1
|
Revsine C, Gonzalez-Castillo J, Merriam EP, Bandettini PA, Ramírez FM. A Unifying Model for Discordant and Concordant Results in Human Neuroimaging Studies of Facial Viewpoint Selectivity. J Neurosci 2024; 44:e0296232024. [PMID: 38438256 PMCID: PMC11044116 DOI: 10.1523/jneurosci.0296-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
Recognizing faces regardless of their viewpoint is critical for social interactions. Traditional theories hold that view-selective early visual representations gradually become tolerant to viewpoint changes along the ventral visual hierarchy. Newer theories, based on single-neuron monkey electrophysiological recordings, suggest a three-stage architecture including an intermediate face-selective patch abruptly achieving invariance to mirror-symmetric face views. Human studies combining neuroimaging and multivariate pattern analysis (MVPA) have provided convergent evidence of view selectivity in early visual areas. However, contradictory conclusions have been reached concerning the existence in humans of a mirror-symmetric representation like that observed in macaques. We believe these contradictions arise from low-level stimulus confounds and data analysis choices. To probe for low-level confounds, we analyzed images from two face databases. Analyses of image luminance and contrast revealed biases across face views described by even polynomials-i.e., mirror-symmetric. To explain major trends across neuroimaging studies, we constructed a network model incorporating three constraints: cortical magnification, convergent feedforward projections, and interhemispheric connections. Given the identified low-level biases, we show that a gradual increase of interhemispheric connections across network-layers is sufficient to replicate view-tuning in early processing stages and mirror-symmetry in later stages. Data analysis decisions-pattern dissimilarity measure and data recentering-accounted for the inconsistent observation of mirror-symmetry across prior studies. Pattern analyses of human fMRI data (of either sex) revealed biases compatible with our model. The model provides a unifying explanation of MVPA studies of viewpoint selectivity and suggests observations of mirror-symmetry originate from ineffectively normalized signal imbalances across different face views.
Collapse
Affiliation(s)
- Cambria Revsine
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
- Department of Psychology, University of Chicago, Chicago, Illinois 60637
| | - Javier Gonzalez-Castillo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
- Functional MRI Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| | - Fernando M Ramírez
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
2
|
Walbrin J, Downing PE, Sotero FD, Almeida J. Characterizing the discriminability of visual categorical information in strongly connected voxels. Neuropsychologia 2024; 195:108815. [PMID: 38311112 DOI: 10.1016/j.neuropsychologia.2024.108815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/06/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Functional brain responses are strongly influenced by connectivity. Recently, we demonstrated a major example of this: category discriminability within occipitotemporal cortex (OTC) is enhanced for voxel sets that share strong functional connectivity to distal brain areas, relative to those that share lesser connectivity. That is, within OTC regions, sets of 'most-connected' voxels show improved multivoxel pattern discriminability for tool-, face-, and place stimuli relative to voxels with weaker connectivity to the wider brain. However, understanding whether these effects generalize to other domains (e.g. body perception network), and across different levels of the visual processing streams (e.g. dorsal as well as ventral stream areas) is an important extension of this work. Here, we show that this so-called connectivity-guided decoding (CGD) effect broadly generalizes across a wide range of categories (tools, faces, bodies, hands, places). This effect is robust across dorsal stream areas, but less consistent in earlier ventral stream areas. In the latter regions, category discriminability is generally very high, suggesting that extraction of category-relevant visual properties is less reliant on connectivity to downstream areas. Further, CGD effects are primarily expressed in a category-specific manner: For example, within the network of tool regions, discriminability of tool information is greater than non-tool information. The connectivity-guided decoding approach shown here provides a novel demonstration of the crucial relationship between wider brain connectivity and complex local-level functional responses at different levels of the visual processing streams. Further, this approach generates testable new hypotheses about the relationships between connectivity and local selectivity.
Collapse
Affiliation(s)
- Jon Walbrin
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal.
| | - Paul E Downing
- School of Human and Behavioural Sciences, Bangor University, Bangor, Wales
| | - Filipa Dourado Sotero
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| | - Jorge Almeida
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| |
Collapse
|
3
|
Revsine C, Gonzalez-Castillo J, Merriam EP, Bandettini PA, Ramírez FM. A unifying model for discordant and concordant results in human neuroimaging studies of facial viewpoint selectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527219. [PMID: 36945636 PMCID: PMC10028835 DOI: 10.1101/2023.02.08.527219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Our ability to recognize faces regardless of viewpoint is a key property of the primate visual system. Traditional theories hold that facial viewpoint is represented by view-selective mechanisms at early visual processing stages and that representations become increasingly tolerant to viewpoint changes in higher-level visual areas. Newer theories, based on single-neuron monkey electrophysiological recordings, suggest an additional intermediate processing stage invariant to mirror-symmetric face views. Consistent with traditional theories, human studies combining neuroimaging and multivariate pattern analysis (MVPA) methods have provided evidence of view-selectivity in early visual cortex. However, contradictory results have been reported in higher-level visual areas concerning the existence in humans of mirror-symmetrically tuned representations. We believe these results reflect low-level stimulus confounds and data analysis choices. To probe for low-level confounds, we analyzed images from two popular face databases. Analyses of mean image luminance and contrast revealed biases across face views described by even polynomials-i.e., mirror-symmetric. To explain major trends across human neuroimaging studies of viewpoint selectivity, we constructed a network model that incorporates three biological constraints: cortical magnification, convergent feedforward projections, and interhemispheric connections. Given the identified low-level biases, we show that a gradual increase of interhemispheric connections across network layers is sufficient to replicate findings of mirror-symmetry in high-level processing stages, as well as view-tuning in early processing stages. Data analysis decisions-pattern dissimilarity measure and data recentering-accounted for the variable observation of mirror-symmetry in late processing stages. The model provides a unifying explanation of MVPA studies of viewpoint selectivity. We also show how common analysis choices can lead to erroneous conclusions.
Collapse
Affiliation(s)
- Cambria Revsine
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
- Department of Psychology, University of Chicago, Chicago, IL
| | - Javier Gonzalez-Castillo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
- Functional MRI Core, National Institutes of Health, Bethesda, MD
| | - Fernando M Ramírez
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| |
Collapse
|
4
|
Nikel L, Sliwinska MW, Kucuk E, Ungerleider LG, Pitcher D. Measuring the response to visually presented faces in the human lateral prefrontal cortex. Cereb Cortex Commun 2022; 3:tgac036. [PMID: 36159205 PMCID: PMC9491845 DOI: 10.1093/texcom/tgac036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 12/04/2022] Open
Abstract
Neuroimaging studies identify multiple face-selective areas in the human brain. In the current study, we compared the functional response of the face area in the lateral prefrontal cortex to that of other face-selective areas. In Experiment 1, participants (n = 32) were scanned viewing videos containing faces, bodies, scenes, objects, and scrambled objects. We identified a face-selective area in the right inferior frontal gyrus (rIFG). In Experiment 2, participants (n = 24) viewed the same videos or static images. Results showed that the rIFG, right posterior superior temporal sulcus (rpSTS), and right occipital face area (rOFA) exhibited a greater response to moving than static faces. In Experiment 3, participants (n = 18) viewed face videos in the contralateral and ipsilateral visual fields. Results showed that the rIFG and rpSTS showed no visual field bias, while the rOFA and right fusiform face area (rFFA) showed a contralateral bias. These experiments suggest two conclusions; firstly, in all three experiments, the face area in the IFG was not as reliably identified as face areas in the occipitotemporal cortex. Secondly, the similarity of the response profiles in the IFG and pSTS suggests the areas may perform similar cognitive functions, a conclusion consistent with prior neuroanatomical and functional connectivity evidence.
Collapse
Affiliation(s)
- Lara Nikel
- Department of Psychology, University of York, Heslington , York YO10 5DD , UK
| | | | - Emel Kucuk
- Department of Psychology, University of York, Heslington , York YO10 5DD , UK
| | - Leslie G Ungerleider
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health , Bethesda, MD, 20892 , USA
| | - David Pitcher
- Department of Psychology, University of York, Heslington , York YO10 5DD , UK
| |
Collapse
|
5
|
Dube B, Pidaparthi L, Golomb JD. Visual Distraction Disrupts Category-tuned Attentional Filters in Ventral Visual Cortex. J Cogn Neurosci 2022; 34:1521-1533. [PMID: 35579979 DOI: 10.1162/jocn_a_01870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Our behavioral goals shape how we process information via attentional filters that prioritize goal-relevant information, dictating both where we attend and what we attend to. When something unexpected or salient appears in the environment, it captures our spatial attention. Extensive research has focused on the spatiotemporal aspects of attentional capture, but what happens to concurrent nonspatial filters during visual distraction? Here, we demonstrate a novel, broader consequence of distraction: widespread disruption to filters that regulate category-specific object processing. We recorded fMRI while participants viewed arrays of face/house hybrid images. On distractor-absent trials, we found robust evidence for the standard signature of category-tuned attentional filtering: greater BOLD activation in fusiform face area during attend-faces blocks and in parahippocampal place area during attend-houses blocks. However, on trials where a salient distractor (white rectangle) flashed abruptly around a nontarget location, not only was spatial attention captured, but the concurrent category-tuned attentional filter was disrupted, revealing a boost in activation for the to-be-ignored category. This disruption was robust, resulting in errant processing-and early on, prioritization-of goal-inconsistent information. These findings provide a direct test of the filter disruption theory: that in addition to disrupting spatial attention, distraction also disrupts nonspatial attentional filters tuned to goal-relevant information. Moreover, these results reveal that, under certain circumstances, the filter disruption may be so profound as to induce a full reversal of the attentional control settings, which carries novel implications for both theory and real-world perception.
Collapse
|
6
|
Decramer T, Premereur E, Zhu Q, Van Paesschen W, van Loon J, Vanduffel W, Taubert J, Janssen P, Theys T. Single-Unit Recordings Reveal the Selectivity of a Human Face Area. J Neurosci 2021; 41:9340-9349. [PMID: 34732521 PMCID: PMC8580152 DOI: 10.1523/jneurosci.0349-21.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022] Open
Abstract
The exquisite capacity of primates to detect and recognize faces is crucial for social interactions. Although disentangling the neural basis of human face recognition remains a key goal in neuroscience, direct evidence at the single-neuron level is limited. We recorded from face-selective neurons in human visual cortex in a region characterized by functional magnetic resonance imaging (fMRI) activations for faces compared with objects. The majority of visually responsive neurons in this fMRI activation showed strong selectivity at short latencies for faces compared with objects. Feature-scrambled faces and face-like objects could also drive these neurons, suggesting that this region is not tightly tuned to the visual attributes that typically define whole human faces. These single-cell recordings within the human face processing system provide vital experimental evidence linking previous imaging studies in humans and invasive studies in animal models.SIGNIFICANCE STATEMENT We present the first recordings of face-selective neurons in or near an fMRI-defined patch in human visual cortex. Our unbiased multielectrode array recordings (i.e., no selection of neurons based on a search strategy) confirmed the validity of the BOLD contrast (faces-objects) in humans, a finding with implications for all human imaging studies. By presenting faces, feature-scrambled faces, and face-pareidolia (perceiving faces in inanimate objects) stimuli, we demonstrate that neurons at this level of the visual hierarchy are broadly tuned to the features of a face, independent of spatial configuration and low-level visual attributes.
Collapse
Affiliation(s)
- Thomas Decramer
- Research Group Experimental Neurosurgery and Neuroanatomy, Katholieke Universiteit Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
- Departments of Neurosurgery and
- Laboratory for Neuro- and Psychophysiology, Katholieke Universiteit Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, Katholieke Universiteit Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Qi Zhu
- Laboratory for Neuro- and Psychophysiology, Katholieke Universiteit Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Wim Van Paesschen
- Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
- Laboratory for Epilepsy Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Johannes van Loon
- Research Group Experimental Neurosurgery and Neuroanatomy, Katholieke Universiteit Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
- Departments of Neurosurgery and
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Katholieke Universiteit Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Jessica Taubert
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Peter Janssen
- Laboratory for Neuro- and Psychophysiology, Katholieke Universiteit Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Tom Theys
- Research Group Experimental Neurosurgery and Neuroanatomy, Katholieke Universiteit Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
- Departments of Neurosurgery and
| |
Collapse
|
7
|
Direct comparison of contralateral bias and face/scene selectivity in human occipitotemporal cortex. Brain Struct Funct 2021; 227:1405-1421. [PMID: 34727232 PMCID: PMC9046350 DOI: 10.1007/s00429-021-02411-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/08/2021] [Indexed: 10/27/2022]
Abstract
Human visual cortex is organised broadly according to two major principles: retinotopy (the spatial mapping of the retina in cortex) and category-selectivity (preferential responses to specific categories of stimuli). Historically, these principles were considered anatomically separate, with retinotopy restricted to the occipital cortex and category-selectivity emerging in the lateral-occipital and ventral-temporal cortex. However, recent studies show that category-selective regions exhibit systematic retinotopic biases, for example exhibiting stronger activation for stimuli presented in the contra- compared to the ipsilateral visual field. It is unclear, however, whether responses within category-selective regions are more strongly driven by retinotopic location or by category preference, and if there are systematic differences between category-selective regions in the relative strengths of these preferences. Here, we directly compare contralateral and category preferences by measuring fMRI responses to scene and face stimuli presented in the left or right visual field and computing two bias indices: a contralateral bias (response to the contralateral minus ipsilateral visual field) and a face/scene bias (preferred response to scenes compared to faces, or vice versa). We compare these biases within and between scene- and face-selective regions and across the lateral and ventral surfaces of the visual cortex more broadly. We find an interaction between surface and bias: lateral surface regions show a stronger contralateral than face/scene bias, whilst ventral surface regions show the opposite. These effects are robust across and within subjects, and appear to reflect large-scale, smoothly varying gradients. Together, these findings support distinct functional roles for the lateral and ventral visual cortex in terms of the relative importance of the spatial location of stimuli during visual information processing.
Collapse
|
8
|
Hahn B, Robinson BM, Kiat JE, Geng J, Bansal S, Luck SJ, Gold JM. Impaired Filtering and Hyperfocusing: Neural Evidence for Distinct Selective Attention Abnormalities in People with Schizophrenia. Cereb Cortex 2021; 32:1950-1964. [PMID: 34546344 DOI: 10.1093/cercor/bhab327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although schizophrenia is classically thought to involve impaired attentional filtering, people with schizophrenia (PSZ) exhibit a more intense and more exclusive attentional focus than healthy control subjects (HCS) in many tasks. To resolve this contradiction, this functional magnetic resonance imaging study tested the impact of attentional control demands on the modulation of stimulus-induced activation in the fusiform face area and parahippocampal place area when participants (43 PSZ and 43 HCS) were looking for a target face versus house. Stimuli were presented individually, or as face-house overlays that challenged attentional control. Responses were slower for house than face stimuli and when prioritizing houses over faces in overlays, suggesting a difference in salience. Blood-oxygen-level-dependent activity reflected poorer attentional selectivity in PSZ than HCS when attentional control was challenged most, that is, when stimuli were overlaid and the task required detecting the lower-salience house target. By contrast, attentional selectivity was exaggerated in PSZ when control was challenged least, that is, when stimuli were presented sequentially and the task required detecting the higher-salience face target. These findings are consistent with 2 distinct attentional abnormalities in schizophrenia leading to impaired and exaggerated selection under different conditions: attentional control deficits, and hyperfocusing once attention has been directed toward a stimulus.
Collapse
Affiliation(s)
- Britta Hahn
- University of Maryland School of Medicine, Maryland Psychiatric Research Center, Baltimore, MD 21228, USA
| | - Benjamin M Robinson
- University of Maryland School of Medicine, Maryland Psychiatric Research Center, Baltimore, MD 21228, USA
| | - John E Kiat
- University of California Davis, Center for Mind and Brain, Davis, CA 95618, USA
| | - Joy Geng
- University of California Davis, Center for Mind and Brain, Davis, CA 95618, USA
| | - Sonia Bansal
- University of Maryland School of Medicine, Maryland Psychiatric Research Center, Baltimore, MD 21228, USA
| | - Steven J Luck
- University of California Davis, Center for Mind and Brain, Davis, CA 95618, USA
| | - James M Gold
- University of Maryland School of Medicine, Maryland Psychiatric Research Center, Baltimore, MD 21228, USA
| |
Collapse
|
9
|
Harrison MT, Strother L. Does face-selective cortex show a left visual field bias for centrally-viewed faces? Neuropsychologia 2021; 159:107956. [PMID: 34265343 DOI: 10.1016/j.neuropsychologia.2021.107956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/29/2022]
Abstract
The left half of a centrally-viewed face contributes more strongly to recognition performance than the right. This left visual field (LVF) advantage is typically attributed to an untested assumption that face-selective cortex in the right hemisphere (RH) exhibits a contralateral bias, even for centrally-viewed faces. We tested the validity of this assumption using a behavioral measure of the LVF advantage and an fMRI experiment that measured laterality of face-selective cortex and neural contralateral bias. In the behavioral experiment, participants performed a chimeric face-matching task (Harrison and Strother, 2019). In the fMRI experiment, participants viewed chimeric faces comprised of face halves that either repeated or changed simultaneously in both hemifields, or repeated in one hemifield and changed in the other. This enabled us to measure lateralization of fMRI face-repetition suppression and hemifield-specific half-face sensitivity in face-selective cortex. We found that LVF bias in the fusiform face area (FFA) and right-lateralization of the FFA for changing versus repeated faces were both positively correlated with a behavioral measure of the LVF advantage for upright (but not inverted) faces. Results from regression analyses showed that LVF bias in the right FFA and FFA laterality make separable contributions to the prediction of our behavioral measure of the LVF bias for upright faces. Our results confirm a ubiquitous but previously untested assumption that RH superiority combined with contralateral bias in face-selective cortex explains the LVF advantage in face recognition. Specifically, our results show that neural LVF bias in the right FFA is sufficient to explain the relationship between FFA laterality and the perceptual LVF bias for centrally-viewed faces.
Collapse
Affiliation(s)
- Matthew T Harrison
- University of Nevada Reno Institute for Neuroscience, Department of Psychology, MS0296 1664 N. Virginia Street Reno, NV, 89557, USA.
| | - Lars Strother
- University of Nevada Reno Institute for Neuroscience, Department of Psychology, MS0296 1664 N. Virginia Street Reno, NV, 89557, USA
| |
Collapse
|
10
|
Pitcher D, Pilkington A, Rauth L, Baker C, Kravitz DJ, Ungerleider LG. The Human Posterior Superior Temporal Sulcus Samples Visual Space Differently From Other Face-Selective Regions. Cereb Cortex 2021; 30:778-785. [PMID: 31264693 DOI: 10.1093/cercor/bhz125] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 01/22/2023] Open
Abstract
Neuroimaging studies show that ventral face-selective regions, including the fusiform face area (FFA) and occipital face area (OFA), preferentially respond to faces presented in the contralateral visual field (VF). In the current study we measured the VF response of the face-selective posterior superior temporal sulcus (pSTS). Across 3 functional magnetic resonance imaging experiments, participants viewed face videos presented in different parts of the VF. Consistent with prior results, we observed a contralateral VF bias in bilateral FFA, right OFA (rOFA), and bilateral human motion-selective area MT+. Intriguingly, this contralateral VF bias was absent in the bilateral pSTS. We then delivered transcranial magnetic stimulation (TMS) over right pSTS (rpSTS) and rOFA, while participants matched facial expressions in both hemifields. TMS delivered over the rpSTS disrupted performance in both hemifields, but TMS delivered over the rOFA disrupted performance in the contralateral hemifield only. These converging results demonstrate that the contralateral bias for faces observed in ventral face-selective areas is absent in the pSTS. This difference in VF response is consistent with face processing models proposing 2 functionally distinct pathways. It further suggests that these models should account for differences in interhemispheric connections between the face-selective areas across these 2 pathways.
Collapse
Affiliation(s)
- David Pitcher
- Department of Psychology, University of York, Heslington, York YO105DD, UK.,Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Amy Pilkington
- Department of Psychology, University of York, Heslington, York YO105DD, UK
| | - Lionel Rauth
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Chris Baker
- Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Dwight J Kravitz
- Department of Psychology, George Washington University, 2125 G Street NW, Washington, DC 20052, USA
| | - Leslie G Ungerleider
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Silson EH, Zeidman P, Knapen T, Baker CI. Representation of Contralateral Visual Space in the Human Hippocampus. J Neurosci 2021; 41:2382-2392. [PMID: 33500275 PMCID: PMC7984600 DOI: 10.1523/jneurosci.1990-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/04/2020] [Accepted: 12/24/2020] [Indexed: 11/21/2022] Open
Abstract
The initial encoding of visual information primarily from the contralateral visual field is a fundamental organizing principle of the primate visual system. Recently, the presence of such retinotopic sensitivity has been shown to extend well beyond early visual cortex to regions not historically considered retinotopically sensitive. In particular, human scene-selective regions in parahippocampal and medial parietal cortex exhibit prominent biases for the contralateral visual field. Here, we used fMRI to test the hypothesis that the human hippocampus, which is thought to be anatomically connected with these scene-selective regions, would also exhibit a biased representation of contralateral visual space. First, population receptive field (pRF) mapping with scene stimuli revealed strong biases for the contralateral visual field in bilateral hippocampus. Second, the distribution of retinotopic sensitivity suggested a more prominent representation in anterior medial portions of the hippocampus. Finally, the contralateral bias was confirmed in independent data taken from the Human Connectome Project (HCP) initiative. The presence of contralateral biases in the hippocampus, a structure considered by many as the apex of the visual hierarchy, highlights the truly pervasive influence of retinotopy. Moreover, this finding has important implications for understanding how visual information relates to the allocentric global spatial representations known to be encoded therein.SIGNIFICANCE STATEMENT Retinotopic encoding of visual information is an organizing principle of visual cortex. Recent work demonstrates this sensitivity in structures far beyond early visual cortex, including those anatomically connected to the hippocampus. Here, using population receptive field (pRF) modeling in two independent sets of data we demonstrate a consistent bias for the contralateral visual field in bilateral hippocampus. Such a bias highlights the truly pervasive influence of retinotopy, with important implications for understanding how the presence of retinotopy relates to more allocentric spatial representations.
Collapse
Affiliation(s)
- Edward H Silson
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
- Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda 20892-1366, Maryland
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, London WC1N 3AR, United Kingdom
| | - Tomas Knapen
- Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1012 WX, The Netherlands
- Spinoza Centre for NeuroImaging, Royal Dutch Academy of Sciences 1012 WX, Amsterdam, The Netherlands
| | - Chris I Baker
- Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda 20892-1366, Maryland
| |
Collapse
|
12
|
Pitcher D, Ungerleider LG. Evidence for a Third Visual Pathway Specialized for Social Perception. Trends Cogn Sci 2021; 25:100-110. [PMID: 33334693 PMCID: PMC7811363 DOI: 10.1016/j.tics.2020.11.006] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022]
Abstract
Existing models propose that primate visual cortex is divided into two functionally distinct pathways. The ventral pathway computes the identity of an object; the dorsal pathway computes the location of an object, and the actions related to that object. Despite remaining influential, the two visual pathways model requires revision. Both human and non-human primate studies reveal the existence of a third visual pathway on the lateral brain surface. This third pathway projects from early visual cortex, via motion-selective areas, into the superior temporal sulcus (STS). Studies demonstrating that the STS computes the actions of moving faces and bodies (e.g., expressions, eye-gaze, audio-visual integration, intention, and mood) show that the third visual pathway is specialized for the dynamic aspects of social perception.
Collapse
Affiliation(s)
- David Pitcher
- Department of Psychology, University of York, York, YO10 5DD, UK.
| | - Leslie G Ungerleider
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Farahani ED, Wouters J, van Wieringen A. Neural Generators Underlying Temporal Envelope Processing Show Altered Responses and Hemispheric Asymmetry Across Age. Front Aging Neurosci 2020; 12:596551. [PMID: 33343335 PMCID: PMC7746817 DOI: 10.3389/fnagi.2020.596551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/02/2020] [Indexed: 01/09/2023] Open
Abstract
Speech understanding problems are highly prevalent in the aging population, even when hearing sensitivity is clinically normal. These difficulties are attributed to changes in central temporal processing with age and can potentially be captured by age-related changes in neural generators. The aim of this study is to investigate age-related changes in a wide range of neural generators during temporal processing in middle-aged and older persons with normal audiometric thresholds. A minimum-norm imaging technique is employed to reconstruct cortical and subcortical neural generators of temporal processing for different acoustic modulations. The results indicate that for relatively slow modulations (<50 Hz), the response strength of neural sources is higher in older adults than in younger ones, while the phase-locking does not change. For faster modulations (80 Hz), both the response strength and the phase-locking of neural sources are reduced in older adults compared to younger ones. These age-related changes in temporal envelope processing of slow and fast acoustic modulations are possibly due to loss of functional inhibition, which is accompanied by aging. Both cortical (primary and non-primary) and subcortical neural generators demonstrate similar age-related changes in response strength and phase-locking. Hemispheric asymmetry is also altered in older adults compared to younger ones. Alterations depend on the modulation frequency and side of stimulation. The current findings at source level could have important implications for the understanding of age-related changes in auditory temporal processing and for developing advanced rehabilitation strategies to address speech understanding difficulties in the aging population.
Collapse
Affiliation(s)
- Ehsan Darestani Farahani
- Research Group Experimental Oto-rhino-laryngology (ExpORL), Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jan Wouters
- Research Group Experimental Oto-rhino-laryngology (ExpORL), Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Astrid van Wieringen
- Research Group Experimental Oto-rhino-laryngology (ExpORL), Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Hildesheim FE, Debus I, Kessler R, Thome I, Zimmermann KM, Steinsträter O, Sommer J, Kamp-Becker I, Stark R, Jansen A. The Trajectory of Hemispheric Lateralization in the Core System of Face Processing: A Cross-Sectional Functional Magnetic Resonance Imaging Pilot Study. Front Psychol 2020; 11:507199. [PMID: 33123034 PMCID: PMC7566903 DOI: 10.3389/fpsyg.2020.507199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Face processing is mediated by a distributed neural network commonly divided into a “core system” and an “extended system.” The core system consists of several, typically right-lateralized brain regions in the occipito-temporal cortex, including the occipital face area (OFA), the fusiform face area (FFA) and the posterior superior temporal sulcus (pSTS). It was recently proposed that the face processing network is initially bilateral and becomes right-specialized in the course of the development of reading abilities due to the competition between language-related regions in the left occipito-temporal cortex (e.g., the visual word form area, VWFA) and the FFA for common neural resources. In the present pilot study, we assessed the neural face processing network in 12 children (aged 7–9 years) and 10 adults with functional magnetic resonance imaging (fMRI). The hemispheric lateralization of the core face regions was compared between both groups. The study had two goals: First, we aimed to establish an fMRI paradigm suitable for assessing activation in the core system of face processing in young children at the single subject level. Second, we planned to collect data for a power analysis to calculate the necessary group size for a large-scale cross-sectional imaging study assessing the ontogenetic development of the lateralization of the face processing network, with focus on the FFA. It was possible to detect brain activity in the core system of 75% of children at the single subject level. The average scan-to-scan motion of the included children was comparable to adults, ruling out that potential activation differences between groups are caused by unequal motion artifacts. Hemispheric lateralization of the FFA was 0.07 ± 0.48 in children (indicating bilateral activation) and −0.32 ± 0.52 in adults (indicating right-hemispheric dominance). These results thus showed, as expected, a trend for increased lateralization in adults. The estimated effect size for the FFA lateralization difference was d = 0.78 (indicating medium to large effects). An adequately powered follow-up study (sensitivity 0.8) testing developmental changes of FFA lateralization would therefore require the inclusion of 18 children and 26 adults.
Collapse
Affiliation(s)
- Franziska E Hildesheim
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg and Justus-Liebig University Giessen, Giessen, Germany
| | - Isabell Debus
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg and Justus-Liebig University Giessen, Giessen, Germany
| | - Roman Kessler
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg and Justus-Liebig University Giessen, Giessen, Germany
| | - Ina Thome
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg and Justus-Liebig University Giessen, Giessen, Germany
| | - Kristin M Zimmermann
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg and Justus-Liebig University Giessen, Giessen, Germany
| | - Olaf Steinsträter
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg and Justus-Liebig University Giessen, Giessen, Germany.,Core-Facility Brainimaging, Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
| | - Jens Sommer
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg and Justus-Liebig University Giessen, Giessen, Germany.,Core-Facility Brainimaging, Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
| | - Inge Kamp-Becker
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg and Justus-Liebig University Giessen, Giessen, Germany.,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Rudolf Stark
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg and Justus-Liebig University Giessen, Giessen, Germany.,Bender Institute of Neuroimaging, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Jansen
- Laboratory for Multimodal Neuroimaging, Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg and Justus-Liebig University Giessen, Giessen, Germany.,Core-Facility Brainimaging, Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
15
|
Cropper SJ, McCauley A, Gwinn OS, Bartlett M, Nicholls MER. Flowers in the Attic: Lateralization of the detection of meaning in visual noise. J Vis 2020; 20:11. [PMID: 33027510 PMCID: PMC7545083 DOI: 10.1167/jov.20.10.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 09/03/2020] [Indexed: 12/03/2022] Open
Abstract
The brain is a slave to sense; we see and hear things that are not there and engage in ongoing correction of these illusory experiences, commonly termed pareidolia. The current study investigates whether the predisposition to see meaning in noise is lateralized to one hemisphere or the other and how this predisposition to visual false-alarms is related to personality. Stimuli consisted of images of faces or flowers embedded in pink (1/f) noise generated through a novel process and presented in a divided-field paradigm. Right-handed undergraduates participated in a forced-choice signal-detection task where they determined whether a face or flower signal was present in a single-interval trial. Experiment 1 involved an equal ratio of signal-to-noise trials; experiment 2 provided more potential for illusionary perception with 25% signal and 75% noise trials. There was no asymmetry in the ability to discriminate signal from noise trials (measured using d') for either faces and flowers, although the response criterion (c) suggested a stronger predisposition to visual false alarms in the right visual field, and this was negatively correlated to the unusual experiences dimension of schizotypy. Counter to expectations, changing the signal-image to noise-image proportion in Experiment 2 did not change the number of false alarms for either faces and flowers, although a stronger bias was seen to the right visual field; sensitivity remained the same in both hemifields but there was a moderate positive correlation between cognitive disorganization and the bias (c) for "flower" judgements. Overall, these results were consistent with a rapid evidence-accumulation process of the kind described by a diffusion decision model mediating the task lateralized to the left-hemisphere.
Collapse
Affiliation(s)
- Simon J Cropper
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Ashlan McCauley
- School of Psychology, Flinders University, Adelaide, Australia
| | - O Scott Gwinn
- School of Psychology, Flinders University, Adelaide, Australia
| | - Megan Bartlett
- School of Psychology, Flinders University, Adelaide, Australia
| | | |
Collapse
|
16
|
Sliwinska MW, Bearpark C, Corkhill J, McPhillips A, Pitcher D. Dissociable pathways for moving and static face perception begin in early visual cortex: Evidence from an acquired prosopagnosic. Cortex 2020; 130:327-339. [DOI: 10.1016/j.cortex.2020.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/14/2020] [Accepted: 03/13/2020] [Indexed: 11/25/2022]
|
17
|
Harrison MT, Strother L. Does right hemisphere superiority sufficiently explain the left visual field advantage in face recognition? Atten Percept Psychophys 2020; 82:1205-1220. [PMID: 31773512 DOI: 10.3758/s13414-019-01896-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tendency to perceive the identity of the left half of a centrally viewed face more strongly than that of the right half is associated with visual processing of faces in the right hemisphere (RH). Here we investigate conditions under which this well-known left visual field (LVF) half-face advantage fails to occur. Our findings challenge the sufficiency of its explanation as a function of RH specialization for face processing coupled with LVF-RH correspondence. In two experiments we show that the LVF half-face advantage occurs for normal faces and chimeric faces composed of different half-face identities. In a third experiment, we show that face inversion disrupts the LVF half-face advantage. In two additional experiments we show that half-faces viewed in isolation or paired with inverted half-faces fail to show the LVF advantage. Consistent with previous explanations of the LVF half-face advantage, our findings suggest that the LVF half-face advantage reflects RH superiority for processing faces and direct transfer of LVF face information to visual cortex in the RH. Critically, however, our findings also suggest the operation of a third factor, which involves the prioritization of face-processing resources to the LVF, but only when two upright face-halves compete for these resources. We therefore conclude that RH superiority alone does not suffice to explain the LVF advantage in face recognition. We also discuss the implications of our findings for specialized visual processing of faces by the right hemisphere, and we distinguish LVF advantages for faces viewed centrally and peripherally in divided field studies.
Collapse
Affiliation(s)
- Matthew T Harrison
- Department of Psychology, University of Nevada Reno, MS0296, 1664 N. Virginia Street, Reno, NV, 89557, USA.
| | - Lars Strother
- Department of Psychology, University of Nevada Reno, MS0296, 1664 N. Virginia Street, Reno, NV, 89557, USA
| |
Collapse
|
18
|
Takamiya N, Maekawa T, Yamasaki T, Ogata K, Yamada E, Tanaka M, Tobimatsu S. Different hemispheric specialization for face/word recognition: A high-density ERP study with hemifield visual stimulation. Brain Behav 2020; 10:e01649. [PMID: 32367678 PMCID: PMC7303374 DOI: 10.1002/brb3.1649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The right fusiform face area (FFA) is important for face recognition, whereas the left visual word fusiform area (VWFA) is critical for word processing. Nevertheless, the early stages of unconscious and conscious face and word processing have not been studied systematically. MATERIALS AND METHODS To explore hemispheric differences for face and word recognition, we manipulated the visual field (left vs. right) and stimulus duration (subliminal [17 ms] versus supraliminal [300 ms]). We recorded P100 and N170 peaks with high-density ERPs in response to faces/objects or Japanese words/scrambled words in 18 healthy young subjects. RESULTS Contralateral P100 was larger than ipsilateral P100 for all stimulus types in the supraliminal, but not subliminal condition. The face- and word-N170s were not evoked in the subliminal condition. The N170 amplitude for the supraliminal face stimuli was significantly larger than that for the objects, and right hemispheric specialization was found for face recognition, irrespective of stimulus visual hemifield. Conversely, the supraliminal word-N170 amplitude was not significantly modulated by stimulus type, visual field, or hemisphere. CONCLUSIONS These results suggest that visual awareness is crucial for face and word recognition. Our study using hemifield stimulus presentation further demonstrates the robust right FFA for face recognition but not the left VWFA for word recognition in the Japanese brain.
Collapse
Affiliation(s)
- Naomi Takamiya
- Department of Clinical Neurophysiology, Graduate School of Medical Sciences, Neurological Institute, Kyushu University, Fukuoka, Japan.,Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Toshihiko Maekawa
- Department of Clinical Neurophysiology, Graduate School of Medical Sciences, Neurological Institute, Kyushu University, Fukuoka, Japan
| | - Takao Yamasaki
- Department of Clinical Neurophysiology, Graduate School of Medical Sciences, Neurological Institute, Kyushu University, Fukuoka, Japan
| | - Katsuya Ogata
- Department of Clinical Neurophysiology, Graduate School of Medical Sciences, Neurological Institute, Kyushu University, Fukuoka, Japan
| | - Emi Yamada
- Department of Clinical Neurophysiology, Graduate School of Medical Sciences, Neurological Institute, Kyushu University, Fukuoka, Japan
| | - Mutsuhide Tanaka
- Department of Clinical Neurophysiology, Graduate School of Medical Sciences, Neurological Institute, Kyushu University, Fukuoka, Japan
| | - Shozo Tobimatsu
- Department of Clinical Neurophysiology, Graduate School of Medical Sciences, Neurological Institute, Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
Choi US, Sung YW, Ogawa S. Measurement of ultra-fast signal progression related to face processing by 7T fMRI. Hum Brain Mapp 2020; 41:1754-1764. [PMID: 31925902 PMCID: PMC7268038 DOI: 10.1002/hbm.24907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 12/01/2022] Open
Abstract
Given that the brain is a dynamic system, the temporal characteristics of brain function are important. Previous functional magnetic resonance imaging (fMRI) studies have attempted to overcome the limitations of temporal resolution to investigate dynamic states of brain activity. However, finding an fMRI method with sufficient temporal resolution to keep up with the progress of neuronal signals in the brain is challenging. This study aimed to detect between‐hemisphere signal progression, occurring on a timescale of tens of milliseconds, in the ventral brain regions involved in face processing. To this end, we devised an inter‐stimulus interval (ISI) stimulation scheme and used a 7T MRI system to obtain fMRI signals with a high signal‐to‐noise ratio. We conducted two experiments: one to measure signal suppression depending on the ISI and another to measure the relationship between the amount of suppression and the ISI. These two experiments enabled us to measure the signal transfer time from a brain region in the ventral visual stream to its counterpart in the opposite hemisphere through the corpus callosum. These findings demonstrate the feasibility of using fMRI to measure ultra‐fast signals (tens of milliseconds) and could facilitate the elucidation of further aspects of dynamic brain function.
Collapse
Affiliation(s)
- Uk-Su Choi
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yul-Wan Sung
- Kansei Fukushi Research Institute, Tohoku Fukushi University, Sendai, Japan
| | - Seiji Ogawa
- Kansei Fukushi Research Institute, Tohoku Fukushi University, Sendai, Japan.,Neuroscience Research Institute, Gachon University, Incheon, Korea
| |
Collapse
|
20
|
Age related differences in the recognition of facial expression: Evidence from EEG event-related brain oscillations. Int J Psychophysiol 2020; 147:244-256. [DOI: 10.1016/j.ijpsycho.2019.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/04/2019] [Accepted: 11/27/2019] [Indexed: 01/09/2023]
|
21
|
Burra N, Kerzel D. Task Demands Modulate Effects of Threatening Faces on Early Perceptual Encoding. Front Psychol 2019; 10:2400. [PMID: 31708839 PMCID: PMC6821787 DOI: 10.3389/fpsyg.2019.02400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/08/2019] [Indexed: 12/03/2022] Open
Abstract
The threat capture hypothesis states that threatening stimuli are automatically processed with higher priority than non-threatening stimuli, irrespective of observer intentions or focus of attention. We evaluated the threat capture hypothesis with respect to the early perceptual stages of face processing. We focused on an electrophysiological marker of face processing (the lateralized N170) in response to neutral, happy, and angry facial expressions displayed in competition with a non-face stimulus (a house). We evaluated how effects of facial expression on the lateralized N170 were modulated by task demands. In the pixel task, participants were required to identify the gender of the face, which made the face task-relevant and entailed structural encoding of the face stimulus. In the pixel task, participants identified the location of a missing pixel in the fixation cross, which made the face task-irrelevant and placed it outside the focus of attention. When faces were relevant, the lateralized N170 to angry faces was enhanced compared to happy and neutral faces. When faces were irrelevant, facial expression had no effect. These results reveal the critical role of task demands on the preference for threatening faces, indicating that top-down, voluntary processing modulates the prioritization of threat.
Collapse
Affiliation(s)
- Nicolas Burra
- Faculté de Psychologie et des Sciences de l'Éducation, Université de Genève, Geneva, Switzerland
| | - Dirk Kerzel
- Faculté de Psychologie et des Sciences de l'Éducation, Université de Genève, Geneva, Switzerland
| |
Collapse
|
22
|
Yoo SA, Tsotsos JK, Fallah M. Feed-forward visual processing suffices for coarse localization but fine-grained localization in an attention-demanding context needs feedback processing. PLoS One 2019; 14:e0223166. [PMID: 31557228 PMCID: PMC6762163 DOI: 10.1371/journal.pone.0223166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 09/17/2019] [Indexed: 01/08/2023] Open
Abstract
It is well known that simple visual tasks, such as object detection or categorization, can be performed within a short period of time, suggesting the sufficiency of feed-forward visual processing. However, more complex visual tasks, such as fine-grained localization may require high-resolution information available at the early processing levels in the visual hierarchy. To access this information using a top-down approach, feedback processing would need to traverse several stages in the visual hierarchy and each step in this traversal takes processing time. In the present study, we compared the processing time required to complete object categorization and localization by varying presentation duration and complexity of natural scene stimuli. We hypothesized that performance would be asymptotic at shorter presentation durations when feed-forward processing suffices for visual tasks, whereas performance would gradually improve as images are presented longer if the tasks rely on feedback processing. In Experiment 1, where simple images were presented, both object categorization and localization performance sharply improved until 100 ms of presentation then it leveled off. These results are a replication of previously reported rapid categorization effects but they do not support the role of feedback processing in localization tasks, indicating that feed-forward processing enables coarse localization in relatively simple visual scenes. In Experiment 2, the same tasks were performed but more attention-demanding and ecologically valid images were used as stimuli. Unlike in Experiment 1, both object categorization performance and localization precision gradually improved as stimulus presentation duration became longer. This finding suggests that complex visual tasks that require visual scrutiny call for top-down feedback processing.
Collapse
Affiliation(s)
- Sang-Ah Yoo
- Department of Psychology, York University, Toronto, ON, Canada.,Centre for Vision Research, York University, Toronto, ON, Canada
| | - John K Tsotsos
- Centre for Vision Research, York University, Toronto, ON, Canada.,Active and Attentive Vision Laboratory, Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada
| | - Mazyar Fallah
- Department of Psychology, York University, Toronto, ON, Canada.,Centre for Vision Research, York University, Toronto, ON, Canada.,Visual Perception and Attention Laboratory, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
23
|
Op de Beeck HP, Pillet I, Ritchie JB. Factors Determining Where Category-Selective Areas Emerge in Visual Cortex. Trends Cogn Sci 2019; 23:784-797. [PMID: 31327671 DOI: 10.1016/j.tics.2019.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 11/26/2022]
Abstract
A hallmark of functional localization in the human brain is the presence of areas in visual cortex specialized for representing particular categories such as faces and words. Why do these areas appear where they do during development? Recent findings highlight several general factors to consider when answering this question. Experience-driven category selectivity arises in regions that have: (i) pre-existing selectivity for properties of the stimulus, (ii) are appropriately placed in the computational hierarchy of the visual system, and (iii) exhibit domain-specific patterns of connectivity to nonvisual regions. In other words, cortical location of category selectivity is constrained by what category will be represented, how it will be represented, and why the representation will be used.
Collapse
Affiliation(s)
- Hans P Op de Beeck
- Department of Brain and Cognition and Leuven Brain Institute, KU Leuven, Belgium. @kuleuven.be
| | - Ineke Pillet
- Department of Brain and Cognition and Leuven Brain Institute, KU Leuven, Belgium
| | - J Brendan Ritchie
- Department of Brain and Cognition and Leuven Brain Institute, KU Leuven, Belgium
| |
Collapse
|
24
|
Kaiser D, Quek GL, Cichy RM, Peelen MV. Object Vision in a Structured World. Trends Cogn Sci 2019; 23:672-685. [PMID: 31147151 PMCID: PMC7612023 DOI: 10.1016/j.tics.2019.04.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/15/2019] [Accepted: 04/30/2019] [Indexed: 01/02/2023]
Abstract
In natural vision, objects appear at typical locations, both with respect to visual space (e.g., an airplane in the upper part of a scene) and other objects (e.g., a lamp above a table). Recent studies have shown that object vision is strongly adapted to such positional regularities. In this review we synthesize these developments, highlighting that adaptations to positional regularities facilitate object detection and recognition, and sharpen the representations of objects in visual cortex. These effects are pervasive across various types of high-level content. We posit that adaptations to real-world structure collectively support optimal usage of limited cortical processing resources. Taking positional regularities into account will thus be essential for understanding efficient object vision in the real world.
Collapse
Affiliation(s)
- Daniel Kaiser
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.
| | - Genevieve L Quek
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Radoslaw M Cichy
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Marius V Peelen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
25
|
Nag S, Berman D, Golomb JD. Category-selective areas in human visual cortex exhibit preferences for stimulus depth. Neuroimage 2019; 196:289-301. [PMID: 30978498 DOI: 10.1016/j.neuroimage.2019.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/21/2019] [Accepted: 04/07/2019] [Indexed: 12/01/2022] Open
Abstract
Multiple regions in the human brain are dedicated to accomplish the feat of object recognition; yet our brains must also compute the 2D and 3D locations of the objects we encounter in order to make sense of our visual environments. A number of studies have explored how various object category-selective regions are sensitive to and have preferences for specific 2D spatial locations in addition to processing their preferred-stimulus categories, but there is no survey of how these regions respond to depth information. In a blocked functional MRI experiment, subjects viewed a series of category-specific (i.e., faces, objects, scenes) and unspecific (e.g., random moving dots) stimuli with red/green anaglyph glasses. Critically, these stimuli were presented at different depth planes such that they appeared in front of, behind, or at the same (i.e., middle) depth plane as the fixation point (Experiment 1) or simultaneously in front of and behind fixation (i.e., mixed depth; Experiment 2). Comparisons of mean response magnitudes between back, middle, and front depth planes reveal that face and object regions OFA and LOC exhibit a preference for front depths, and motion area MT+ exhibits a strong linear preference for front, followed by middle, followed by back depth planes. In contrast, scene-selective regions PPA and OPA prefer front and/or back depth planes (relative to middle). Moreover, the occipital place area demonstrates a strong preference for "mixed" depth above and beyond back alone, raising potential implications about its particular role in scene perception. Crucially, the observed depth preferences in nearly all areas were evoked irrespective of the semantic stimulus category being viewed. These results reveal that the object category-selective regions may play a role in processing or incorporating depth information that is orthogonal to their primary processing of object category information.
Collapse
Affiliation(s)
- Samoni Nag
- Department of Psychology, Center for Cognitive & Brain Sciences, The Ohio State University, USA; Department of Psychology, The George Washington University, USA
| | - Daniel Berman
- Department of Psychology, Center for Cognitive & Brain Sciences, The Ohio State University, USA
| | - Julie D Golomb
- Department of Psychology, Center for Cognitive & Brain Sciences, The Ohio State University, USA.
| |
Collapse
|
26
|
Yargholi E, Hossein-Zadeh GA, Rajimehr R. Predicting Blood Oxygenation Level-Dependent Activity in Fusiform Face Area from the Activity in Other Visual Areas. Brain Connect 2019; 9:329-340. [PMID: 30717610 DOI: 10.1089/brain.2018.0624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neuroimaging studies have shown that discrete regions in ventral visual pathway respond selectively to specific object categories. For example, the fusiform face area (FFA) in humans is consistently more responsive to face than nonface images. However, it is not clear how other cortical regions contribute to this preferential response in FFA. To address this question, we performed a functional magnetic resonance imaging study on human subjects watching naturalistic movie clips from human actions. We then used correlation and multivariate regression (partial least-squares regression) analyses to estimate/predict the mean BOLD (blood oxygenation level-dependent) activity in FFA, from the mean and pattern of responses in 24 visual cortical areas. Higher tier retinotopic areas V3, hV4, and LO2, motion-selective area middle temporal, body-selective areas, and non-FFA face-selective areas had the best prediction accuracy particularly when they were located ipsilateral to FFA. All non-FFA collectively could explain up to 75% of variance in the FFA response. The regression models were also designed to predict the mean activity in one face area from the pattern of activity in another face area. The prediction power was significantly higher between the occipital face area and FFA. The multivariate regression analysis provides a new framework for investigating functional connectivity between cortical areas, and it could inform hierarchical models of visual cortex.
Collapse
Affiliation(s)
- Elahe' Yargholi
- 1 School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- 2 School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Gholam-Ali Hossein-Zadeh
- 1 School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- 2 School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Reza Rajimehr
- 1 School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- 2 School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
| |
Collapse
|
27
|
Zhou Z, Whitney C, Strother L. Embedded word priming elicits enhanced fMRI responses in the visual word form area. PLoS One 2019; 14:e0208318. [PMID: 30629612 PMCID: PMC6328158 DOI: 10.1371/journal.pone.0208318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/15/2018] [Indexed: 11/19/2022] Open
Abstract
Lexical embedding is common in all languages and elicits mutual orthographic interference between an embedded word and its carrier. The neural basis of such interference remains unknown. We employed a novel fMRI prime-target embedded word paradigm to test for involvement of a visual word form area (VWFA) in left ventral occipitotemporal cortex in co-activation of embedded words and their carriers. Based on the results of related fMRI studies we predicted either enhancement or suppression of fMRI responses to embedded words initially viewed as primes, and repeated in the context of target carrier words. Our results clearly showed enhancement of fMRI responses in the VWFA to embedded-carrier word pairs as compared to unrelated prime-target pairs. In contrast to non-visual language-related areas (e.g., left inferior frontal gyrus), enhanced fMRI responses did not occur in the VWFA when embedded-carrier word pairs were restricted to the left visual hemifield. Our finding of fMRI enhancement in the VWFA is novel evidence of its involvement in representational rivalry between orthographically similar words, and the co-activation of embedded words and their carriers.
Collapse
Affiliation(s)
- Zhiheng Zhou
- Department of Psychology, University of Nevada, Reno, NV, United States of America
| | - Carol Whitney
- Independent Researcher, Silver Spring, MD, United States of America
| | - Lars Strother
- Department of Psychology, University of Nevada, Reno, NV, United States of America
| |
Collapse
|
28
|
Idiosyncratic, Retinotopic Bias in Face Identification Modulated by Familiarity. eNeuro 2018; 5:eN-NWR-0054-18. [PMID: 30294669 PMCID: PMC6171739 DOI: 10.1523/eneuro.0054-18.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/25/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022] Open
Abstract
The perception of gender and age of unfamiliar faces is reported to vary idiosyncratically across retinal locations such that, for example, the same androgynous face may appear to be male at one location but female at another. Here, we test spatial heterogeneity for the recognition of the identity of personally familiar faces in human participants. We found idiosyncratic biases that were stable within participants and that varied more across locations for low as compared to high familiar faces. These data suggest that like face gender and age, face identity is processed, in part, by independent populations of neurons monitoring restricted spatial regions and that the recognition responses vary for the same face across these different locations. Moreover, repeated and varied social interactions appear to lead to adjustments of these independent face recognition neurons so that the same familiar face is eventually more likely to elicit the same recognition response across widely separated visual field locations. We provide a mechanistic account of this reduced retinotopic bias based on computational simulations.
Collapse
|
29
|
Typical retinotopic locations impact the time course of object coding. Neuroimage 2018; 176:372-379. [DOI: 10.1016/j.neuroimage.2018.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 01/28/2023] Open
|
30
|
Tompary A, Al-Aidroos N, Turk-Browne NB. Attending to What and Where: Background Connectivity Integrates Categorical and Spatial Attention. J Cogn Neurosci 2018; 30:1281-1297. [PMID: 29791296 DOI: 10.1162/jocn_a_01284] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Top-down attention prioritizes the processing of goal-relevant information throughout visual cortex based on where that information is found in space and what it looks like. Whereas attentional goals often have both spatial and featural components, most research on the neural basis of attention has examined these components separately. Here we investigated how these attentional components are integrated by examining the attentional modulation of functional connectivity between visual areas with different selectivity. Specifically, we used fMRI to measure temporal correlations between spatially selective regions of early visual cortex and category-selective regions in ventral temporal cortex while participants performed a task that benefitted from both spatial and categorical attention. We found that categorical attention modulated the connectivity of category-selective areas, but only with retinotopic areas that coded for the spatially attended location. Similarly, spatial attention modulated the connectivity of retinotopic areas only with the areas coding for the attended category. This pattern of results suggests that attentional modulation of connectivity is driven both by spatial selection and featural biases. Combined with exploratory analyses of frontoparietal areas that track these changes in connectivity among visual areas, this study begins to shed light on how different components of attention are integrated in support of more complex behavioral goals.
Collapse
|
31
|
Liu S, Tse PU, Cavanagh P. Meridian interference reveals neural locus of motion-induced position shifts. J Neurophysiol 2018. [PMID: 29513148 DOI: 10.1152/jn.00876.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When a Gabor patch moves along a path in one direction while its internal texture drifts orthogonally to this path, it can appear to deviate from its physical path by 45° or more. This double-drift illusion is different from other motion-induced position shift effects in several ways: it has an integration period of over a second; the illusory displacement that accumulates over a second or more is orthogonal to rather than along the motion path; the perceptual deviations are much larger; and they have little or no effect on eye movements to the target. In this study we investigated the underlying neural mechanisms of the motion integration and position processing for this double-drift stimulus by testing possible anatomical constraints on its magnitude. We found that the illusion was reduced at the vertical and horizontal meridians when the perceptual path would cross or be driven toward the meridian, but not at other locations or other motion directions. The disruption of the accumulation of the position error at both the horizontal and vertical meridians suggests a central role of quadrantic areas in the generation of this type of motion-induced position shift. NEW & NOTEWORTHY The remarkably strong double-drift illusion is disrupted at both the vertical and horizontal meridians. We propose that this finding is the behavioral consequence of the anatomical gaps at both meridians, suggesting that neural areas with quadrantic representations (e.g., V2, V3) are the initial locus of this motion-induced position shift. This result rules out V1 as the source of the illusion because it has an anatomical break only at the vertical meridian.
Collapse
Affiliation(s)
- Sirui Liu
- Department of Psychological and Brian Sciences, Dartmouth College , Hanover, New Hampshire
| | - Peter U Tse
- Department of Psychological and Brian Sciences, Dartmouth College , Hanover, New Hampshire
| | - Patrick Cavanagh
- Department of Psychological and Brian Sciences, Dartmouth College , Hanover, New Hampshire.,Department of Psychology, Glendon College , Toronto, Ontario , Canada
| |
Collapse
|
32
|
Wang B, Li T, Niu Y, Xiang J, Cheng J, Liu B, Zhang H, Yan T, Kanazawa S, Wu J. Differences in neural responses to ipsilateral stimuli in wide-view fields between face- and house-selective areas. PLoS One 2018; 13:e0192532. [PMID: 29451872 PMCID: PMC5815592 DOI: 10.1371/journal.pone.0192532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 01/25/2018] [Indexed: 11/18/2022] Open
Abstract
Category-selective brain areas exhibit varying levels of neural activity to ipsilaterally presented stimuli. However, in face- and house-selective areas, the neural responses evoked by ipsilateral stimuli in the peripheral visual field remain unclear. In this study, we displayed face and house images using a wide-view visual presentation system while performing functional magnetic resonance imaging (fMRI). The face-selective areas (fusiform face area (FFA) and occipital face area (OFA)) exhibited intense neural responses to ipsilaterally presented images, whereas the house-selective areas (parahippocampal place area (PPA) and transverse occipital sulcus (TOS)) exhibited substantially smaller and even negative neural responses to the ipsilaterally presented images. We also found that the category preferences of the contralateral and ipsilateral neural responses were similar. Interestingly, the face- and house-selective areas exhibited neural responses to ipsilateral images that were smaller than the responses to the contralateral images. Multi-voxel pattern analysis (MVPA) was implemented to evaluate the difference between the contralateral and ipsilateral responses. The classification accuracies were much greater than those expected by chance. The classification accuracies in the FFA were smaller than those in the PPA and TOS. The closer eccentricities elicited greater classification accuracies in the PPA and TOS. We propose that these ipsilateral neural responses might be interpreted by interhemispheric communication through intrahemispheric connectivity of white matter connection and interhemispheric connectivity via the corpus callosum and occipital white matter connection. Furthermore, the PPA and TOS likely have weaker interhemispheric communication than the FFA and OFA, particularly in the peripheral visual field.
Collapse
Affiliation(s)
- Bin Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, China
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- * E-mail: (BW); (TY); (HZ); (JW)
| | - Ting Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Yan Niu
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Jie Xiang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Junjie Cheng
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Bo Liu
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- * E-mail: (BW); (TY); (HZ); (JW)
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing, China
- * E-mail: (BW); (TY); (HZ); (JW)
| | - Susumu Kanazawa
- Graduate School of Medicine, Dentistry, Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jinglong Wu
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing Institute of Technology, Beijing, China
- * E-mail: (BW); (TY); (HZ); (JW)
| |
Collapse
|
33
|
Rennig J, Cornelsen S, Wilhelm H, Himmelbach M, Karnath HO. Preserved Expert Object Recognition in a Case of Visual Hemiagnosia. J Cogn Neurosci 2018; 30:131-143. [DOI: 10.1162/jocn_a_01193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We examined a stroke patient (HWS) with a unilateral lesion of the right medial ventral visual stream, involving the right fusiform and parahippocampal gyri. In a number of object recognition tests with lateralized presentations of target stimuli, HWS showed significant symptoms of hemiagnosia with contralesional recognition deficits for everyday objects. We further explored the patient's capacities of visual expertise that were acquired before the current perceptual impairment became effective. We confronted him with objects he was an expert for already before stroke onset and compared this performance with the recognition of familiar everyday objects. HWS was able to identify significantly more of the specific (“expert”) than of the everyday objects on the affected contralesional side. This observation of better expert object recognition in visual hemiagnosia allows for several interpretations. The results may be caused by enhanced information processing for expert objects in the ventral system in the affected or the intact hemisphere. Expert knowledge could trigger top–down mechanisms supporting object recognition despite of impaired basic functions of object processing. More importantly, the current work demonstrates that top–down mechanisms of visual expertise influence object recognition at an early stage, probably before visual object information propagates to modules of higher object recognition. Because HWS showed a lesion to the fusiform gyrus and spared capacities of expert object recognition, the current study emphasizes possible contributions of areas outside the ventral stream to visual expertise.
Collapse
|
34
|
Freiwald W, Duchaine B, Yovel G. Face Processing Systems: From Neurons to Real-World Social Perception. Annu Rev Neurosci 2018; 39:325-46. [PMID: 27442071 DOI: 10.1146/annurev-neuro-070815-013934] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Primate face processing depends on a distributed network of interlinked face-selective areas composed of face-selective neurons. In both humans and macaques, the network is divided into a ventral stream and a dorsal stream, and the functional similarities of the areas in humans and macaques indicate they are homologous. Neural correlates for face detection, holistic processing, face space, and other key properties of human face processing have been identified at the single neuron level, and studies providing causal evidence have established firmly that face-selective brain areas are central to face processing. These mechanisms give rise to our highly accurate familiar face recognition but also to our error-prone performance with unfamiliar faces. This limitation of the face system has important implications for consequential situations such as eyewitness identification and policing.
Collapse
Affiliation(s)
| | - Bradley Duchaine
- Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Galit Yovel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel 69978.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel 69978
| |
Collapse
|
35
|
Hemifield coding in ventral object-sensitive areas – Evidence from visual hemiagnosia. Cortex 2018; 98:149-162. [DOI: 10.1016/j.cortex.2017.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/19/2017] [Accepted: 06/19/2017] [Indexed: 11/22/2022]
|
36
|
Abstract
Face perception is critical for normal social functioning and is mediated by a network of regions in the ventral visual stream. In this review, we describe recent neuroimaging findings regarding the macro- and microscopic anatomical features of the ventral face network, the characteristics of white matter connections, and basic computations performed by population receptive fields within face-selective regions composing this network. We emphasize the importance of the neural tissue properties and white matter connections of each region, as these anatomical properties may be tightly linked to the functional characteristics of the ventral face network. We end by considering how empirical investigations of the neural architecture of the face network may inform the development of computational models and shed light on how computations in the face network enable efficient face perception.
Collapse
Affiliation(s)
- Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, California 94305;
- Stanford Neurosciences Institute, Stanford University, Stanford, California 94305
| | - Kevin S Weiner
- Department of Psychology, Stanford University, Stanford, California 94305;
| | - Kendrick Kay
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jesse Gomez
- Neurosciences Program, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
37
|
The Face-Processing Network Is Resilient to Focal Resection of Human Visual Cortex. J Neurosci 2017; 36:8425-40. [PMID: 27511014 DOI: 10.1523/jneurosci.4509-15.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/22/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Human face perception requires a network of brain regions distributed throughout the occipital and temporal lobes with a right hemisphere advantage. Present theories consider this network as either a processing hierarchy beginning with the inferior occipital gyrus (occipital face area; IOG-faces/OFA) or a multiple-route network with nonhierarchical components. The former predicts that removing IOG-faces/OFA will detrimentally affect downstream stages, whereas the latter does not. We tested this prediction in a human patient (Patient S.P.) requiring removal of the right inferior occipital cortex, including IOG-faces/OFA. We acquired multiple fMRI measurements in Patient S.P. before and after a preplanned surgery and multiple measurements in typical controls, enabling both within-subject/across-session comparisons (Patient S.P. before resection vs Patient S.P. after resection) and between-subject/across-session comparisons (Patient S.P. vs controls). We found that the spatial topology and selectivity of downstream ipsilateral face-selective regions were stable 1 and 8 month(s) after surgery. Additionally, the reliability of distributed patterns of face selectivity in Patient S.P. before versus after resection was not different from across-session reliability in controls. Nevertheless, postoperatively, representations of visual space were typical in dorsal face-selective regions but atypical in ventral face-selective regions and V1 of the resected hemisphere. Diffusion weighted imaging in Patient S.P. and controls identifies white matter tracts connecting retinotopic areas to downstream face-selective regions, which may contribute to the stable and plastic features of the face network in Patient S.P. after surgery. Together, our results support a multiple-route network of face processing with nonhierarchical components and shed light on stable and plastic features of high-level visual cortex following focal brain damage. SIGNIFICANCE STATEMENT Brain networks consist of interconnected functional regions commonly organized in processing hierarchies. Prevailing theories predict that damage to the input of the hierarchy will detrimentally affect later stages. We tested this prediction with multiple brain measurements in a rare human patient requiring surgical removal of the putative input to a network processing faces. Surprisingly, the spatial topology and selectivity of downstream face-selective regions are stable after surgery. Nevertheless, representations of visual space were typical in dorsal face-selective regions but atypical in ventral face-selective regions and V1. White matter connections from outside the face network may support these stable and plastic features. As processing hierarchies are ubiquitous in biological and nonbiological systems, our results have pervasive implications for understanding the construction of resilient networks.
Collapse
|
38
|
Multivariate Patterns in the Human Object-Processing Pathway Reveal a Shift from Retinotopic to Shape Curvature Representations in Lateral Occipital Areas, LO-1 and LO-2. J Neurosci 2017; 36:5763-74. [PMID: 27225766 DOI: 10.1523/jneurosci.3603-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/08/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Representations in early visual areas are organized on the basis of retinotopy, but this organizational principle appears to lose prominence in the extrastriate cortex. Nevertheless, an extrastriate region, such as the shape-selective lateral occipital cortex (LO), must still base its activation on the responses from earlier retinotopic visual areas, implying that a transition from retinotopic to "functional" organizations should exist. We hypothesized that such a transition may lie in LO-1 or LO-2, two visual areas lying between retinotopically defined V3d and functionally defined LO. Using a rapid event-related fMRI paradigm, we measured neural similarity in 12 human participants between pairs of stimuli differing along dimensions of shape exemplar and shape complexity within both retinotopically and functionally defined visual areas. These neural similarity measures were then compared with low-level and more abstract (curvature-based) measures of stimulus similarity. We found that low-level, but not abstract, stimulus measures predicted V1-V3 responses, whereas the converse was true for LO, a double dissociation. Critically, abstract stimulus measures were most predictive of responses within LO-2, akin to LO, whereas both low-level and abstract measures were predictive for responses within LO-1, perhaps indicating a transitional point between those two organizational principles. Similar transitions to abstract representations were not observed in the more ventral stream passing through V4 and VO-1/2. The transition we observed in LO-1 and LO-2 demonstrates that a more "abstracted" representation, typically considered the preserve of "category-selective" extrastriate cortex, can nevertheless emerge in retinotopic regions. SIGNIFICANCE STATEMENT Visual areas are typically identified either through retinotopy (e.g., V1-V3) or from functional selectivity [e.g., shape-selective lateral occipital complex (LOC)]. We combined these approaches to explore the nature of shape representations through the visual hierarchy. Two different representations emerged: the first reflected low-level shape properties (dependent on the spatial layout of the shape outline), whereas the second captured more abstract curvature-related shape features. Critically, early visual cortex represented low-level information but this diminished in the extrastriate cortex (LO-1/LO-2/LOC), in which the abstract representation emerged. Therefore, this work further elucidates the nature of shape representations in the LOC, provides insight into how those representations emerge from early retinotopic cortex, and crucially demonstrates that retinotopically tuned regions (LO-1/LO-2) are not necessarily constrained to retinotopic representations.
Collapse
|
39
|
Burns EJ, Martin J, Chan AH, Xu H. Impaired processing of facial happiness, with or without awareness, in developmental prosopagnosia. Neuropsychologia 2017. [DOI: 10.1016/j.neuropsychologia.2017.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Strother L, Zhou Z, Coros AK, Vilis T. An fMRI study of visual hemifield integration and cerebral lateralization. Neuropsychologia 2017; 100:35-43. [PMID: 28396097 DOI: 10.1016/j.neuropsychologia.2017.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/27/2017] [Accepted: 04/02/2017] [Indexed: 11/19/2022]
Abstract
The human brain integrates hemifield-split visual information via interhemispheric transfer. The degree to which neural circuits involved in this process behave differently during word recognition as compared to object recognition is not known. Evidence from neuroimaging (fMRI) suggests that interhemispheric transfer during word viewing converges in the left hemisphere, in two distinct brain areas, an "occipital word form area" (OWFA) and a more anterior occipitotemporal "visual word form area" (VWFA). We used a novel fMRI half-field repetition technique to test whether or not these areas also integrate nonverbal hemifield-split string stimuli of similar visual complexity. We found that the fMRI responses of both the OWFA and VWFA while viewing nonverbal stimuli were strikingly different than those measured during word viewing, especially with respect to half-stimulus changes restricted to a single hemifield. We conclude that normal reading relies on left-lateralized neural mechanisms, which integrate hemifield-split visual information for words but not for nonverbal stimuli.
Collapse
Affiliation(s)
- Lars Strother
- University of Nevada, Reno, Department of Psychology, USA.
| | - Zhiheng Zhou
- University of Nevada, Reno, Department of Psychology, USA
| | | | - Tutis Vilis
- University of Western Ontario, Brain and Mind Institute, Canada
| |
Collapse
|
41
|
Reithler J, Peters JC, Goebel R. Characterizing object- and position-dependent response profiles to uni- and bilateral stimulus configurations in human higher visual cortex: a 7T fMRI study. Neuroimage 2017; 152:551-562. [PMID: 28336425 DOI: 10.1016/j.neuroimage.2017.03.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/07/2017] [Accepted: 03/18/2017] [Indexed: 11/19/2022] Open
Abstract
Visual scenes are initially processed via segregated neural pathways dedicated to either of the two visual hemifields. Although higher-order visual areas are generally believed to utilize invariant object representations (abstracted away from features such as stimulus position), recent findings suggest they retain more spatial information than previously thought. Here, we assessed the nature of such higher-order object representations in human cortex using high-resolution fMRI at 7T, supported by corroborative 3T data. We show that multi-voxel activation patterns in both the contra- and ipsilateral hemisphere can be exploited to successfully classify the object category of unilaterally presented stimuli. Moreover, robustly identified rank order-based response profiles demonstrated a strong contralateral bias which frequently outweighed object category preferences. Finally, we contrasted different combinatorial operations to predict the responses during bilateral stimulation conditions based on responses to their constituent unilateral elements. Results favored a max operation predominantly reflecting the contralateral stimuli. The current findings extend previous work by showing that configuration-dependent modulations in higher-order visual cortex responses as observed in single unit activity have a counterpart in human neural population coding. They furthermore corroborate the emerging view that position coding is a fundamental functional characteristic of ventral visual stream processing.
Collapse
Affiliation(s)
- Joel Reithler
- Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, The Netherlands; Department of Neuroimaging and Neuromodeling, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands.
| | - Judith C Peters
- Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, The Netherlands; Department of Neuroimaging and Neuromodeling, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| | - Rainer Goebel
- Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, The Netherlands; Department of Neuroimaging and Neuromodeling, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
42
|
Praß M, Grimsen C, Fahle M. Functional modulation of contralateral bias in early and object-selective areas after stroke of the occipital ventral cortices. Neuropsychologia 2017; 95:73-85. [PMID: 27956263 DOI: 10.1016/j.neuropsychologia.2016.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/14/2016] [Accepted: 12/08/2016] [Indexed: 11/16/2022]
Abstract
Object agnosia is a rare symptom, occurring mainly after bilateral damage of the ventral visual cortex. Most patients suffering from unilateral ventral lesions are clinically non-agnosic. Here, we studied the effect of unilateral occipito-temporal lesions on object categorization and its underlying neural correlates in visual areas. Thirteen non-agnosic stroke patients and twelve control subjects performed an event-related rapid object categorization task in the fMRI scanner where images were presented either to the left or to the right of a fixed point. Eight patients had intact central visual fields within at least 10° eccentricity while five patients showed an incomplete hemianopia. Patients made more errors than controls for both contra- and ipsilesional presentation, meaning that object categorization was impaired bilaterally in both patient groups. The activity in cortical visual areas is usually higher when a stimulus is presented contralaterally compared to presented ipsilaterally (contralateral bias). A region of interest analysis of early visual (V1-V4) and object-selective areas (lateral occipital complex, LOC; fusiform face area, FFA; and parahippocampal place area, PPA) revealed that the lesioned-hemisphere of patients showed reduced contralateral bias in early visual areas and LOC. In contrast, literally no contralateral bias in FFA and PPA was found. These findings indicate disturbed processing in the lesioned hemisphere, which might be related to the processing of visually presented objects. Thus, unilateral occipito-temporal damage leads to altered contralateral bias in the lesioned hemisphere, which might be the cause of impaired categorization performance in both visual hemifields in clinically non-agnosic patients. We conclude that both hemispheres need to be functionally intact for unimpaired object processing.
Collapse
Affiliation(s)
- Maren Praß
- Center for Cognitive Science, Human Neurobiology, Bremen University, Hochschulring 18, 28359 Bremen, Germany.
| | - Cathleen Grimsen
- Center for Cognitive Science, Human Neurobiology, Bremen University, Hochschulring 18, 28359 Bremen, Germany.
| | - Manfred Fahle
- Center for Cognitive Science, Human Neurobiology, Bremen University, Hochschulring 18, 28359 Bremen, Germany.
| |
Collapse
|
43
|
Finlayson NJ, Zhang X, Golomb JD. Differential patterns of 2D location versus depth decoding along the visual hierarchy. Neuroimage 2016; 147:507-516. [PMID: 28039760 DOI: 10.1016/j.neuroimage.2016.12.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/27/2016] [Accepted: 12/14/2016] [Indexed: 11/25/2022] Open
Abstract
Visual information is initially represented as 2D images on the retina, but our brains are able to transform this input to perceive our rich 3D environment. While many studies have explored 2D spatial representations or depth perception in isolation, it remains unknown if or how these processes interact in human visual cortex. Here we used functional MRI and multi-voxel pattern analysis to investigate the relationship between 2D location and position-in-depth information. We stimulated different 3D locations in a blocked design: each location was defined by horizontal, vertical, and depth position. Participants remained fixated at the center of the screen while passively viewing the peripheral stimuli with red/green anaglyph glasses. Our results revealed a widespread, systematic transition throughout visual cortex. As expected, 2D location information (horizontal and vertical) could be strongly decoded in early visual areas, with reduced decoding higher along the visual hierarchy, consistent with known changes in receptive field sizes. Critically, we found that the decoding of position-in-depth information tracked inversely with the 2D location pattern, with the magnitude of depth decoding gradually increasing from intermediate to higher visual and category regions. Representations of 2D location information became increasingly location-tolerant in later areas, where depth information was also tolerant to changes in 2D location. We propose that spatial representations gradually transition from 2D-dominant to balanced 3D (2D and depth) along the visual hierarchy.
Collapse
Affiliation(s)
- Nonie J Finlayson
- Department of Psychology, Center for Cognitive & Brain Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Xiaoli Zhang
- Department of Psychology, Center for Cognitive & Brain Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Julie D Golomb
- Department of Psychology, Center for Cognitive & Brain Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
44
|
Uono S, Sato W, Kochiyama T, Kubota Y, Sawada R, Yoshimura S, Toichi M. Time course of gamma-band oscillation associated with face processing in the inferior occipital gyrus and fusiform gyrus: A combined fMRI and MEG study. Hum Brain Mapp 2016; 38:2067-2079. [PMID: 28029717 DOI: 10.1002/hbm.23505] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 11/30/2016] [Accepted: 12/14/2016] [Indexed: 11/10/2022] Open
Abstract
Debate continues over whether the inferior occipital gyrus (IOG) or the fusiform gyrus (FG) represents the first stage of face processing and what role these brain regions play. We investigated this issue by combining functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in normal adults. Participants passively observed upright and inverted faces and houses. First, we identified the IOG and FG as face-specific regions using fMRI. We applied beamforming source reconstruction and time-frequency analysis to MEG source signals to reveal the time course of gamma-band activations in these regions. The results revealed that the right IOG showed higher gamma-band activation in response to upright faces than to upright houses at 100 ms from the stimulus onset. Subsequently, the right FG showed greater gamma-band response to upright faces versus upright houses at around 170 ms. The gamma-band activation in the right IOG and right FG was larger in response to inverted faces than to upright faces at the later time window. These results suggest that (1) the gamma-band activities occurs rapidly first in the IOG and next in the FG and (2) the gamma-band activity in the right IOG at later time stages is involved in configuration processing for faces. Hum Brain Mapp 38:2067-2079, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shota Uono
- Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Wataru Sato
- Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takanori Kochiyama
- ATR Brain Activity Imaging Center, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan
| | - Yasutaka Kubota
- Health and Medical Services Center, Shiga University, Hikone, Shiga, 522-0069, Japan
| | - Reiko Sawada
- Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan.,The Organization for Promoting Neurodevelopmental Disorder Research, Sakyo-ku, Kyoto, 606-8392, Japan
| | - Sayaka Yoshimura
- Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Motomi Toichi
- Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan.,The Organization for Promoting Neurodevelopmental Disorder Research, Sakyo-ku, Kyoto, 606-8392, Japan
| |
Collapse
|
45
|
Retinotopic information interacts with category selectivity in human ventral cortex. Neuropsychologia 2016; 92:90-106. [DOI: 10.1016/j.neuropsychologia.2016.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/07/2016] [Accepted: 05/20/2016] [Indexed: 11/19/2022]
|
46
|
Nichols DF, Betts LR, Wilson HR. Position selectivity in face-sensitive visual cortex to facial and nonfacial stimuli: an fMRI study. Brain Behav 2016; 6:e00542. [PMID: 27843696 PMCID: PMC5102641 DOI: 10.1002/brb3.542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/30/2016] [Accepted: 06/26/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Evidence for position sensitivity in object-selective visual areas has been building. On one hand, most of the relevant studies have utilized stimuli for which the areas are optimally selective and examine small sections of cortex. On the other hand, visual field maps established with nonspecific stimuli have been found in increasingly large areas of visual cortex, though generally not in areas primarily responsive to faces. METHODS fMRI was used to study the position sensitivity of the occipital face area (OFA) and the fusiform face area (FFA) to both standard rotating wedge retinotopic mapping stimuli and quadrant presentations of synthetic facial stimuli. Analysis methods utilized were both typical, that is, mean univariate BOLD signals and multivoxel pattern analysis (MVPA), and novel, that is, distribution of voxels to pattern classifiers and use of responses to nonfacial retinotopic mapping stimuli to classify responses to facial stimuli. RESULTS Polar angle sensitivity was exhibited to standard retinotopic mapping stimuli with a stronger contralateral bias in OFA than in FFA, a stronger bias toward the vertical meridian in FFA than in OFA, and a bias across both areas toward the inferior visual field. Contralateral hemispheric lateralization of both areas was again shown using synthetic face stimuli based on univariate BOLD signals, MVPA, and the biased contribution of voxels toward multivariate classifiers discriminating the contralateral visual field. Classifiers based on polar angle responsivity were used to classify the patterns of activation above chance levels to face stimuli in the OFA but not in the FFA. CONCLUSIONS Both the OFA and FFA exhibit quadrant sensitivity to face stimuli, though the OFA exhibits greater position responsivity across stimuli than the FFA and includes overlap in the response pattern to the disparate stimulus types. Such biases are consistent with varying position sensitivity along different surfaces of occipito-temporal cortex.
Collapse
Affiliation(s)
| | - Lisa R Betts
- Centre for Vision Research York University Toronto ON Canada
| | - Hugh R Wilson
- Centre for Vision Research York University Toronto ON Canada
| |
Collapse
|
47
|
Smooth versus Textured Surfaces: Feature-Based Category Selectivity in Human Visual Cortex. eNeuro 2016; 3:eN-NWR-0051-16. [PMID: 27699206 PMCID: PMC5035775 DOI: 10.1523/eneuro.0051-16.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/03/2016] [Accepted: 07/09/2016] [Indexed: 11/21/2022] Open
Abstract
In fMRI studies, human lateral occipital (LO) cortex is thought to respond selectively to images of objects, compared with nonobjects. However, it remains unresolved whether all objects evoke equivalent levels of activity in LO, and, if not, which image features produce stronger activation. Here, we used an unbiased parametric texture model to predict preferred versus nonpreferred stimuli in LO. Observation and psychophysical results showed that predicted preferred stimuli (both objects and nonobjects) had smooth (rather than textured) surfaces. These predictions were confirmed using fMRI, for objects and nonobjects. Similar preferences were also found in the fusiform face area (FFA). Consistent with this: (1) FFA and LO responded more strongly to nonfreckled (smooth) faces, compared with otherwise identical freckled (textured) faces; and (2) strong functional connections were found between LO and FFA. Thus, LO and FFA may be part of an information-processing stream distinguished by feature-based category selectivity (smooth > textured).
Collapse
|
48
|
Silson EH, Groen IIA, Kravitz DJ, Baker CI. Evaluating the correspondence between face-, scene-, and object-selectivity and retinotopic organization within lateral occipitotemporal cortex. J Vis 2016; 16:14. [PMID: 27105060 PMCID: PMC4898275 DOI: 10.1167/16.6.14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The organization of human lateral occipitotemporal cortex (lOTC) has been characterized largely according to two distinct principles: retinotopy and category-selectivity. Whereas category-selective regions were originally thought to exist beyond retinotopic maps, recent evidence highlights overlap. Here, we combined detailed mapping of retinotopy, using population receptive fields (pRF), and category-selectivity to examine and contrast the retinotopic profiles of scene- (occipital place area, OPA), face- (occipital face area, OFA) and object- (lateral occipital cortex, LO) selective regions of lOTC. We observe striking differences in the relationship each region has to underlying retinotopy. Whereas OPA overlapped multiple retinotopic maps (including V3A, V3B, LO1, and LO2), and LO overlapped two maps (LO1 and LO2), OFA overlapped almost none. There appears no simple consistent relationship between category-selectivity and retinotopic maps, meaning category-selective regions are not constrained spatially to retinotopic map borders consistently. The multiple maps that overlap OPA suggests it is likely not appropriate to conceptualize it as a single scene-selective region, whereas the inconsistency in any systematic map overlapping OFA suggests it may constitute a more uniform area. Beyond their relationship to retinotopy, all three regions evidenced strongly retinotopic voxels, with pRFs exhibiting a significant bias towards the contralateral lower visual field, despite differences in pRF size, contributing to an emerging literature suggesting this bias is present across much of lOTC. Taken together, these results suggest that whereas category-selective regions are not constrained to consistently contain ordered retinotopic maps, they nonetheless likely inherit retinotopic characteristics of the maps from which they draw information.
Collapse
|
49
|
de Haas B, Schwarzkopf DS, Alvarez I, Lawson RP, Henriksson L, Kriegeskorte N, Rees G. Perception and Processing of Faces in the Human Brain Is Tuned to Typical Feature Locations. J Neurosci 2016; 36:9289-302. [PMID: 27605606 PMCID: PMC5013182 DOI: 10.1523/jneurosci.4131-14.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 05/06/2016] [Accepted: 05/15/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Faces are salient social stimuli whose features attract a stereotypical pattern of fixations. The implications of this gaze behavior for perception and brain activity are largely unknown. Here, we characterize and quantify a retinotopic bias implied by typical gaze behavior toward faces, which leads to eyes and mouth appearing most often in the upper and lower visual field, respectively. We found that the adult human visual system is tuned to these contingencies. In two recognition experiments, recognition performance for isolated face parts was better when they were presented at typical, rather than reversed, visual field locations. The recognition cost of reversed locations was equal to ∼60% of that for whole face inversion in the same sample. Similarly, an fMRI experiment showed that patterns of activity evoked by eye and mouth stimuli in the right inferior occipital gyrus could be separated with significantly higher accuracy when these features were presented at typical, rather than reversed, visual field locations. Our findings demonstrate that human face perception is determined not only by the local position of features within a face context, but by whether features appear at the typical retinotopic location given normal gaze behavior. Such location sensitivity may reflect fine-tuning of category-specific visual processing to retinal input statistics. Our findings further suggest that retinotopic heterogeneity might play a role for face inversion effects and for the understanding of conditions affecting gaze behavior toward faces, such as autism spectrum disorders and congenital prosopagnosia. SIGNIFICANCE STATEMENT Faces attract our attention and trigger stereotypical patterns of visual fixations, concentrating on inner features, like eyes and mouth. Here we show that the visual system represents face features better when they are shown at retinal positions where they typically fall during natural vision. When facial features were shown at typical (rather than reversed) visual field locations, they were discriminated better by humans and could be decoded with higher accuracy from brain activity patterns in the right occipital face area. This suggests that brain representations of face features do not cover the visual field uniformly. It may help us understand the well-known face-inversion effect and conditions affecting gaze behavior toward faces, such as prosopagnosia and autism spectrum disorders.
Collapse
Affiliation(s)
- Benjamin de Haas
- Institute of Cognitive Neuroscience, Wellcome Trust Centre for Neuroimaging, Experimental Psychology, and
| | | | - Ivan Alvarez
- Institute of Child Health, University College London, London WC1H 0AP, United Kingdom, Oxford University Centre for Functional MRI of the Brain, Oxford OX3 9DU, United Kingdom
| | - Rebecca P Lawson
- Institute of Cognitive Neuroscience, Wellcome Trust Centre for Neuroimaging
| | - Linda Henriksson
- MRC Cognition and Brain Sciences Unit, Cambridge CB2 7EF, United Kingdom, and Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo FI-00076, Finland
| | | | - Geraint Rees
- Institute of Cognitive Neuroscience, Wellcome Trust Centre for Neuroimaging
| |
Collapse
|
50
|
Gentile F, Ales J, Rossion B. Being BOLD: The neural dynamics of face perception. Hum Brain Mapp 2016; 38:120-139. [PMID: 27585292 DOI: 10.1002/hbm.23348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/19/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022] Open
Abstract
According to a non-hierarchical view of human cortical face processing, selective responses to faces may emerge in a higher-order area of the hierarchy, in the lateral part of the middle fusiform gyrus (fusiform face area [FFA]) independently from face-selective responses in the lateral inferior occipital gyrus (occipital face area [OFA]), a lower order area. Here we provide a stringent test of this hypothesis by gradually revealing segmented face stimuli throughout strict linear descrambling of phase information [Ales et al., 2012]. Using a short sampling rate (500 ms) of fMRI acquisition and single subject statistical analysis, we show a face-selective responses emerging earlier, that is, at a lower level of structural (i.e., phase) information, in the FFA compared with the OFA. In both regions, a face detection response emerging at a lower level of structural information for upright than inverted faces, both in the FFA and OFA, in line with behavioral responses and with previous findings of delayed responses to inverted faces with direct recordings of neural activity were also reported. Overall, these results support the non-hierarchical view of human cortical face processing and open new perspectives for time-resolved analysis at the single subject level of fMRI data obtained during continuously evolving visual stimulation. Hum Brain Mapp 38:120-139, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Francesco Gentile
- Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherland.,Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, The Netherlands
| | - Justin Ales
- School of Psychology and Neuroscience, University of St. Andrews, St. Andrews, United Kingdom
| | - Bruno Rossion
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, The Netherlands.,Psychological Sciences Research Institute and Institute of Neuroscience (IPSY), University of Louvain, Louvain, Belgium
| |
Collapse
|