1
|
Werner LM, Criss AK. Diverse Functions of C4b-Binding Protein in Health and Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1443-1449. [PMID: 37931209 PMCID: PMC10629839 DOI: 10.4049/jimmunol.2300333] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 11/08/2023]
Abstract
C4b-binding protein (C4BP) is a fluid-phase complement inhibitor that prevents uncontrolled activation of the classical and lectin complement pathways. As a complement inhibitor, C4BP also promotes apoptotic cell death and is hijacked by microbes and tumors for complement evasion. Although initially characterized for its role in complement inhibition, there is an emerging recognition that C4BP functions in a complement-independent manner to promote cell survival, protect against autoimmune damage, and modulate the virulence of microbial pathogens. In this Brief Review, we summarize the structure and functions of human C4BP, with a special focus on activities that extend beyond the canonical role of C4BP in complement inhibition.
Collapse
Affiliation(s)
- Lacie M. Werner
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
2
|
Malik A, Thanekar U, Amarachintha S, Mourya R, Nalluri S, Bondoc A, Shivakumar P. "Complimenting the Complement": Mechanistic Insights and Opportunities for Therapeutics in Hepatocellular Carcinoma. Front Oncol 2021; 10:627701. [PMID: 33718121 PMCID: PMC7943925 DOI: 10.3389/fonc.2020.627701] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and a leading cause of death in the US and worldwide. HCC remains a global health problem and is highly aggressive with unfavorable prognosis. Even with surgical interventions and newer medical treatment regimens, patients with HCC have poor survival rates. These limited therapeutic strategies and mechanistic understandings of HCC immunopathogenesis urgently warrant non-palliative treatment measures. Irrespective of the multitude etiologies, the liver microenvironment in HCC is intricately associated with chronic necroinflammation, progressive fibrosis, and cirrhosis as precedent events along with dysregulated innate and adaptive immune responses. Central to these immunological networks is the complement cascade (CC), a fundamental defense system inherent to the liver which tightly regulates humoral and cellular responses to noxious stimuli. Importantly, the liver is the primary source for biosynthesis of >80% of complement components and expresses a variety of complement receptors. Recent studies implicate the complement system in liver inflammation, abnormal regenerative responses, fibrosis, carcinogenesis, and development of HCC. Although complement activation differentially promotes immunosuppressive, stimulant, and angiogenic microenvironments conducive to HCC development, it remains under-investigated. Here, we review derangement of specific complement proteins in HCC in the context of altered complement regulatory factors, immune-activating components, and their implications in disease pathogenesis. We also summarize how complement molecules regulate cancer stem cells (CSCs), interact with complement-coagulation cascades, and provide therapeutic opportunities for targeted intervention in HCC.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Unmesha Thanekar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Surya Amarachintha
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Shreya Nalluri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Alexander Bondoc
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
3
|
Varghese PM, Murugaiah V, Beirag N, Temperton N, Khan HA, Alrokayan SH, Al-Ahdal MN, Nal B, Al-Mohanna FA, Sim RB, Kishore U. C4b Binding Protein Acts as an Innate Immune Effector Against Influenza A Virus. Front Immunol 2021; 11:585361. [PMID: 33488586 PMCID: PMC7820937 DOI: 10.3389/fimmu.2020.585361] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
C4b Binding Protein (C4BP) is a major fluid phase inhibitor of the classical and lectin pathways of the complement system. Complement inhibition is achieved by binding to and restricting the role of activated complement component C4b. C4BP functions as a co-factor for factor I in proteolytic inactivation of both soluble and cell surface-bound C4b, thus restricting the formation of the C3-convertase, C4b2a. C4BP also accelerates the natural decay/dissociation of the C3 convertase. This makes C4BP a prime target for exploitation by pathogens to escape complement attack, as seen in Streptococcus pyogenes or Flavivirus. Here, we examined whether C4BP can act on its own in a complement independent manner, against pathogens. C4BP bound H1N1 and H3N2 subtypes of Influenza A Virus (IAV) most likely via multiple sites in Complement Control Protein (CCP) 1-2, 4-5, and 7-8 domains of its α-chain. In addition, C4BP CCP1-2 bound H3N2 better than H1N1. C4BP bound three IAV envelope proteins: Haemagglutinin (~70 kDa), Neuraminidase (~55 kDa), and Matrix protein 1 (~25kDa). C4BP suppressed H1N1 subtype infection into the lung epithelial cell line, A549, while it promoted infection by H3N2 subtype. C4BP restricted viral entry for H1N1 but had the opposite effect on H3N2, as evident from experiments using pseudo-typed viral particles. C4BP downregulated mRNA levels of pro-inflammatory IFN-α, IL-12, and NFκB in the case of H1N1, while it promoted a pro-inflammatory immune response by upregulating IFN- α, TNF-α, RANTES, and IL-6 in the case of H3N2. We conclude that C4BP differentially modulates the efficacy of IAV entry, and hence, replication in a target cell in a strain-dependent manner, and acts as an entry inhibitor for H1N1. Thus, CCP containing complement proteins such as factor H and C4BP may have additional defense roles against IAV that do not rely on the regulation of complement activation.
Collapse
Affiliation(s)
- Praveen M. Varghese
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Valarmathy Murugaiah
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Nazar Beirag
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich, Kent, United Kingdom
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salman H. Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed N. Al-Ahdal
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Beatrice Nal
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Futwan A. Al-Mohanna
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Robert B. Sim
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
4
|
Marin AV, Cárdenas PP, Jiménez-Reinoso A, Muñoz-Ruiz M, Regueiro JR. Lymphocyte integration of complement cues. Semin Cell Dev Biol 2018; 85:132-142. [PMID: 29438807 DOI: 10.1016/j.semcdb.2018.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/08/2018] [Indexed: 12/17/2022]
Abstract
We address current data, views and puzzles on the emerging topic of regulation of lymphocytes by complement proteins or fragments. Such regulation is believed to take place through complement receptors (CR) and membrane complement regulators (CReg) involved in cell function or protection, respectively, including intracellular signalling. Original observations in B cells clearly support that complement cues through CR improve their performance. Other lymphocytes likely integrate complement-derived signals, as most lymphoid cells constitutively express or regulate CR and CReg upon activation. CR-induced signals, particularly by anaphylatoxins, clearly regulate lymphoid cell function. In contrast, data obtained by CReg crosslinking using antibodies are not always confirmed in human congenital deficiencies or knock-out mice, casting doubts on their physiological relevance. Unsurprisingly, human and mouse complement systems are not completely homologous, adding further complexity to our still fragmentary understanding of complement-lymphocyte interactions.
Collapse
Affiliation(s)
- Ana V Marin
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Paula P Cárdenas
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Anaïs Jiménez-Reinoso
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Miguel Muñoz-Ruiz
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Jose R Regueiro
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain.
| |
Collapse
|
5
|
Michel NA, Zirlik A, Wolf D. CD40L and Its Receptors in Atherothrombosis-An Update. Front Cardiovasc Med 2017; 4:40. [PMID: 28676852 PMCID: PMC5477003 DOI: 10.3389/fcvm.2017.00040] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/29/2017] [Indexed: 12/30/2022] Open
Abstract
CD40L (CD154), a member of the tumor necrosis factor superfamily, is a co-stimulatory molecule that was first discovered on activated T cells. Beyond its fundamental role in adaptive immunity-ligation of CD40L to its receptor CD40 is a prerequisite for B cell activation and antibody production-evidence from more than two decades has expanded our understanding of CD40L as a powerful modulator of inflammatory pathways. Although inhibition of CD40L with neutralizing antibodies has induced life-threatening side effects in clinical trials, the discovery of cell-specific effects and novel receptors with distinct functional consequences has opened a new path for therapies that specifically target detrimental properties of CD40L. Here, we carefully evaluate the signaling network of CD40L by gene enrichment analysis and its cell-specific expression, and thoroughly discuss its role in cardiovascular pathologies with a specific emphasis on atherosclerotic and thrombotic disease.
Collapse
Affiliation(s)
- Nathaly Anto Michel
- Faculty of Medicine, Department of Cardiology and Angiology I, Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- Faculty of Medicine, Department of Cardiology and Angiology I, Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Faculty of Medicine, Department of Cardiology and Angiology I, Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Bennett KM, Rooijakkers SHM, Gorham RD. Let's Tie the Knot: Marriage of Complement and Adaptive Immunity in Pathogen Evasion, for Better or Worse. Front Microbiol 2017; 8:89. [PMID: 28197139 PMCID: PMC5281603 DOI: 10.3389/fmicb.2017.00089] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/12/2017] [Indexed: 01/16/2023] Open
Abstract
The complement system is typically regarded as an effector arm of innate immunity, leading to recognition and killing of microbial invaders in body fluids. Consequently, pathogens have engaged in an arms race, evolving molecules that can interfere with proper complement responses. However, complement is no longer viewed as an isolated system, and links with other immune mechanisms are continually being discovered. Complement forms an important bridge between innate and adaptive immunity. While its roles in innate immunity are well-documented, its function in adaptive immunity is less characterized. Therefore, it is no surprise that the field of pathogenic complement evasion has focused on blockade of innate effector functions, while potential inhibition of adaptive immune responses (via complement) has been overlooked to a certain extent. In this review, we highlight past and recent developments on the involvement of complement in the adaptive immune response. We discuss the mechanisms by which complement aids in lymphocyte stimulation and regulation, as well as in antigen presentation. In addition, we discuss microbial complement evasion strategies, and highlight specific examples in the context of adaptive immune responses. These emerging ties between complement and adaptive immunity provide a catalyst for future discovery in not only the field of adaptive immune evasion but in elucidating new roles of complement.
Collapse
Affiliation(s)
- Kaila M Bennett
- Department of Medical Microbiology, University Medical Center Utrecht Utrecht, Netherlands
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht Utrecht, Netherlands
| | - Ronald D Gorham
- Department of Medical Microbiology, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
7
|
Shen HH, Bai BK, Wang YQ, Zhou GDE, Hou J, Hu Y, Zhao JM, Li BS, Huang HL, Mao PY. Serum soluble CD40 is associated with liver injury in patients with chronic hepatitis B. Exp Ther Med 2015; 9:999-1005. [PMID: 25667667 PMCID: PMC4316966 DOI: 10.3892/etm.2015.2182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/17/2014] [Indexed: 01/17/2023] Open
Abstract
Soluble cluster of differentiation 40 (sCD40) is proteolytically cleaved from membrane-bound CD40 and binds to CD154, thereby inhibiting CD40-CD154-mediated immune responses. The aim of the present study was to clarify the role of sCD40 in chronic hepatitis B (CHB). The sCD40 levels in sera from 132 patients with CHB and 33 healthy individuals were retrospectively measured. sCD40 concentrations in patients with CHB were higher than those in healthy controls, and sCD40 levels correlated positively with serum levels of the liver dysfunction biomarkers alanine transaminase (ALT) and aspartate transaminase (AST). sCD40 concentrations increased with a rise in the severity of liver necroinflammation and fibrosis. Patients with >75% liver tissue staining positive for hepatitis B virus (HBV) antigen expression showed significantly lower sCD40 levels than those who stained negative for the HBV antigen. The area under the receiver operating characteristic curve of sCD40 was greater than that of ALT and AST; thus, sCD40 levels have a high diagnostic accuracy for detecting severe liver inflammation in patients with CHB, and could serve as an immunological marker of hepatic tissue injury.
Collapse
Affiliation(s)
- Hong-Hui Shen
- Institute of Infectious Diseases, Beijing 302 Hospital, Beijing 100039, P.R. China
| | - Bing-Ke Bai
- Institute of Infectious Diseases, Beijing 302 Hospital, Beijing 100039, P.R. China
| | - Ya-Qing Wang
- Department of Gastroenterology, Beijing 305 Hospital, Beijing 100017, P.R. China
| | - Guang-DE Zhou
- Department of Pathology, Beijing 302 Hospital, Beijing 100039, P.R. China
| | - Jun Hou
- Institute of Infectious Diseases, Beijing 302 Hospital, Beijing 100039, P.R. China
| | - Yan Hu
- Institute of Infectious Diseases, Beijing 302 Hospital, Beijing 100039, P.R. China
| | - Jing-Min Zhao
- Department of Pathology, Beijing 302 Hospital, Beijing 100039, P.R. China
| | - Bao-Sen Li
- Institute of Infectious Diseases, Beijing 302 Hospital, Beijing 100039, P.R. China
| | - Hai-Li Huang
- Department of Gastroenterology, General Hospital of PLA, Beijing 100853, P.R. China
| | - Pan-Yong Mao
- Institute of Infectious Diseases, Beijing 302 Hospital, Beijing 100039, P.R. China
| |
Collapse
|
8
|
Olivar R, Luque A, Naranjo-Gómez M, Quer J, García de Frutos P, Borràs FE, Rodríguez de Córdoba S, Blom AM, Aran JM. The α7β0 isoform of the complement regulator C4b-binding protein induces a semimature, anti-inflammatory state in dendritic cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:2857-72. [PMID: 23390292 DOI: 10.4049/jimmunol.1200503] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The classical pathway complement regulator C4b-binding protein (C4BP) is composed of two polypeptides (α- and β-chains), which form three plasma oligomers with different subunit compositions (α7β1, α7β0, and α6β1). We show in this article that the C4BP α7β0 isoform (hereafter called C4BP[β(-)] [C4BP lacking the β-chain]), overexpressed under acute-phase conditions, induces a semimature, tolerogenic state on human monocyte-derived dendritic cells (DCs) activated by a proinflammatory stimulus. C4BP isoforms containing β-chain (α7β1 and α6β1; C4BP[β(+)]) neither interfered with the normal maturation of DCs nor competed with C4BP(β(-)) activity on these cells. Immature DCs (iDCs) treated with C4BP(β(-)) retained high endocytic activity, but, upon LPS treatment, they did not upregulate surface expression of CD83, CD80, and CD86. Transcriptional profiling of these semimature DCs revealed that treatment with C4BP(β(-)) prevented the induction of IDO and BIC-1, whereas TGF-β1 expression was maintained to the level of iDCs. C4BP(β(-))-treated DCs were also unable to release proinflammatory Th1 cytokines (IL-12, TNF-α, IFN-γ, IL-6, IL-8) and, conversely, increased IL-10 secretion. They prevented surface CCR7 overexpression and, accordingly, displayed reduced chemotaxis, being morphologically indistinguishable from iDCs. Moreover, C4BP(β(-))-treated DCs failed to enhance allogeneic T cell proliferation, impairing IFN-γ production in these cells and, conversely, promoting CD4(+)CD127(low/neg)CD25(high)Foxp3(+) T cells. Deletion mutant analysis revealed that the complement control protein-6 domain of the α-chain is necessary for the tolerogenic activity of C4BP(β(-)). Our data demonstrate a novel anti-inflammatory and immunomodulatory function of the complement regulator C4BP, suggesting a relevant role of the acute-phase C4BP(β(-)) isoform in a number of pathophysiological conditions and potential applications in autoimmunity and transplantation.
Collapse
Affiliation(s)
- Rut Olivar
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lapchak PH, Ioannou A, Kannan L, Rani P, Dalle Lucca JJ, Tsokos GC. Platelet-associated CD40/CD154 mediates remote tissue damage after mesenteric ischemia/reperfusion injury. PLoS One 2012; 7:e32260. [PMID: 22384195 PMCID: PMC3288090 DOI: 10.1371/journal.pone.0032260] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/21/2012] [Indexed: 01/08/2023] Open
Abstract
Several innate and adaptive immune cell types participate in ischemia/reperfusion induced tissue injury. Amongst them, platelets have received little attention as contributors in the process of tissue damage after ischemia reperfusion (I/R) injury. It is currently unknown whether platelets participate through the immunologically important molecules including, CD40 and when activated, CD154 (CD40L), in the pathogenesis of I/R injury. We hypothesized that constitutive expression of CD40 and activation-induced expression of CD154 on platelets mediate local mesenteric and remote lung tissue damage after I/R injury. Wild type (WT; C57BL/6J), CD40 and CD154 deficient mice underwent mesenteric ischemia for 30 minutes followed by reperfusion for 3 hours. WT mice subjected to mesenteric I/R injury displayed both local intestinal and remote lung damage. In contrast, there was significantly less intestinal damage and no remote lung injury in CD40 and CD154 deficient mice when compared to WT mice. Platelet-depleted WT mice transfused with platelets from CD40 or CD154 deficient mice failed to reconstitute remote lung damage. In contrast, when CD40 or CD154 deficient mice were transfused with WT platelets lung tissue damage was re-established. Together, these findings suggest that multiple mechanisms are involved in local and remote tissue injury and also identify platelet-expressed CD40 and/or CD154 as mediators of remote tissue damage.
Collapse
Affiliation(s)
- Peter H. Lapchak
- Rheumatology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Antonis Ioannou
- Rheumatology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (GCT); (AI)
| | - Lakshmi Kannan
- Rheumatology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Poonam Rani
- Rheumatology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jurandir J. Dalle Lucca
- The United States Army Institute of Surgical Research, San Antonio, Texas, United States of America
| | - George C. Tsokos
- Rheumatology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (GCT); (AI)
| |
Collapse
|
10
|
Avirutnan P, Hauhart RE, Somnuke P, Blom AM, Diamond MS, Atkinson JP. Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation. THE JOURNAL OF IMMUNOLOGY 2011; 187:424-33. [PMID: 21642539 DOI: 10.4049/jimmunol.1100750] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The complement system plays a pivotal protective role in the innate immune response to many pathogens including flaviviruses. Flavivirus nonstructural protein 1 (NS1) is a secreted nonstructural glycoprotein that accumulates in plasma to high levels and is displayed on the surface of infected cells but absent from viral particles. Previous work has defined an immune evasion role of flavivirus NS1 in limiting complement activation by forming a complex with C1s and C4 to promote cleavage of C4 to C4b. In this study, we demonstrate a second mechanism, also involving C4 and its active fragment C4b, by which NS1 antagonizes complement activation. Dengue, West Nile, or yellow fever virus NS1 directly associated with C4b binding protein (C4BP), a complement regulatory plasma protein that attenuates the classical and lectin pathways. Soluble NS1 recruited C4BP to inactivate C4b in solution and on the plasma membrane. Mapping studies revealed that the interaction sites of NS1 on C4BP partially overlap with the C4b binding sites. Together, these studies further define the immune evasion potential of NS1 in reducing the functional capacity of C4 in complement activation and control of flavivirus infection.
Collapse
Affiliation(s)
- Panisadee Avirutnan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Humphreys EH, Williams KT, Adams DH, Afford SC. Primary and malignant cholangiocytes undergo CD40 mediated Fas dependent apoptosis, but are insensitive to direct activation with exogenous Fas ligand. PLoS One 2010; 5:e14037. [PMID: 21103345 PMCID: PMC2984448 DOI: 10.1371/journal.pone.0014037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 10/18/2010] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Cholangiocarcinoma is a rare malignancy of the biliary tract, the incidence of which is rising, but the pathogenesis of which remains uncertain. No common genetic defects have been described but it is accepted that chronic inflammation is an important contributing factor. We have shown that primary human cholangiocyte and hepatocyte survival is tightly regulated via co-operative interactions between two tumour necrosis family (TNF) receptor family members; CD40 and Fas (CD95). Functional deficiency of CD154, the ligand for CD40, leads to a failure of clearance of biliary tract infections and a predisposition to cholangiocarcinoma implying a direct link between TNF receptor-mediated apoptosis and the development of cholangiocarcinoma. AIMS To determine whether malignant cholangiocytes display defects in CD40 mediated apoptosis. By comparing CD40 and Fas-mediated apoptosis and intracellular signalling in primary human cholangiocytes and three cholangiocyte cell lines. RESULTS Primary cholangiocytes and cholangiocyte cell lines were relatively insensitive to direct Fas-mediated killing with exogenous FasL when compared with Jurkat cells, which readily underwent Fas-mediated apoptosis, but were extremely sensitive to CD154 stimulation. The sensitivity of cells to CD40 activation was similar in magnitude in both primary and malignant cells and was STAT-3 and AP-1 dependent in both. CONCLUSIONS 1) Both primary and malignant cholangiocytes are relatively resistant to Fas-mediated killing but show exquisite sensitivity to CD154, suggesting that the CD40 pathway is intact and fully functional in both primary and malignant cholangiocytes 2) The relative insensitivity of cholangiocytes to Fas activation demonstrates the importance of CD40 augmentation of Fas dependent death in these cells. Agonistic therapies which target CD40 and associated intracellular signalling pathways may be effective in promoting apoptosis of malignant cholangiocytes.
Collapse
Affiliation(s)
- Elizabeth H. Humphreys
- Centre for Liver Research, MRC Centre for Immune Regulation, The Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Kevin T. Williams
- Centre for Liver Research, MRC Centre for Immune Regulation, The Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - David H. Adams
- Centre for Liver Research, MRC Centre for Immune Regulation, The Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Simon C. Afford
- Centre for Liver Research, MRC Centre for Immune Regulation, The Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Blom AM, Nandakumar KS, Holmdahl R. C4b-binding protein (C4BP) inhibits development of experimental arthritis in mice. Ann Rheum Dis 2009; 68:136-42. [PMID: 18276745 DOI: 10.1136/ard.2007.085753] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To assess the human complement inhibitor C4b-binding protein (C4BP) for treatment of arthritis. METHODS We have used two mouse models of rheumatoid arthritis (RA) to assess the therapeutic effect of C4BP on different phases of arthritis, the collagen antibody-induced arthritis (CAIA), an acute antibody-induced disease and the collagen-induced arthritis (CIA), which carries the full complexity of arthritis. RESULTS Purified human C4BP injected intraperitoneally alleviated CAIA significantly in a manner similar to cobra venom factor that depletes complement due to massive activation. Furthermore, C4BP was injected before and after the disease development into CIA mice. In the former case, the disease onset was delayed and in the latter, the severity of the disease was reduced in animals treated with C4BP. However, C4BP did not affect the anti-CII antibody synthesis. C4BP present in mouse sera decreased activity of the classical but not the alternative pathway of the complement system when these were assessed in a fluid phase. However, C4BP was efficiently inhibiting the alternative pathway when present on the activating surface. Taken together, the disease ameliorating effect of C4BP appears to be related to inhibition of both pathways of complement. CONCLUSIONS Although human C4BP was cleared relatively fast from the circulation and was only moderately affecting complement activity, its effect on the disease severity was substantial, suggesting that minor alterations in complement activity can have significant therapeutic value in RA.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/prevention & control
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/prevention & control
- Collagen/immunology
- Complement C4b/immunology
- Complement C4b-Binding Protein/therapeutic use
- Complement Pathway, Alternative/drug effects
- Complement Pathway, Classical/drug effects
- Humans
- Male
- Mice
- Mice, Mutant Strains
Collapse
Affiliation(s)
- A M Blom
- Department of Laboratory Medicine, Division of Medical Protein Chemistry, Lund University, University Hospital Malmö Entrance 46, The Wallenberg Laboratory floor 4, S-205 02 Malmö, Sweden.
| | | | | |
Collapse
|
13
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Zheng YB, Gao ZL, Zhong F, Huang YS, Peng L, Lin BL, Chong YT. Predictive Value of Serum-soluble CD154 in Fulminant Hepatic Failure. J Int Med Res 2008; 36:728-33. [PMID: 18652769 DOI: 10.1177/147323000803600415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The interaction of CD40 with CD154 is a pivotal trigger of immune cascade-inducing acute liver failure, however its clinical significance has not been well studied. The present study aimed to investigate the clinical implications of serum-soluble CD154 (sCD154) levels and the expression of CD40 on monocytes in patients with fulminant hepatic failure (FHF). The results showed that serum sCD154 levels and CD40 expression on monocytes were significantly higher in FHF patients than in acute hepatitis (AH) patients and healthy controls, and were also significantly higher in FHF patients who died, compared with those who survived. We conclude that high serum levels of sCD154 may be linked to fatal outcome in patients with severe liver injury and may be a valuable prognostic marker for survival in patients with FHF.
Collapse
Affiliation(s)
- YB Zheng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - ZL Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - F Zhong
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - YS Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - L Peng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - BL Lin
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - YT Chong
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
15
|
Wenderfer SE, Soimo K, Wetsel RA, Braun MC. Analysis of C4 and the C4 binding protein in the MRL/lpr mouse. Arthritis Res Ther 2008; 9:R114. [PMID: 17971229 PMCID: PMC2212569 DOI: 10.1186/ar2320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/11/2007] [Accepted: 10/30/2007] [Indexed: 11/10/2022] Open
Abstract
Systemic lupus erythematosus is a complement-mediated autoimmune disease. While genetic deficiencies of classical pathway components lead to an increased risk of developing systemic lupus erythematosus, end organ damage is associated with complement activation and immune complex deposition. The role of classical pathway regulators in systemic lupus erythematosus is unknown. C4 binding protein (C4bp) is a major negative regulator of the classical pathway. In order to study the role of C4bp deficiency in an established murine model of lupus nephritis, mice with a targeted deletion in the gene encoding C4bp were backcrossed into the MRL/lpr genetic background. Compared with control MRL/lpr mice, C4bp knockout MLR/lpr mice had similar mortality and similar degrees of lymphoproliferation. There were no differences in the extent of proteinuria or renal inflammation. Staining for complement proteins and immunoglobulins in the kidneys of diseased mice revealed no significant strain differences. Moreover, there was no difference in autoantibody production or in levels of circulating immune complexes. In comparison with C57BL/6 mice, MRL/lpr mice had depressed C4 levels as early as 3 weeks of age. The absence of C4bp did not impact serum C4 levels or alter classical pathway hemolytic activity. Given that immune complex renal injury in the MRL/lpr mouse is independent of Fc receptors as well as the major negative regulator of the classical pathway, new mechanisms for immune-complex-mediated renal injury need to be considered.
Collapse
Affiliation(s)
- Scott E Wenderfer
- Center for Immunology and Autoimmune Diseases, Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
16
|
Spijkers PP, Denis CV, Blom AM, Lenting PJ. Cellular uptake of C4b-binding protein is mediated by heparan sulfate proteoglycans and CD91/LDL receptor-related protein. Eur J Immunol 2008; 38:809-17. [DOI: 10.1002/eji.200737722] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Abstract
In a recent research article in Arthritis Research and Therapy ('Analysis of C204 and the C4 binding protein in the MRL/lpr mouse'), Wenderfer and colleagues report that deficiency in C4 binding protein, a down-regulator of the classic pathway of complement, does not affect the development of autoimmune disease. These data support the earlier finding that the alternative pathway, and not the classic pathway, drives disease progression. However, in a milder variant of the MRL/lpr model, the lpr/lpr mouse, classic pathway deficiency does contribute toward renal pathology and more severe disease. In this editorial we discuss the factors that may cause such a discrepancy.
Collapse
|