1
|
Hernández-Navarro L, Asker M, Rucklidge AM, Mobilia M. Coupled environmental and demographic fluctuations shape the evolution of cooperative antimicrobial resistance. J R Soc Interface 2023; 20:20230393. [PMID: 37907094 PMCID: PMC10618063 DOI: 10.1098/rsif.2023.0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
There is a pressing need to better understand how microbial populations respond to antimicrobial drugs, and to find mechanisms to possibly eradicate antimicrobial-resistant cells. The inactivation of antimicrobials by resistant microbes can often be viewed as a cooperative behaviour leading to the coexistence of resistant and sensitive cells in large populations and static environments. This picture is, however, greatly altered by the fluctuations arising in volatile environments, in which microbial communities commonly evolve. Here, we study the eco-evolutionary dynamics of a population consisting of an antimicrobial-resistant strain and microbes sensitive to antimicrobial drugs in a time-fluctuating environment, modelled by a carrying capacity randomly switching between states of abundance and scarcity. We assume that antimicrobial resistance (AMR) is a shared public good when the number of resistant cells exceeds a certain threshold. Eco-evolutionary dynamics is thus characterised by demographic noise (birth and death events) coupled to environmental fluctuations which can cause population bottlenecks. By combining analytical and computational means, we determine the environmental conditions for the long-lived coexistence and fixation of both strains, and characterise a fluctuation-driven AMR eradication mechanism, where resistant microbes experience bottlenecks leading to extinction. We also discuss the possible applications of our findings to laboratory-controlled experiments.
Collapse
Affiliation(s)
- Lluís Hernández-Navarro
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Matthew Asker
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Alastair M. Rucklidge
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Mauro Mobilia
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
2
|
Taitelbaum A, West R, Assaf M, Mobilia M. Population Dynamics in a Changing Environment: Random versus Periodic Switching. PHYSICAL REVIEW LETTERS 2020; 125:048105. [PMID: 32794803 DOI: 10.1103/physrevlett.125.048105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/13/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Environmental changes greatly influence the evolution of populations. Here, we study the dynamics of a population of two strains, one growing slightly faster than the other, competing for resources in a time-varying binary environment modeled by a carrying capacity switching either randomly or periodically between states of abundance and scarcity. The population dynamics is characterized by demographic noise (birth and death events) coupled to a varying environment. We elucidate the similarities and differences of the evolution subject to a stochastically and periodically varying environment. Importantly, the population size distribution is generally found to be broader under intermediate and fast random switching than under periodic variations, which results in markedly different asymptotic behaviors between the fixation probability of random and periodic switching. We also determine the detailed conditions under which the fixation probability of the slow strain is maximal.
Collapse
Affiliation(s)
- Ami Taitelbaum
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Robert West
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Michael Assaf
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mauro Mobilia
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
3
|
Cremer J, Melbinger A, Wienand K, Henriquez T, Jung H, Frey E. Cooperation in Microbial Populations: Theory and Experimental Model Systems. J Mol Biol 2019; 431:4599-4644. [PMID: 31634468 DOI: 10.1016/j.jmb.2019.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023]
Abstract
Cooperative behavior, the costly provision of benefits to others, is common across all domains of life. This review article discusses cooperative behavior in the microbial world, mediated by the exchange of extracellular products called public goods. We focus on model species for which the production of a public good and the related growth disadvantage for the producing cells are well described. To unveil the biological and ecological factors promoting the emergence and stability of cooperative traits we take an interdisciplinary perspective and review insights gained from both mathematical models and well-controlled experimental model systems. Ecologically, we include crucial aspects of the microbial life cycle into our analysis and particularly consider population structures where ensembles of local communities (subpopulations) continuously emerge, grow, and disappear again. Biologically, we explicitly consider the synthesis and regulation of public good production. The discussion of the theoretical approaches includes general evolutionary concepts, population dynamics, and evolutionary game theory. As a specific but generic biological example, we consider populations of Pseudomonas putida and its regulation and use of pyoverdines, iron scavenging molecules, as public goods. The review closes with an overview on cooperation in spatially extended systems and also provides a critical assessment of the insights gained from the experimental and theoretical studies discussed. Current challenges and important new research opportunities are discussed, including the biochemical regulation of public goods, more realistic ecological scenarios resembling native environments, cell-to-cell signaling, and multispecies communities.
Collapse
Affiliation(s)
- J Cremer
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - A Melbinger
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - K Wienand
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - T Henriquez
- Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, Martinsried, Germany
| | - H Jung
- Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, Martinsried, Germany.
| | - E Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany.
| |
Collapse
|
4
|
Joshi J, Guttal V. Demographic noise and cost of greenbeard can facilitate greenbeard cooperation. Evolution 2018; 72:2595-2607. [PMID: 30270425 DOI: 10.1111/evo.13615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/22/2018] [Indexed: 01/06/2023]
Abstract
Cooperation among organisms, where cooperators suffer a personal cost to benefit others, is ubiquitous in nature. Greenbeard is a key mechanism for the evolution of cooperation, where a single gene or a set of linked genes codes for both cooperation and a phenotypic tag (metaphorically called "green beard"). Greenbeard cooperation is typically thought to decline over time since defectors can also evolve the tag. However, models of tag-based cooperation typically ignore two key realistic features: populations are finite, and that phenotypic tags can be costly. We develop an analytical model for coevolutionary dynamics of two evolvable traits in finite populations with mutations: costly cooperation and a costly tag. We show that an interplay of demographic noise and cost of the tag can induce coevolutionary cycling, where the evolving population does not reach a steady state but spontaneously switches between cooperative tag-carrying and noncooperative tagless states. Such dynamics allows the tag to repeatedly reappear even after it is invaded by defectors. Thus, we highlight the surprising possibility that the cost of the tag, together with demographic noise, can facilitate the evolution of greenbeard cooperation. We discuss implications of these findings in the context of the evolution of quorum sensing and multicellularity.
Collapse
Affiliation(s)
- Jaideep Joshi
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, 560012, India
| | - Vishwesha Guttal
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
5
|
A single mutation in rapP induces cheating to prevent cheating in Bacillus subtilis by minimizing public good production. Commun Biol 2018; 1:133. [PMID: 30272012 PMCID: PMC6123732 DOI: 10.1038/s42003-018-0136-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022] Open
Abstract
Cooperation is beneficial to group behaviors like multicellularity, but is vulnerable to exploitation by cheaters. Here we analyze mechanisms that protect against exploitation of extracellular surfactin in swarms of Bacillus subtilis. Unexpectedly, the reference strain NCIB 3610 displays inherent resistance to surfactin-non-producing cheaters, while a different wild isolate is susceptible. We trace this interstrain difference down to a single amino acid change in the plasmid-borne regulator RapP, which is necessary and sufficient for cheater mitigation. This allele, prevalent in many Bacillus species, optimizes transcription of the surfactin operon to the minimum needed for full cooperation. When combined with a strain lacking rapP, NCIB 3610 acts as a cheater itself—except it does not harm the population at high proportions since it still produces enough surfactin. This strategy of minimal production is thus a doubly advantageous mechanism to limit exploitation of public goods, and is readily evolved from existing regulatory networks. Lyons and Kolter describe a single-point mutation in the plasmid-borne gene rapP of Bacillus subtilis that optimizes surfactin transcription to express the minimum required for cooperation. The decrease in the production of this public good significantly prevented the exploitation of cooperative traits by cheaters.
Collapse
|
6
|
Wienand K, Frey E, Mobilia M. Eco-evolutionary dynamics of a population with randomly switching carrying capacity. J R Soc Interface 2018; 15:20180343. [PMID: 30135263 PMCID: PMC6127162 DOI: 10.1098/rsif.2018.0343] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/26/2018] [Indexed: 01/19/2023] Open
Abstract
Environmental variability greatly influences the eco-evolutionary dynamics of a population, i.e. it affects how its size and composition evolve. Here, we study a well-mixed population of finite and fluctuating size whose growth is limited by a randomly switching carrying capacity. This models the environmental fluctuations between states of resources abundance and scarcity. The population consists of two strains, one growing slightly faster than the other, competing under two scenarios: one in which competition is solely for resources, and one in which the slow (cooperating) strain produces a public good (PG) that benefits also the fast (free-riding) strain. We investigate how the coupling of demographic and environmental (external) noise affects the population's eco-evolutionary dynamics. By analytical and computational means, we study the correlations between the population size and its composition, and discuss the social-dilemma-like 'eco-evolutionary game' characterizing the PG production. We determine in what conditions it is best to produce a PG; when cooperating is beneficial but outcompeted by free riding, and when the PG production is detrimental for cooperators. Within a linear noise approximation to populations of varying size, we also accurately analyse the coupled effects of demographic and environmental noise on the size distribution.
Collapse
Affiliation(s)
- Karl Wienand
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
| | - Mauro Mobilia
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
7
|
Maximizing Growth Yield and Dispersal via Quorum Sensing Promotes Cooperation in Vibrio Bacteria. Appl Environ Microbiol 2018; 84:AEM.00402-18. [PMID: 29728393 DOI: 10.1128/aem.00402-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/02/2018] [Indexed: 01/06/2023] Open
Abstract
Quorum sensing (QS) is a form of bacterial chemical communication that regulates cellular phenotypes, including certain cooperative behaviors, in response to environmental and demographic changes. Despite the existence of proposed mechanisms that stabilize QS against defector exploitation, it is unclear if or how QS cooperators can proliferate in some model systems in populations mostly consisting of defectors. We predicted that growth in fragmented subpopulations could allow QS cooperators to invade a QS defector population. This could occur despite cooperators having lower relative fitnesses than defectors due to favored weighting of genotypes that produce larger populations of bacteria. Mixed metapopulations of Vibrio QS-proficient or unconditional cooperators and QS defectors were diluted and fragmented into isolated subpopulations in an environment that requires QS-regulated public good production to achieve larger population yields. Under these conditions, we observed global invasions of both cooperator genotypes into populations composed of primarily defectors. This spatially dependent increase in cooperator frequency was replicated for QS cooperators when mixed populations were competed in soft agar motility plates under conditions that allowed cooperators to disperse and outcompete defectors at the population edge, despite being less motile in isolation than defectors. These competition results show that the coordinated growth and dispersal of QS cooperators to additional resources is heavily favored in comparison to unconditional cooperation, and that dispersal of cooperators by motility into new environments, examined here in laboratory populations, constitutes a key mechanism for maintaining QS-regulated cooperation in the face of defection.IMPORTANCE Behaviors that are cooperative in nature are at risk of exploitation by cheating and are thus difficult to maintain by natural selection alone. While bacterial cell-cell communication, known as quorum sensing (QS), can stabilize microbial cooperative behaviors and is widespread in Vibrio species, it is unclear how QS can increase the frequency of cooperative strains in the presence of defectors without additional mechanisms. In this study, we demonstrate under multiple conditions that QS-mediated cooperation can increase in populations of Vibrio strains when cells experience narrow population bottlenecks or disperse from defectors. This occurred for both conditional cooperation mediated by QS and for unconditional cooperation, although conditional cooperators were better able to stabilize cooperation over a much wider range of conditions. Thus, we observed that population structuring allowed for assortment of competing genotypes and promoted cooperation via kin selection in microbes in a QS-dependent manner.
Collapse
|
8
|
Amherd M, Velicer GJ, Rendueles O. Spontaneous nongenetic variation of group size creates cheater-free groups of social microbes. Behav Ecol 2018. [DOI: 10.1093/beheco/arx184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michaela Amherd
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
| | - Gregory J Velicer
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
| | - Olaya Rendueles
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- UMR 3525, CNRS, Paris, France
| |
Collapse
|
9
|
Koza A, Kusmierska A, McLaughlin K, Moshynets O, Spiers AJ. Adaptive radiation of Pseudomonas fluorescens SBW25 in experimental microcosms provides an understanding of the evolutionary ecology and molecular biology of A-L interface biofilm formation. FEMS Microbiol Lett 2018; 364:3850210. [PMID: 28535292 DOI: 10.1093/femsle/fnx109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Combined experimental evolutionary and molecular biology approaches have been used to investigate the adaptive radiation of Pseudomonas fluorescens SBW25 in static microcosms leading to the colonisation of the air-liquid interface by biofilm-forming mutants such as the Wrinkly Spreader (WS). In these microcosms, the ecosystem engineering of the early wild-type colonists establishes the niche space for subsequent WS evolution and colonisation. Random WS mutations occurring in the developing population that deregulate diguanylate cyclases and c-di-GMP homeostasis result in cellulose-based biofilms at the air-liquid interface. These structures allow Wrinkly Spreaders to intercept O2 diffusing into the liquid column and limit the growth of competitors lower down. As the biofilm matures, competition increasingly occurs between WS lineages, and niche divergence within the biofilm may support further diversification before system failure when the structure finally sinks. A combination of pleiotropic and epistasis effects, as well as secondary mutations, may explain variations in WS phenotype and fitness. Understanding how mutations subvert regulatory networks to express intrinsic genome potential and key innovations providing a selective advantage in novel environments is key to understanding the versatility of bacteria, and how selection and ecological opportunity can rapidly lead to substantive changes in phenotype and in community structure and function.
Collapse
Affiliation(s)
- Anna Koza
- School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, UK
| | - Anna Kusmierska
- School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, UK
| | - Kimberley McLaughlin
- School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, UK
| | - Olena Moshynets
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kiev 03143, Ukraine
| | - Andrew J Spiers
- School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, UK
| |
Collapse
|
10
|
Wienand K, Frey E, Mobilia M. Evolution of a Fluctuating Population in a Randomly Switching Environment. PHYSICAL REVIEW LETTERS 2017; 119:158301. [PMID: 29077432 DOI: 10.1103/physrevlett.119.158301] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 06/07/2023]
Abstract
Environment plays a fundamental role in the competition for resources, and hence in the evolution of populations. Here, we study a well-mixed, finite population consisting of two strains competing for the limited resources provided by an environment that randomly switches between states of abundance and scarcity. Assuming that one strain grows slightly faster than the other, we consider two scenarios-one of pure resource competition, and one in which one strain provides a public good-and investigate how environmental randomness (external noise) coupled to demographic (internal) noise determines the population's fixation properties and size distribution. By analytical means and simulations, we show that these coupled sources of noise can significantly enhance the fixation probability of the slower-growing species. We also show that the population size distribution can be unimodal, bimodal, or multimodal and undergoes noise-induced transitions between these regimes when the rate of switching matches the population's growth rate.
Collapse
Affiliation(s)
- Karl Wienand
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
| | - Mauro Mobilia
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
11
|
An age-dependent model to analyse the evolutionary stability of bacterial quorum sensing. J Theor Biol 2016; 405:104-15. [PMID: 26796220 DOI: 10.1016/j.jtbi.2015.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 01/13/2023]
Abstract
Bacterial communication is enabled through the collective release and sensing of signalling molecules in a process called quorum sensing. Cooperative processes can easily be destabilized by the appearance of cheaters, who contribute little or nothing at all to the production of common goods. This especially applies for planktonic cultures. In this study, we analyse the dynamics of bacterial quorum sensing and its evolutionary stability under two levels of cooperation, namely signal and enzyme production. The model accounts for mutation rates and switches between planktonic and biofilm state of growth. We present a mathematical approach to model these dynamics using age-dependent colony models. We explore the conditions under which cooperation is stable and find that spatial structuring can lead to long-term scenarios such as coexistence or bistability, depending on the non-linear combination of different parameters like death rates and production costs.
Collapse
|
12
|
Pollak S, Omer-Bendori S, Even-Tov E, Lipsman V, Bareia T, Ben-Zion I, Eldar A. Facultative cheating supports the coexistence of diverse quorum-sensing alleles. Proc Natl Acad Sci U S A 2016; 113:2152-7. [PMID: 26787913 PMCID: PMC4776494 DOI: 10.1073/pnas.1520615113] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacterial quorum sensing enables bacteria to cooperate in a density-dependent manner via the group-wide secretion and detection of specific autoinducer molecules. Many bacterial species show high intraspecific diversity of autoinducer-receptor alleles, called pherotypes. The autoinducer produced by one pherotype activates its coencoded receptor, but not the receptor of another pherotype. It is unclear what selection forces drive the maintenance of pherotype diversity. Here, we use the ComQXPA system of Bacillus subtilis as a model system, to show that pherotype diversity can be maintained by facultative cheating--a minority pherotype exploits the majority, but resumes cooperation when its frequency increases. We find that the maintenance of multiple pherotypes by facultative cheating can persist under kin-selection conditions that select against "obligate cheaters" quorum-sensing response null mutants. Our results therefore support a role for facultative cheating and kin selection in the evolution of quorum-sensing diversity.
Collapse
Affiliation(s)
- Shaul Pollak
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shira Omer-Bendori
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eran Even-Tov
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Valeria Lipsman
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tasneem Bareia
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ishay Ben-Zion
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Avigdor Eldar
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
13
|
Shou W. Acknowledging selection at sub-organismal levels resolves controversy on pro-cooperation mechanisms. eLife 2015; 4. [PMID: 26714105 PMCID: PMC4798966 DOI: 10.7554/elife.10106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/21/2015] [Indexed: 01/24/2023] Open
Abstract
Cooperators who pay a cost to produce publically-available benefits can be exploited by cheaters who do not contribute fairly. How might cooperation persist against cheaters? Two classes of mechanisms are known to promote cooperation: 'partner choice', where a cooperator preferentially interacts with cooperative over cheating partners; and 'partner fidelity feedback', where repeated interactions between individuals ensure that cheaters suffer as their cooperative partners languish (see, for example, Momeni et al., 2013). However when both mechanisms can act, differentiating them has generated controversy. Here, I resolve this controversy by noting that selection can operate on organismal and sub-organismal 'entities' such that partner fidelity feedback at sub-organismal level can appear as partner choice at organismal level. I also show that cooperation between multicellular eukaryotes and mitochondria is promoted by partner fidelity feedback and partner choice between sub-organismal entities, in addition to being promoted by partner fidelity feedback between hosts and symbionts, as was previously known.
Collapse
Affiliation(s)
- Wenying Shou
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
14
|
Abstract
Microbes are now known to participate in an extensive repertoire of cooperative behaviors such as biofilm formation, production of extracellular public-goods, group motility, and higher-ordered multicellular structures. A fundamental question is how these cooperative tasks are maintained in the face of non-cooperating defector cells. Recently, a number of molecular mechanisms including facultative participation, spatial sorting, and policing have been discovered to stabilize cooperation. Often these different mechanisms work in concert to reinforce cooperation. In this review, we describe bacterial cooperation and the current understanding of the molecular mechanisms that maintain it.
Collapse
Affiliation(s)
- Eric Bruger
- Department of Microbiology and Molecular Genetics and the BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, 48824, USA
| | - Christopher Waters
- Department of Microbiology and Molecular Genetics and the BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
15
|
Waite AJ, Cannistra C, Shou W. Defectors Can Create Conditions That Rescue Cooperation. PLoS Comput Biol 2015; 11:e1004645. [PMID: 26690946 PMCID: PMC4687000 DOI: 10.1371/journal.pcbi.1004645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 11/05/2015] [Indexed: 11/18/2022] Open
Abstract
Cooperation based on the production of costly common goods is observed throughout nature. This is puzzling, as cooperation is vulnerable to exploitation by defectors which enjoy a fitness advantage by consuming the common good without contributing fairly. Depletion of the common good can lead to population collapse and the destruction of cooperation. However, population collapse implies small population size, which, in a structured population, is known to favor cooperation. This happens because small population size increases variability in cooperator frequency across different locations. Since individuals in cooperator-dominated locations (which are most likely cooperators) will grow more than those in defector-dominated locations (which are most likely defectors), cooperators can outgrow defectors globally despite defectors outgrowing cooperators in each location. This raises the possibility that defectors can lead to conditions that sometimes rescue cooperation from defector-induced destruction. We demonstrate multiple mechanisms through which this can occur, using an individual-based approach to model stochastic birth, death, migration, and mutation events. First, during defector-induced population collapse, defectors occasionally go extinct before cooperators by chance, which allows cooperators to grow. Second, empty locations, either preexisting or created by defector-induced population extinction, can favor cooperation because they allow cooperator but not defector migrants to grow. These factors lead to the counterintuitive result that the initial presence of defectors sometimes allows better survival of cooperation compared to when defectors are initially absent. Finally, we find that resource limitation, inducible by defectors, can select for mutations adaptive to resource limitation. When these mutations are initially present at low levels or continuously generated at a moderate rate, they can favor cooperation by further reducing local population size. We predict that in a structured population, small population sizes precipitated by defectors provide a "built-in" mechanism for the persistence of cooperation.
Collapse
Affiliation(s)
- Adam James Waite
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail: (AJW); (WS)
| | - Caroline Cannistra
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Wenying Shou
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail: (AJW); (WS)
| |
Collapse
|
16
|
Melbinger A, Cremer J, Frey E. The emergence of cooperation from a single mutant during microbial life cycles. J R Soc Interface 2015; 12:20150171. [PMID: 26063816 PMCID: PMC4528582 DOI: 10.1098/rsif.2015.0171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/14/2015] [Indexed: 12/23/2022] Open
Abstract
Cooperative behaviour is widespread in nature, even though cooperating individuals always run the risk of being exploited by free-riders. Population structure effectively promotes cooperation given that a threshold in the level of cooperation was already reached. However, the question how cooperation can emerge from a single mutant, which cannot rely on a benefit provided by other cooperators, is still puzzling. Here, we investigate this question for a well-defined but generic situation based on typical life cycles of microbial populations where individuals regularly form new colonies followed by growth phases. We analyse two evolutionary mechanisms favouring cooperative behaviour and study their strength depending on the inoculation size and the length of a life cycle. In particular, we find that population bottlenecks followed by exponential growth phases strongly increase the survival and fixation probabilities of a single cooperator in a free-riding population.
Collapse
Affiliation(s)
- Anna Melbinger
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany Department of Physics, UCSD, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jonas Cremer
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany Department of Physics, UCSD, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
17
|
Molina CA, Vilchez S. Cooperation and bacterial pathogenicity: an approach to social evolution. REVISTA CHILENA DE HISTORIA NATURAL 2014. [DOI: 10.1186/s40693-014-0014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Enyeart PJ, Simpson ZB, Ellington AD. A microbial model of economic trading and comparative advantage. J Theor Biol 2014; 364:326-43. [PMID: 25265557 DOI: 10.1016/j.jtbi.2014.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 08/28/2014] [Accepted: 09/18/2014] [Indexed: 01/07/2023]
Abstract
The economic theory of comparative advantage postulates that beneficial trading relationships can be arrived at by two self-interested entities producing the same goods as long as they have opposing relative efficiencies in producing those goods. The theory predicts that upon entering trade, in order to maximize consumption both entities will specialize in producing the good they can produce at higher efficiency, that the weaker entity will specialize more completely than the stronger entity, and that both will be able to consume more goods as a result of trade than either would be able to alone. We extend this theory to the realm of unicellular organisms by developing mathematical models of genetic circuits that allow trading of a common good (specifically, signaling molecules) required for growth in bacteria in order to demonstrate comparative advantage interactions. In Conception 1, the experimenter controls production rates via exogenous inducers, allowing exploration of the parameter space of specialization. In Conception 2, the circuits self-regulate via feedback mechanisms. Our models indicate that these genetic circuits can demonstrate comparative advantage, and that cooperation in such a manner is particularly favored under stringent external conditions and when the cost of production is not overly high. Further work could involve implementing the models in living bacteria and searching for naturally occurring cooperative relationships between bacteria that conform to the principles of comparative advantage.
Collapse
Affiliation(s)
- Peter J Enyeart
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Zachary B Simpson
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Andrew D Ellington
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Abstract
Here, we studied how protist predation affects cooperation in the opportunistic pathogen bacterium Pseudomonas aeruginosa, which uses quorum sensing (QS) cell-to-cell signalling to regulate the production of public goods. By competing wild-type bacteria with QS mutants (cheats), we show that a functioning QS system confers an elevated resistance to predation. Surprisingly, cheats were unable to exploit this resistance in the presence of cooperators, which suggests that resistance does not appear to result from activation of QS-regulated public goods. Instead, elevated resistance of wild-type bacteria was related to the ability to form more predation-resistant biofilms. This could be explained by the expression of QS-regulated resistance traits in densely populated biofilms and floating cell aggregations, or alternatively, by a pleiotropic cost of cheating where less resistant cheats are selectively removed from biofilms. These results show that trophic interactions among species can maintain cooperation within species, and have further implications for P. aeruginosa virulence in environmental reservoirs by potentially enriching the cooperative and highly infective strains with functional QS system.
Collapse
|
20
|
Raymond B, Bonsall MB. Cooperation and the evolutionary ecology of bacterial virulence: TheBacillus cereusgroup as a novel study system. Bioessays 2013; 35:706-16. [DOI: 10.1002/bies.201300028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ben Raymond
- School of Biological Sciences; Royal Holloway University of London; Egham UK
| | - Michael B. Bonsall
- Department of Zoology; University of Oxford; Oxford UK
- St. Peter's College; Oxford UK
| |
Collapse
|
21
|
Rodrigues AMM, Gardner A. Evolution of Helping and Harming in Viscous Populations When Group Size Varies. Am Nat 2013; 181:609-22. [DOI: 10.1086/670031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Quigley BJZ, García López D, Buckling A, McKane AJ, Brown SP. The mode of host-parasite interaction shapes coevolutionary dynamics and the fate of host cooperation. Proc Biol Sci 2012; 279:3742-8. [PMID: 22740644 PMCID: PMC3415897 DOI: 10.1098/rspb.2012.0769] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Antagonistic coevolution between hosts and parasites can have a major impact on host population structures, and hence on the evolution of social traits. Using stochastic modelling techniques in the context of bacteria–virus interactions, we investigate the impact of coevolution across a continuum of host–parasite genetic specificity (specifically, where genotypes have the same infectivity/resistance ranges (matching alleles, MA) to highly variable ranges (gene-for-gene, GFG)) on population genetic structure, and on the social behaviour of the host. We find that host cooperation is more likely to be maintained towards the MA end of the continuum, as the more frequent bottlenecks associated with an MA-like interaction can prevent defector invasion, and can even allow migrant cooperators to invade populations of defectors.
Collapse
|
23
|
Kuzdzal-Fick JJ, Fox SA, Strassmann JE, Queller DC. High relatedness is necessary and sufficient to maintain multicellularity in Dictyostelium. Science 2012; 334:1548-51. [PMID: 22174251 DOI: 10.1126/science.1213272] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Most complex multicellular organisms develop clonally from a single cell. This should limit conflicts between cell lineages that could threaten the extensive cooperation of cells within multicellular bodies. Cellular composition can be manipulated in the social amoeba Dictyostelium discoideum, which allows us to test and confirm the two key predictions of this theory. Experimental evolution at low relatedness favored cheating mutants that could destroy multicellular development. However, under high relatedness, the forces of mutation and within-individual selection are too small for these destructive cheaters to spread, as shown by a mutation accumulation experiment. Thus, we conclude that the single-cell bottleneck is a powerful stabilizer of cellular cooperation in multicellular organisms.
Collapse
Affiliation(s)
- Jennie J Kuzdzal-Fick
- Department of Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA
| | | | | | | |
Collapse
|
24
|
Social conflict drives the evolutionary divergence of quorum sensing. Proc Natl Acad Sci U S A 2011; 108:13635-40. [PMID: 21807995 DOI: 10.1073/pnas.1102923108] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In microbial "quorum sensing" (QS) communication systems, microbes produce and respond to a signaling molecule, enabling a cooperative response at high cell densities. Many species of bacteria show fast, intraspecific, evolutionary divergence of their QS pathway specificity--signaling molecules activate cognate receptors in the same strain but fail to activate, and sometimes inhibit, those of other strains. Despite many molecular studies, it has remained unclear how a signaling molecule and receptor can coevolve, what maintains diversity, and what drives the evolution of cross-inhibition. Here I use mathematical analysis to show that when QS controls the production of extracellular enzymes--"public goods"--diversification can readily evolve. Coevolution is positively selected by cycles of alternating "cheating" receptor mutations and "cheating immunity" signaling mutations. The maintenance of diversity and the evolution of cross-inhibition between strains are facilitated by facultative cheating between the competing strains. My results suggest a role for complex social strategies in the long-term evolution of QS systems. More generally, my model of QS divergence suggests a form of kin recognition where different kin types coexist in unstructured populations.
Collapse
|
25
|
Abstract
Microbial ecology is revealing the vast diversity of strains and species that coexist in many environments, ranging from free-living communities to the symbionts that compose the human microbiome. In parallel, there is growing evidence of the importance of cooperative phenotypes for the growth and behavior of microbial groups. Here we ask: How does the presence of multiple species affect the evolution of cooperative secretions? We use a computer simulation of spatially structured cellular groups that captures key features of their biology and physical environment. When nutrient competition is strong, we find that the addition of new species can inhibit cooperation by eradicating secreting strains before they can become established. When nutrients are abundant and many species mix in one environment, however, our model predicts that secretor strains of any one species will be surrounded by other species. This "social insulation" protects secretors from competition with nonsecretors of the same species and can improve the prospects of within-species cooperation. We also observe constraints on the evolution of mutualistic interactions among species, because it is difficult to find conditions that simultaneously favor both within- and among-species cooperation. Although relatively simple, our model reveals the richness of interactions between the ecology and social evolution of multispecies microbial groups, which can be critical for the evolution of cooperation.
Collapse
Affiliation(s)
- Sara Mitri
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
- Oxford Centre for Integrative Systems Biology, Oxford University, Oxford OX1 3QU, United Kingdom; and
| | - João B. Xavier
- Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Kevin R. Foster
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
- Oxford Centre for Integrative Systems Biology, Oxford University, Oxford OX1 3QU, United Kingdom; and
| |
Collapse
|
26
|
Poltak SR, Cooper VS. Ecological succession in long-term experimentally evolved biofilms produces synergistic communities. ISME JOURNAL 2010; 5:369-78. [PMID: 20811470 DOI: 10.1038/ismej.2010.136] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many biofilm populations are known for their exceptional biodiversity, but the relative contributions of the forces that could produce this diversity are poorly understood. This uncertainty grows in the old, well-established communities found on many natural surfaces and in long-term, chronic infections. If the prevailing interactions among species within biofilms are positive, productivity should increase with diversity, but if they tend towards competition or antagonism, productivity should decrease. Here, we describe the parallel evolution of synergistic communities derived from a clone of Burkholderia cenocepacia during ~1500 generations of biofilm selection. This long-term evolution was enabled by a new experimental method that selects for daily cycles of colonization, biofilm assembly and dispersal. Each of the six replicate biofilm populations underwent a common pattern of adaptive morphological diversification, in which three ecologically distinct morphotypes arose in the same order of succession and persisted. In two focal populations, mixed communities were more productive than any monoculture and each variant benefited from the mixture. These gains in output resulted from asymmetrical cross-feeding between ecotypes and the expansion and partitioning of biofilm space that constructed new niches. Therefore, even in the absence of starting genetic variation, prolonged selection for surface colonization generates a dynamic of ecological succession that enhances productivity.
Collapse
Affiliation(s)
- Steffen R Poltak
- Department of Molecular, Cellular, and Biomedical Sciences, Graduate Program in Microbiology, University of New Hampshire, Durham, NH 03824, USA
| | | |
Collapse
|
27
|
Chuang JS, Rivoire O, Leibler S. Simpson's paradox in a synthetic microbial system. Science 2009; 323:272-5. [PMID: 19131632 DOI: 10.1126/science.1166739] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The maintenance of "public" or "common good" producers is a major question in the evolution of cooperation. Because nonproducers benefit from the shared resource without bearing its cost of production, they may proliferate faster than producers. We established a synthetic microbial system consisting of two Escherichia coli strains of common-good producers and nonproducers. Depending on the population structure, which was varied by forming groups with different initial compositions, an apparently paradoxical situation could be attained in which nonproducers grew faster within each group, yet producers increased overall. We show that a simple way to generate the variance required for this effect is through stochastic fluctuations via population bottlenecks. The synthetic approach described here thus provides a way to study generic mechanisms of natural selection.
Collapse
Affiliation(s)
- John S Chuang
- Center for Studies in Physics and Biology and Laboratory of Living Matter, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | | | |
Collapse
|
28
|
Monds RD, O'Toole GA. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 2009; 17:73-87. [PMID: 19162483 DOI: 10.1016/j.tim.2008.11.001] [Citation(s) in RCA: 362] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 11/07/2008] [Accepted: 11/07/2008] [Indexed: 12/28/2022]
Abstract
For the past ten years, the developmental model of microbial biofilm formation has served as the major conceptual framework for biofilm research; however, the paradigmatic value of this model has begun to be challenged by the research community. Here, we critically evaluate recent data to determine whether biofilm formation satisfies the criteria requisite of a developmental system. We contend that the developmental model of biofilm formation must be approached as a model in need of further validation, rather than utilized as a platform on which to base empirical research and scientific inference. With this in mind, we explore the experimental approaches required to further our understanding of the biofilm phenotype, highlighting evolutionary and ecological approaches as a natural complement to rigorous mechanistic studies into the causal basis of biofilm formation. Finally, we discuss a second model of biofilm formation that serves as a counterpoint to our discussion of the developmental model. Our hope is that this article will provide a platform for discussion about the conceptual underpinnings of biofilm formation and the impact of such frameworks on shaping the questions we ask, and the answers we uncover, during our research into these microbial communities.
Collapse
Affiliation(s)
- Russell D Monds
- Bio-X Program, Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
29
|
Craig Maclean R, Brandon C. Stable public goods cooperation and dynamic social interactions in yeast. J Evol Biol 2008; 21:1836-43. [PMID: 18643862 DOI: 10.1111/j.1420-9101.2008.01579.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite long-standing theoretical interest in the evolution of cooperation, empirical data on the evolutionary dynamics of cooperative traits remain limited. Here, we investigate the evolutionary dynamics of a simple public goods cooperative trait, invertase secretion, using a long-term selection experiment in Saccharomyces cerevisiae. We show that average investment in cooperation remains essentially constant over a period of hundreds of generations in viscous populations with high relatedness. Average cooperation remains constant despite transient local selection for high and low levels of cooperation that generate dynamic social interactions. Natural populations of yeast show similar variation in social strategies, which is consistent with the existence of similar selective pressures on public goods cooperation in nature.
Collapse
Affiliation(s)
- R Craig Maclean
- NERC Centre for Population Biology, Imperial College London, Silwood Park, Ascot, UK.
| | | |
Collapse
|
30
|
Brockhurst MA, Buckling A, Racey D, Gardner A. Resource supply and the evolution of public-goods cooperation in bacteria. BMC Biol 2008; 6:20. [PMID: 18479522 PMCID: PMC2409295 DOI: 10.1186/1741-7007-6-20] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 05/14/2008] [Indexed: 11/23/2022] Open
Abstract
Background Explaining public-goods cooperation is a challenge for evolutionary biology. However, cooperation is expected to more readily evolve if it imposes a smaller cost. Such costs of cooperation are expected to decline with increasing resource supply, an ecological parameter that varies widely in nature. We experimentally tested the effect of resource supply on the evolution of cooperation using two well-studied bacterial public-good traits: biofilm formation by Pseudomonas fluorescens and siderophore production by Pseudomonas aeruginosa. Results The frequency of cooperative bacteria increased with resource supply in the context of both bacterial public-good traits. In both cases this was due to decreasing costs of investment into public-goods cooperation with increasing resource supply. Conclusion Our empirical tests with bacteria suggest that public-goods cooperation is likely to increase with increasing resource supply due to reduced costs of cooperation, confirming that resource supply is an important factor in the evolution of cooperation.
Collapse
Affiliation(s)
- Michael A Brockhurst
- School of Biological Sciences, Biosciences Building, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| | | | | | | |
Collapse
|
31
|
Garvin-Doxas K, Klymkowsky MW. Understanding randomness and its impact on student learning: lessons learned from building the Biology Concept Inventory (BCI). CBE LIFE SCIENCES EDUCATION 2008; 7:227-33. [PMID: 18519614 PMCID: PMC2424310 DOI: 10.1187/cbe.07-08-0063] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
While researching student assumptions for the development of the Biology Concept Inventory (BCI; http://bioliteracy.net), we found that a wide class of student difficulties in molecular and evolutionary biology appears to be based on deep-seated, and often unaddressed, misconceptions about random processes. Data were based on more than 500 open-ended (primarily) college student responses, submitted online and analyzed through our Ed's Tools system, together with 28 thematic and think-aloud interviews with students, and the responses of students in introductory and advanced courses to questions on the BCI. Students believe that random processes are inefficient, whereas biological systems are very efficient. They are therefore quick to propose their own rational explanations for various processes, from diffusion to evolution. These rational explanations almost always make recourse to a driver, e.g., natural selection in evolution or concentration gradients in molecular biology, with the process taking place only when the driver is present, and ceasing when the driver is absent. For example, most students believe that diffusion only takes place when there is a concentration gradient, and that the mutational processes that change organisms occur only in response to natural selection pressures. An understanding that random processes take place all the time and can give rise to complex and often counterintuitive behaviors is almost totally absent. Even students who have had advanced or college physics, and can discuss diffusion correctly in that context, cannot make the transfer to biological processes, and passing through multiple conventional biology courses appears to have little effect on their underlying beliefs.
Collapse
Affiliation(s)
| | - Michael W. Klymkowsky
- Molecular, Cellular, and Developmental Biology Department, University of Colorado, Boulder, CO 80309
| |
Collapse
|