1
|
Taouk ML, Featherstone LA, Taiaroa G, Seemann T, Ingle DJ, Stinear TP, Wick RR. Exploring SNP filtering strategies: the influence of strict vs soft core. Microb Genom 2025; 11:001346. [PMID: 39812553 PMCID: PMC11734701 DOI: 10.1099/mgen.0.001346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Phylogenetic analyses are crucial for understanding microbial evolution and infectious disease transmission. Bacterial phylogenies are often inferred from SNP alignments, with SNPs as the fundamental signal within these data. SNP alignments can be reduced to a 'strict core' by removing those sites that do not have data present in every sample. However, as sample size and genome diversity increase, a strict core can shrink markedly, discarding potentially informative data. Here, we propose and provide evidence to support the use of a 'soft core' that tolerates some missing data, preserving more information for phylogenetic analysis. Using large datasets of Neisseria gonorrhoeae and Salmonella enterica serovar Typhi, we assess different core thresholds. Our results show that strict cores can drastically reduce informative sites compared to soft cores. In a 10 000-genome alignment of Salmonella enterica serovar Typhi, a 95% soft core yielded ten times more informative sites than a 100% strict core. Similar patterns were observed in N. gonorrhoeae. We further evaluated the accuracy of phylogenies built from strict- and soft-core alignments using datasets with strong temporal signals. Soft-core alignments generally outperformed strict cores in producing trees displaying clock-like behaviour; for instance, the N. gonorrhoeae 95% soft-core phylogeny had a root-to-tip regression R 2 of 0.50 compared to 0.21 for the strict-core phylogeny. This study suggests that soft-core strategies are preferable for large, diverse microbial datasets. To facilitate this, we developed Core-SNP-filter (https://github.com/rrwick/Core-SNP-filter), an open-source software tool for generating soft-core alignments from whole-genome alignments based on user-defined thresholds.
Collapse
Affiliation(s)
- Mona L. Taouk
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Leo A. Featherstone
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Macroevolution and Macroecology Group, Research, School of Biology, Australian National University, Canberra, ACT, Australia
| | - George Taiaroa
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Danielle J. Ingle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ryan R. Wick
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Lagos RM, Sikorski MJ, Hormazábal JC, Fernandez A, Duarte S, Pasetti MF, Rasko DA, Higginson E, Nkeze J, Kasumba IN, Dougan G, Maes M, Lees A, Tennant SM, Levine MM. Detecting Residual Chronic Salmonella Typhi Carriers on the Road to Typhoid Elimination in Santiago, Chile, 2017-2019. J Infect Dis 2024; 230:e254-e267. [PMID: 38123455 PMCID: PMC11326835 DOI: 10.1093/infdis/jiad585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND In Santiago, Chile, where typhoid had been hyperendemic (1977-1991), we investigated whether residual chronic carriers could be detected among household contacts of non-travel-related typhoid cases occurring during 2017-2019. METHODS Culture-confirmed cases were classified as autochthonous (domestically acquired) versus travel/immigration related. Household contacts of cases had stool cultures and serum Vi antibody measurements to detect chronic Salmonella Typhi carriers. Whole genome sequences of acute cases and their epidemiologically linked chronic carrier isolates were compared. RESULTS Five of 16 autochthonous typhoid cases (31.3%) were linked to 4 chronic carriers in case households; 2 cases (onsets 23 months apart) were linked to the same carrier. Carriers were women aged 69-79 years with gallbladder dysfunction and Typhi fecal excretion; 3 had highly elevated serum anti-Vi titers. Genomic analyses revealed close identity (≤11 core genome single-nucleotide polymorphism [SNP] differences) between case and epidemiologically linked carrier isolates; all were genotypes prevalent in 1980s Santiago. A cluster of 4 additional autochthonous cases unlinked to a carrier was identified based on genomic identity (0-1 SNPs). Travel/immigration isolate genotypes were typical for the countries of travel/immigration. CONCLUSIONS Although autochthonous typhoid cases in Santiago are currently rare, 5 of 16 such cases (31.3%) were linked to elderly chronic carriers identified among household contacts of cases.
Collapse
Affiliation(s)
- Rosanna M Lagos
- Centro para Vacunas en Desarollo-Chile, Hospital de Niños Roberto del Río, Santiago, Chile
- Center for Vaccine Development and Global Health
| | - Michael J Sikorski
- Center for Vaccine Development and Global Health
- Institute for Genome Sciences, Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore
| | - Juan Carlos Hormazábal
- Sección Bacteriología, Subdepartamento de Enfermedades Infecciosas, Departamento de Laboratorio Biomédico, Instituto de Salud Pública de Chile, Santiago
| | - Alda Fernandez
- Sección Bacteriología, Subdepartamento de Enfermedades Infecciosas, Departamento de Laboratorio Biomédico, Instituto de Salud Pública de Chile, Santiago
| | - Sergio Duarte
- Sección Bacteriología, Subdepartamento de Enfermedades Infecciosas, Departamento de Laboratorio Biomédico, Instituto de Salud Pública de Chile, Santiago
| | | | - David A Rasko
- Institute for Genome Sciences, Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore
| | | | - Joseph Nkeze
- Center for Vaccine Development and Global Health
| | | | - Gordon Dougan
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, University of Cambridge, United Kingdom
| | - Mailis Maes
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|
3
|
Webster E, Palanco Lopez P, Kirchhelle C. Shifting targets: typhoid's transformation from an environmental to a vaccine-preventable disease, 1940-2019. THE LANCET. INFECTIOUS DISEASES 2024; 24:e232-e244. [PMID: 37995738 DOI: 10.1016/s1473-3099(23)00500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 11/25/2023]
Abstract
160 years after the discovery of its waterborne transmission and 120 years after the development of the first-generation of vaccines, typhoid fever remains a major health threat globally. In this Historical Review, we use WHO's Institutional Repository for Information Sharing to examine changes in typhoid control policy from January, 1940, to December, 2019. We used a mixed-methods approach in the analysis of infection control priorities, combining semi-inductive thematic coding with historical analysis to show major thematic shifts in typhoid control policy, away from water, sanitation, and hygiene (WASH)-based control towards vaccine-based interventions concurrent with declining attention to the disease. Documentary analysis shows that, although international planners never officially disavowed WASH and low-income countries persistently lobbied for WASH, vaccines emerged as a permanent stopgap while meaningful support of sustained WASH strengthening lost momentum-with serious, long-term ramifications for typhoid control.
Collapse
Affiliation(s)
- Emily Webster
- Department of Philosophy, Durham University, Durham, UK; Department of Philosophy, University of Johannesburg, Johannesburg, South Africa
| | | | - Claas Kirchhelle
- School of History, University College Dublin, Dublin, Ireland; Oxford Vaccine Group, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Salerno-Goncalves R, Chen H, Bafford AC, Izquierdo M, Hormazábal JC, Lagos R, Tettelin H, D’Mello A, Booth JS, Fasano A, Levine MM, Sztein MB. Early host immune responses in a human organoid-derived gallbladder monolayer to Salmonella Typhi strains from patients with acute and chronic infections: a comparative analysis. Front Immunol 2024; 15:1334762. [PMID: 38533492 PMCID: PMC10963533 DOI: 10.3389/fimmu.2024.1334762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi), a human-restricted pathogen, invades the host through the gut to cause typhoid fever. Recent calculations of the typhoid fever burden estimated that more than 10 million new typhoid fever cases occur in low and middle-income countries, resulting in 65,400-187,700 deaths yearly. Interestingly, if not antibiotic-treated, upon the resolution of acute disease, 1%-5% of patients become asymptomatic chronic carriers. Chronically infected hosts are not only critical reservoirs of infection that transmit the disease to naive individuals but are also predisposed to developing gallbladder carcinoma. Nevertheless, the molecular mechanisms involved in the early interactions between gallbladder epithelial cells and S. Typhi remain largely unknown. Based on our previous studies showing that closely related S. Typhi strains elicit distinct innate immune responses, we hypothesized that host molecular pathways activated by S. Typhi strains derived from acutely and chronically infected patients would differ. To test this hypothesis, we used a novel human organoid-derived polarized gallbladder monolayer model, and S. Typhi strains derived from acutely and chronically infected patients. We found that S. Typhi strains derived from acutely and chronically infected patients differentially regulate host mitogen-activated protein kinase (MAPK) and S6 transcription factors. These variations might be attributed to differential cytokine signaling, predominantly via TNF-α and IL-6 production and appear to be influenced by the duration the isolate was subjected to selective pressures in the gallbladder. These findings represent a significant leap in understanding the complexities behind chronic S. Typhi infections in the gallbladder and may uncover potential intervention targets.
Collapse
Affiliation(s)
- Rosângela Salerno-Goncalves
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Haiyan Chen
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrea C. Bafford
- Division of General and Oncologic Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mariana Izquierdo
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Juan Carlos Hormazábal
- Seccion Bacteriologia, Subdepartamento de Enfermedades Infecciosas, Departamento de Laboratorio Biomédico, Instituto de Salud Pública de Chile (ISP), Santiago, Chile
| | - Rosanna Lagos
- Seccion Bacteriologia, Subdepartamento de Enfermedades Infecciosas, Departamento de Laboratorio Biomédico, Instituto de Salud Pública de Chile (ISP), Santiago, Chile
| | - Hervé Tettelin
- Department of Microbiology and Immunology and Institute for Genome Sciences (IGS), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Adonis D’Mello
- Department of Microbiology and Immunology and Institute for Genome Sciences (IGS), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jayaum S. Booth
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Myron M. Levine
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
5
|
Meiring JE, Khanam F, Basnyat B, Charles RC, Crump JA, Debellut F, Holt KE, Kariuki S, Mugisha E, Neuzil KM, Parry CM, Pitzer VE, Pollard AJ, Qadri F, Gordon MA. Typhoid fever. Nat Rev Dis Primers 2023; 9:71. [PMID: 38097589 DOI: 10.1038/s41572-023-00480-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
Typhoid fever is an invasive bacterial disease associated with bloodstream infection that causes a high burden of disease in Africa and Asia. Typhoid primarily affects individuals ranging from infants through to young adults. The causative organism, Salmonella enterica subsp. enterica serovar Typhi is transmitted via the faecal-oral route, crossing the intestinal epithelium and disseminating to systemic and intracellular sites, causing an undifferentiated febrile illness. Blood culture remains the practical reference standard for diagnosis of typhoid fever, where culture testing is available, but novel diagnostic modalities are an important priority under investigation. Since 2017, remarkable progress has been made in defining the global burden of both typhoid fever and antimicrobial resistance; in understanding disease pathogenesis and immunological protection through the use of controlled human infection; and in advancing effective vaccination programmes through strategic multipartner collaboration and targeted clinical trials in multiple high-incidence priority settings. This Primer thus offers a timely update of progress and perspective on future priorities for the global scientific community.
Collapse
Affiliation(s)
- James E Meiring
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi
| | - Farhana Khanam
- International Centre for Diarrhoel Disease Research, Dhaka, Bangladesh
| | - Buddha Basnyat
- Oxford University Clinical Research Unit, Kathmandu, Nepal
| | - Richelle C Charles
- Massachusetts General Hospital, Harvard Medical School, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - John A Crump
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | | | - Kathryn E Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Emmanuel Mugisha
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher M Parry
- Department of Clinical Sciences and Education, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases and Public Health Modelling Unit, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Firdausi Qadri
- International Centre for Diarrhoel Disease Research, Dhaka, Bangladesh
| | - Melita A Gordon
- Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
6
|
Carey ME, Dyson ZA, Ingle DJ, Amir A, Aworh MK, Chattaway MA, Chew KL, Crump JA, Feasey NA, Howden BP, Keddy KH, Maes M, Parry CM, Van Puyvelde S, Webb HE, Afolayan AO, Alexander AP, Anandan S, Andrews JR, Ashton PM, Basnyat B, Bavdekar A, Bogoch II, Clemens JD, da Silva KE, De A, de Ligt J, Diaz Guevara PL, Dolecek C, Dutta S, Ehlers MM, Francois Watkins L, Garrett DO, Godbole G, Gordon MA, Greenhill AR, Griffin C, Gupta M, Hendriksen RS, Heyderman RS, Hooda Y, Hormazabal JC, Ikhimiukor OO, Iqbal J, Jacob JJ, Jenkins C, Jinka DR, John J, Kang G, Kanteh A, Kapil A, Karkey A, Kariuki S, Kingsley RA, Koshy RM, Lauer AC, Levine MM, Lingegowda RK, Luby SP, Mackenzie GA, Mashe T, Msefula C, Mutreja A, Nagaraj G, Nagaraj S, Nair S, Naseri TK, Nimarota-Brown S, Njamkepo E, Okeke IN, Perumal SPB, Pollard AJ, Pragasam AK, Qadri F, Qamar FN, Rahman SIA, Rambocus SD, Rasko DA, Ray P, Robins-Browne R, Rongsen-Chandola T, Rutanga JP, Saha SK, Saha S, Saigal K, Sajib MSI, Seidman JC, Shakya J, Shamanna V, Shastri J, Shrestha R, Sia S, Sikorski MJ, Singh A, Smith AM, Tagg KA, Tamrakar D, Tanmoy AM, Thomas M, Thomas MS, et alCarey ME, Dyson ZA, Ingle DJ, Amir A, Aworh MK, Chattaway MA, Chew KL, Crump JA, Feasey NA, Howden BP, Keddy KH, Maes M, Parry CM, Van Puyvelde S, Webb HE, Afolayan AO, Alexander AP, Anandan S, Andrews JR, Ashton PM, Basnyat B, Bavdekar A, Bogoch II, Clemens JD, da Silva KE, De A, de Ligt J, Diaz Guevara PL, Dolecek C, Dutta S, Ehlers MM, Francois Watkins L, Garrett DO, Godbole G, Gordon MA, Greenhill AR, Griffin C, Gupta M, Hendriksen RS, Heyderman RS, Hooda Y, Hormazabal JC, Ikhimiukor OO, Iqbal J, Jacob JJ, Jenkins C, Jinka DR, John J, Kang G, Kanteh A, Kapil A, Karkey A, Kariuki S, Kingsley RA, Koshy RM, Lauer AC, Levine MM, Lingegowda RK, Luby SP, Mackenzie GA, Mashe T, Msefula C, Mutreja A, Nagaraj G, Nagaraj S, Nair S, Naseri TK, Nimarota-Brown S, Njamkepo E, Okeke IN, Perumal SPB, Pollard AJ, Pragasam AK, Qadri F, Qamar FN, Rahman SIA, Rambocus SD, Rasko DA, Ray P, Robins-Browne R, Rongsen-Chandola T, Rutanga JP, Saha SK, Saha S, Saigal K, Sajib MSI, Seidman JC, Shakya J, Shamanna V, Shastri J, Shrestha R, Sia S, Sikorski MJ, Singh A, Smith AM, Tagg KA, Tamrakar D, Tanmoy AM, Thomas M, Thomas MS, Thomsen R, Thomson NR, Tupua S, Vaidya K, Valcanis M, Veeraraghavan B, Weill FX, Wright J, Dougan G, Argimón S, Keane JA, Aanensen DM, Baker S, Holt KE. Global diversity and antimicrobial resistance of typhoid fever pathogens: Insights from a meta-analysis of 13,000 Salmonella Typhi genomes. eLife 2023; 12:e85867. [PMID: 37697804 PMCID: PMC10506625 DOI: 10.7554/elife.85867] [Show More Authors] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/02/2023] [Indexed: 09/13/2023] Open
Abstract
Background The Global Typhoid Genomics Consortium was established to bring together the typhoid research community to aggregate and analyse Salmonella enterica serovar Typhi (Typhi) genomic data to inform public health action. This analysis, which marks 22 years since the publication of the first Typhi genome, represents the largest Typhi genome sequence collection to date (n=13,000). Methods This is a meta-analysis of global genotype and antimicrobial resistance (AMR) determinants extracted from previously sequenced genome data and analysed using consistent methods implemented in open analysis platforms GenoTyphi and Pathogenwatch. Results Compared with previous global snapshots, the data highlight that genotype 4.3.1 (H58) has not spread beyond Asia and Eastern/Southern Africa; in other regions, distinct genotypes dominate and have independently evolved AMR. Data gaps remain in many parts of the world, and we show the potential of travel-associated sequences to provide informal 'sentinel' surveillance for such locations. The data indicate that ciprofloxacin non-susceptibility (>1 resistance determinant) is widespread across geographies and genotypes, with high-level ciprofloxacin resistance (≥3 determinants) reaching 20% prevalence in South Asia. Extensively drug-resistant (XDR) typhoid has become dominant in Pakistan (70% in 2020) but has not yet become established elsewhere. Ceftriaxone resistance has emerged in eight non-XDR genotypes, including a ciprofloxacin-resistant lineage (4.3.1.2.1) in India. Azithromycin resistance mutations were detected at low prevalence in South Asia, including in two common ciprofloxacin-resistant genotypes. Conclusions The consortium's aim is to encourage continued data sharing and collaboration to monitor the emergence and global spread of AMR Typhi, and to inform decision-making around the introduction of typhoid conjugate vaccines (TCVs) and other prevention and control strategies. Funding No specific funding was awarded for this meta-analysis. Coordinators were supported by fellowships from the European Union (ZAD received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 845681), the Wellcome Trust (SB, Wellcome Trust Senior Fellowship), and the National Health and Medical Research Council (DJI is supported by an NHMRC Investigator Grant [GNT1195210]).
Collapse
Affiliation(s)
- Megan E Carey
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
- IAVI, Chelsea & Westminster HospitalLondonUnited Kingdom
| | - Zoe A Dyson
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Danielle J Ingle
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of MelbourneMelbourneAustralia
| | | | - Mabel K Aworh
- Nigeria Field Epidemiology and Laboratory Training ProgrammeAbujaNigeria
- College of Veterinary Medicine, North Carolina State UniversityRaleighUnited States
| | | | - Ka Lip Chew
- National University HospitalSingaporeSingapore
| | - John A Crump
- Centre for International Health, University of OtagoDunedinNew Zealand
| | - Nicholas A Feasey
- Department of Clinical Sciences, Liverpool School of Tropical MedicineLiverpoolUnited Kingdom
- Malawi-Liverpool Wellcome Programme, Kamuzu University of Health SciencesBlantyreMalawi
| | - Benjamin P Howden
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, University of Melbourne at Doherty Institute for Infection and ImmunityMelbourneAustralia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | | | - Mailis Maes
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Christopher M Parry
- Department of Clinical Sciences, Liverpool School of Tropical MedicineLiverpoolUnited Kingdom
| | - Sandra Van Puyvelde
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
- University of AntwerpAntwerpBelgium
| | - Hattie E Webb
- Centers for Disease Control and PreventionAtlantaUnited States
| | - Ayorinde Oluwatobiloba Afolayan
- Global Health Research Unit (GHRU) for the Genomic Surveillance of Antimicrobial Resistance, Faculty of Pharmacy, University of IbadanIbadanNigeria
| | | | - Shalini Anandan
- Department of Clinical Microbiology, Christian Medical CollegeVelloreIndia
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford UniversityStanfordUnited States
| | - Philip M Ashton
- Malawi-Liverpool Wellcome ProgrammeBlantyreMalawi
- Institute of Infection, Veterinary and Ecological Sciences, University of LiverpoolLiverpoolUnited Kingdom
| | - Buddha Basnyat
- Oxford University Clinical Research Unit NepalKathmanduNepal
| | | | - Isaac I Bogoch
- Department of Medicine, Division of Infectious Diseases, University of TorontoTorontoCanada
| | - John D Clemens
- International Vaccine InstituteSeoulRepublic of Korea
- International Centre for Diarrhoeal Disease ResearchDhakaBangladesh
- UCLA Fielding School of Public HealthLos AngelesUnited States
- Korea UniversitySeoulRepublic of Korea
| | - Kesia Esther da Silva
- Division of Infectious Diseases and Geographic Medicine, Stanford UniversityStanfordUnited States
| | - Anuradha De
- Topiwala National Medical CollegeMumbaiIndia
| | - Joep de Ligt
- ESR, Institute of Environmental Science and Research Ltd., PoriruaWellingtonNew Zealand
| | | | - Christiane Dolecek
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Shanta Dutta
- ICMR - National Institute of Cholera & Enteric DiseasesKolkataIndia
| | - Marthie M Ehlers
- Department of Medical Microbiology, Faculty of Health Sciences, University of PretoriaPretoriaSouth Africa
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory ServicePretoriaSouth Africa
| | | | | | - Gauri Godbole
- United Kingdom Health Security AgencyLondonUnited Kingdom
| | - Melita A Gordon
- Institute of Infection, Veterinary and Ecological Sciences, University of LiverpoolLiverpoolUnited Kingdom
| | - Andrew R Greenhill
- Federation University AustraliaChurchillAustralia
- Papua New Guinea Institute of Medical ResearchGorokaPapua New Guinea
| | - Chelsey Griffin
- Centers for Disease Control and PreventionAtlantaUnited States
| | - Madhu Gupta
- Post Graduate Institute of Medical Education and ResearchChandigarhIndia
| | | | - Robert S Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | | | - Juan Carlos Hormazabal
- Bacteriologia, Subdepartamento de Enfermedades Infecciosas, Departamento de Laboratorio Biomedico, Instituto de Salud Publica de Chile (ISP)SantiagoChile
| | - Odion O Ikhimiukor
- Global Health Research Unit (GHRU) for the Genomic Surveillance of Antimicrobial Resistance, Faculty of Pharmacy, University of IbadanIbadanNigeria
| | - Junaid Iqbal
- Department of Pediatrics and Child Health, Aga Khan UniversityKarachiPakistan
| | - Jobin John Jacob
- Department of Clinical Microbiology, Christian Medical CollegeVelloreIndia
| | - Claire Jenkins
- United Kingdom Health Security AgencyLondonUnited Kingdom
| | | | - Jacob John
- Department of Community Health, Christian Medical CollegeVelloreIndia
| | - Gagandeep Kang
- Department of Community Health, Christian Medical CollegeVelloreIndia
| | - Abdoulie Kanteh
- Medical Research Council Unit The Gambia at London School Hygiene & Tropical MedicineFajaraGambia
| | - Arti Kapil
- All India Institute of Medical SciencesDelhiIndia
| | | | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research InstituteNairobiKenya
| | | | | | - AC Lauer
- Centers for Disease Control and PreventionAtlantaUnited States
| | - Myron M Levine
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, Maryland, USABaltimoreUnited States
| | | | - Stephen P Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford UniversityStanfordUnited States
| | - Grant Austin Mackenzie
- Medical Research Council Unit The Gambia at London School Hygiene & Tropical MedicineFajaraGambia
| | - Tapfumanei Mashe
- National Microbiology Reference LaboratoryHarareZimbabwe
- World Health OrganizationHarareZimbabwe
| | | | - Ankur Mutreja
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Geetha Nagaraj
- Central Research Laboratory, Kempegowda Institute of Medical SciencesBengaluruIndia
| | | | - Satheesh Nair
- United Kingdom Health Security AgencyLondonUnited Kingdom
| | | | | | | | - Iruka N Okeke
- Global Health Research Unit (GHRU) for the Genomic Surveillance of Antimicrobial Resistance, Faculty of Pharmacy, University of IbadanIbadanNigeria
| | | | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of OxfordOxfordUnited Kingdom
- The NIHR Oxford Biomedical Research CentreOxfordUnited Kingdom
| | | | - Firdausi Qadri
- International Centre for Diarrhoeal Disease ResearchDhakaBangladesh
| | - Farah N Qamar
- Department of Pediatrics and Child Health, Aga Khan UniversityKarachiPakistan
| | | | - Savitra Devi Rambocus
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - David A Rasko
- Department of Microbiology and Immunology, University of Maryland School of MedicineBaltimoreUnited States
- Institute for Genome Sciences, University of Maryland School of MedicineBaltimoreUnited States
| | - Pallab Ray
- Post Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Roy Robins-Browne
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of MelbourneMelbourneAustralia
- Murdoch Children’s Research Institute, Royal Children’s HospitalParkvilleAustralia
| | | | | | | | | | | | - Mohammad Saiful Islam Sajib
- Child Health Research FoundationDhakaBangladesh
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of GlasgowGlasgowUnited Kingdom
| | | | - Jivan Shakya
- Dhulikhel HospitalDhulikhelNepal
- Institute for Research in Science and TechnologyKathmanduNepal
| | - Varun Shamanna
- Central Research Laboratory, Kempegowda Institute of Medical SciencesBengaluruIndia
| | - Jayanthi Shastri
- Topiwala National Medical CollegeMumbaiIndia
- Kasturba Hospital for Infectious DiseasesMumbaiIndia
| | - Rajeev Shrestha
- Center for Infectious Disease Research & Surveillance, Dhulikhel Hospital, Kathmandu University HospitalDhulikhelNepal
| | - Sonia Sia
- Research Institute for Tropical Medicine, Department of HealthMuntinlupa CityPhilippines
| | - Michael J Sikorski
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, Maryland, USABaltimoreUnited States
- Department of Microbiology and Immunology, University of Maryland School of MedicineBaltimoreUnited States
- Institute for Genome Sciences, University of Maryland School of MedicineBaltimoreUnited States
| | | | - Anthony M Smith
- Centre for Enteric Diseases, National Institute for Communicable DiseasesJohannesburgSouth Africa
| | - Kaitlin A Tagg
- Centers for Disease Control and PreventionAtlantaUnited States
| | - Dipesh Tamrakar
- Center for Infectious Disease Research & Surveillance, Dhulikhel Hospital, Kathmandu University HospitalDhulikhelNepal
| | | | - Maria Thomas
- Christian Medical College, LudhianaLudhianaIndia
| | | | | | | | - Siaosi Tupua
- Ministry of Health, Government of SamoaApiaSamoa
| | | | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | | | | | - Jackie Wright
- ESR, Institute of Environmental Science and Research Ltd., PoriruaWellingtonNew Zealand
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Silvia Argimón
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of OxfordOxfordUnited Kingdom
| | - Jacqueline A Keane
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of OxfordOxfordUnited Kingdom
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
- IAVI, Chelsea & Westminster HospitalLondonUnited Kingdom
| | - Kathryn E Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| |
Collapse
|
7
|
Chen J, Long JE, Vannice K, Shewchuk T, Kumar S, Duncan Steele A, Zaidi AKM. Taking on Typhoid: Eliminating Typhoid Fever as a Global Health Problem. Open Forum Infect Dis 2023; 10:S74-S81. [PMID: 37274535 PMCID: PMC10236514 DOI: 10.1093/ofid/ofad055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
Typhoid fever is a significant global health problem that impacts people living in areas without access to clean water and sanitation. However, collaborative international partnerships and new research have improved both knowledge of the burden in countries with endemic disease and the tools for improved surveillance, including environmental surveillance. Two typhoid conjugate vaccines (TCVs) have achieved World Health Organization prequalification, with several more in the development pipeline. Despite hurdles posed by the coronavirus disease 2019 pandemic, multiple TCV efficacy trials have been conducted in high-burden countries, and data indicate that TCVs provide a high degree of protection from typhoid fever, are safe to use in young children, provide lasting protection, and have the potential to combat typhoid antimicrobial resistance. Now is the time to double down on typhoid control and elimination by sustaining progress made through water, sanitation, and hygiene improvements and accelerating TCV introduction in high-burden locations.
Collapse
Affiliation(s)
- Jessie Chen
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Jessica E Long
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Kirsten Vannice
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Tanya Shewchuk
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Supriya Kumar
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - A Duncan Steele
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Anita K M Zaidi
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| |
Collapse
|
8
|
Persistence of Rare Salmonella Typhi Genotypes Susceptible to First-Line Antibiotics in the Remote Islands of Samoa. mBio 2022; 13:e0192022. [PMID: 36094088 PMCID: PMC9600463 DOI: 10.1128/mbio.01920-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
For decades, the remote island nation of Samoa (population ~200,000) has faced endemic typhoid fever despite improvements in water quality, sanitation, and economic development. We recently described the epidemiology of typhoid fever in Samoa from 2008 to 2019 by person, place, and time; however, the local Salmonella enterica serovar Typhi (S. Typhi) population structure, evolutionary origins, and genomic features remained unknown. Herein, we report whole genome sequence analyses of 306 S. Typhi isolates from Samoa collected between 1983 and 2020. Phylogenetics revealed a dominant population of rare genotypes 3.5.4 and 3.5.3, together comprising 292/306 (95.4%) of Samoan versus 2/4934 (0.04%) global S. Typhi isolates. Three distinct 3.5.4 genomic sublineages were identified, and their defining polymorphisms were determined. These dominant Samoan genotypes, which likely emerged in the 1970s, share ancestry with other 3.5 clade isolates from South America, Southeast Asia, and Oceania. Additionally, a 106-kb pHCM2 phenotypically cryptic plasmid, detected in a 1992 Samoan S. Typhi isolate, was identified in 106/306 (34.6%) of Samoan isolates; this is more than double the observed proportion of pHCM2-containing isolates in the global collection. In stark contrast with global S. Typhi trends, resistance-conferring polymorphisms were detected in only 15/306 (4.9%) of Samoan S. Typhi, indicating overwhelming susceptibility to antibiotics that are no longer effective in most of South and Southeast Asia. This country-level genomic framework can help local health authorities in their ongoing typhoid surveillance and control efforts, as well as fill a critical knowledge gap in S. Typhi genomic data from Oceania. IMPORTANCE In this study, we used whole genome sequencing and comparative genomics analyses to characterize the population structure, evolutionary origins, and genomic features of S. Typhi associated with decades of endemic typhoid fever in Samoa. Our analyses of Samoan isolates from 1983 to 2020 identified a rare S. Typhi population in Samoa that likely emerged around the early 1970s and evolved into sublineages that are presently dominant. The dominance of these endemic genotypes in Samoa is not readily explained by genomic content or widespread acquisition of antimicrobial resistance. These data establish the necessary framework for future genomic surveillance of S. Typhi in Samoa for public health benefit.
Collapse
|