| | - Nuno R. Faria
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
- The Abdul Latif Jameel Institute for Disease and Emergency Analytics, School of Public Health, Imperial College London, London, United Kingdom
| | - Oliver G. Pybus
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Lorena Preciado-Llanes
- Nuffield Department of Medicine/Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Arturo Reyes-Sandoval
- Nuffield Department of Medicine/Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro s/n., Unidad Adolfo López Mateos, Mexico City, Mexico
| | | | | |
Collapse
|
3
|
Mac PA, Airiohuodion PE, Zubair S, Tadele M, Aighobahi JO, Anyaike C, Kroeger A, Panning M. Antibody seropositivity and endemicity of chikungunya and Zika viruses in Nigeria. ANIMAL DISEASES 2023; 3:7. [PMID: 36968287 PMCID: PMC10034229 DOI: 10.1186/s44149-023-00070-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/16/2023] [Indexed: 03/25/2023] Open
Abstract
Mosquito-borne infections are of global health concern because of their rapid spread and upsurge, which creates a risk for coinfections. chikungunya virus (CHIKV), an arbovirus disease transmitted by Aedes aegypti or A. albopictus, and malaria, a parasitic disease transmitted by Anopheles gambiae, are prevalent in Nigeria and neighbouring countries, but their burden and possible coinfections are poorly understood. In this study, we investigated the antibody seropositivity and endemicity of chikungunya and Zika viruses (ZIKV) in three regions of Nigeria. A cross-sectional sero-survey was conducted on 871 participants. Samples were collected from outpatients by simple random sampling. Analyses of the samples were performed using recomLine Tropical Fever for the presence of antibody serological marker IgG immunoblot with CHIKV VLP (virus like particle), ZIKV NS1 and ZIKV Equad according to manufacturers’ instructions and malaria RDT for malaria parasite. There was a significantly higher antibody seropositivity against CHIKV in the central region than in the northern and southern regions (69.5%, 291/419), while ZIKV-seropositivity (22.4%, 34/152) and CHIKV-ZIKV co-circulating antibody seropositivity (17.8%, 27/152) were notably higher in the southern region than in the central and northern regions. This investigation revealed an unexpectedly high antibody seropositivity and concealed endemicity of CHIKV and ZIKV in three Nigerian regions. The seropositivity of detectable antibodies differed among the three geographical locations.
Collapse
Affiliation(s)
- Peter Asaga Mac
- Institute of Virology, University Medical Freiburg, Hermann Herder Str, 11, 79104 Freiburg, Germany
| | - Philomena E. Airiohuodion
- grid.3575.40000000121633745World Health Organization, Special Programme for Research and Training in Tropical Diseases (TDR), Avenue Appia 20, 1211 Geneva 27, Switzerland
| | - Shaistha Zubair
- grid.3575.40000000121633745World Health Organization, WHO/NTD Unit, Avenue Appia 20, 1211 Geneva 27, Switzerland
- grid.449054.80000 0004 0426 5233Maldives National University, Buruzu, Magu, Male, Maldives
| | - Markos Tadele
- grid.463251.70000 0001 2195 6683Ethiopian Institute Of Agricultural Research/EIAR, Addis Ababa, Ethiopia
| | - Jude, O. Aighobahi
- Icon Clinical Research, Heinrich-Hertz Starsse 26, 63225 Langen Hessen, Berlin, Germany
| | - Chukwuma Anyaike
- grid.434433.70000 0004 1764 1074Federal Ministry of Health, National Tuberculosis and Leprosy ControlProgramme, Abuja, Nigeria
| | - Axel Kroeger
- grid.5963.9Centre for Medicine and Society, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, University Medical Freiburg, Hermann Herder Str, 11, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Association of Midgut Bacteria and Their Metabolic Pathways with Zika Infection and Insecticide Resistance in Colombian Aedes aegypti Populations. Viruses 2022; 14:v14102197. [PMID: 36298752 PMCID: PMC9609292 DOI: 10.3390/v14102197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Aedes aegypti is the vector of several arboviruses such as dengue, Zika, and chikungunya. In 2015-16, Zika virus (ZIKV) had an outbreak in South America associated with prenatal microcephaly and Guillain-Barré syndrome. This mosquito's viral transmission is influenced by microbiota abundance and diversity and its interactions with the vector. The conditions of cocirculation of these three arboviruses, failure in vector control due to insecticide resistance, limitations in dengue management during the COVID-19 pandemic, and lack of effective treatment or vaccines make it necessary to identify changes in mosquito midgut bacterial composition and predict its functions through the infection. Its study is fundamental because it generates knowledge for surveillance of transmission and the risk of outbreaks of these diseases at the local level. METHODS Midgut bacterial compositions of females of Colombian Ae. aegypti populations were analyzed using DADA2 Pipeline, and their functions were predicted with PICRUSt2 analysis. These analyses were done under the condition of natural ZIKV infection and resistance to lambda-cyhalothrin, alone and in combination. One-step RT-PCR determined the percentage of ZIKV-infected females. We also measured the susceptibility to the pyrethroid lambda-cyhalothrin and evaluated the presence of the V1016I mutation in the sodium channel gene. RESULTS We found high ZIKV infection rates in Ae. aegypti females from Colombian rural municipalities with deficient water supply, such as Honda with 63.6%. In the face of natural infection with an arbovirus such as Zika, the diversity between an infective and non-infective form was significantly different. Bacteria associated with a state of infection with ZIKV and lambda-cyhalothrin resistance were detected, such as the genus Bacteroides, which was related to functions of pathogenicity, antimicrobial resistance, and bioremediation of insecticides. We hypothesize that it is a vehicle for virus entry, as it is in human intestinal infections. On the other hand, Bello, the only mosquito population classified as susceptible to lambda-cyhalothrin, was associated with bacteria related to mucin degradation functions in the intestine, belonging to the Lachnospiraceae family, with the genus Dorea being increased in ZIKV-infected females. The Serratia genus presented significantly decreased functions related to phenazine production, potentially associated with infection control, and control mechanism functions for host defense and quorum sensing. Additionally, Pseudomonas was the genus principally associated with functions of the degradation of insecticides related to tryptophan metabolism, ABC transporters with a two-component system, efflux pumps, and alginate synthesis. CONCLUSIONS Microbiota composition may be modulated by ZIKV infection and insecticide resistance in Ae. aegypti Colombian populations. The condition of resistance to lambda-cyhalothrin could be inducing a phenome of dysbiosis in field Ae. aegypti affecting the transmission of arboviruses.
Collapse
|