1
|
Dalla Benetta E, López-Denman AJ, Li HH, Masri RA, Brogan DJ, Bui M, Yang T, Li M, Dunn M, Klein MJ, Jackson S, Catalan K, Blasdell KR, Tng P, Antoshechkin I, Alphey LS, Paradkar PN, Akbari OS. Engineered Antiviral Sensor Targets Infected Mosquitoes. CRISPR J 2023; 6:543-556. [PMID: 38108518 PMCID: PMC11085028 DOI: 10.1089/crispr.2023.0056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
Escalating vector disease burdens pose significant global health risks, as such innovative tools for targeting mosquitoes are critical. CRISPR-Cas technologies have played a crucial role in developing powerful tools for genome manipulation in various eukaryotic organisms. Although considerable efforts have focused on utilizing class II type II CRISPR-Cas9 systems for DNA targeting, these modalities are unable to target RNA molecules, limiting their utility against RNA viruses. Recently, the Cas13 family has emerged as an efficient tool for RNA targeting; however, the application of this technique in mosquitoes, particularly Aedes aegypti, has yet to be fully realized. In this study, we engineered an antiviral strategy termed REAPER (vRNA Expression Activates Poisonous Effector Ribonuclease) that leverages the programmable RNA-targeting capabilities of CRISPR-Cas13 and its potent collateral activity. REAPER remains concealed within the mosquito until an infectious blood meal is uptaken. Upon target viral RNA infection, REAPER activates, triggering programmed destruction of its target arbovirus such as chikungunya. Consequently, Cas13-mediated RNA targeting significantly reduces viral replication and viral prevalence of infection, and its promiscuous collateral activity can even kill infected mosquitoes within a few days. This innovative REAPER technology adds to an arsenal of effective molecular genetic tools to combat mosquito virus transmission.
Collapse
Affiliation(s)
- Elena Dalla Benetta
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Adam J. López-Denman
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Australia
| | - Hsing-Han Li
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Reem A. Masri
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Daniel J. Brogan
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Michelle Bui
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Ting Yang
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Ming Li
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Michael Dunn
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Australia
| | - Melissa J. Klein
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Australia
| | - Sarah Jackson
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Australia
| | - Kyle Catalan
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Australia
| | - Kim R. Blasdell
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Australia
| | - Priscilla Tng
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, California, USA
| | - Luke S. Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Prasad N. Paradkar
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, Australia
| | - Omar S. Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Osborne CJ, Cohnstaedt LW, Silver KS. Outlook on RNAi-Based Strategies for Controlling Culicoides Biting Midges. Pathogens 2023; 12:1251. [PMID: 37887767 PMCID: PMC10610143 DOI: 10.3390/pathogens12101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Culicoides are small biting midges with the capacity to transmit important livestock pathogens around much of the world, and their impacts on animal welfare are likely to expand. Hemorrhagic diseases resulting from Culicoides-vectored viruses, for example, can lead to millions of dollars in economic damages for producers. Chemical insecticides can reduce Culicoides abundance but may not suppress population numbers enough to prevent pathogen transmission. These insecticides can also cause negative effects on non-target organisms and ecosystems. RNA interference (RNAi) is a cellular regulatory mechanism that degrades mRNA and suppresses gene expression. Studies have examined the utility of this mechanism for insect pest control, and with it, have described the hurdles towards producing, optimizing, and applying these RNAi-based products. These methods hold promise for being highly specific and environmentally benign when compared to chemical insecticides and are more transient than engineering transgenic insects. Given the lack of available control options for Culicoides, RNAi-based products could be an option to treat large areas with minimal environmental impact. In this study, we describe the state of current Culicoides control methods, successes and hurdles towards using RNAi for pest control, and the necessary research required to bring an RNAi-based control method to fruition for Culicoides midges.
Collapse
Affiliation(s)
- Cameron J. Osborne
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| | - Lee W. Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, Agricultural Research Service, United Stated Department of Agriculture, Manhattan, KS 66502, USA
| | - Kristopher S. Silver
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|