1
|
Marcinek P, Haag F, Geithe C, Krautwurst D. An evolutionary conserved olfactory receptor for foodborne and semiochemical alkylpyrazines. FASEB J 2021; 35:e21638. [PMID: 34047404 DOI: 10.1096/fj.202100224r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Molecular recognition is a fundamental principle in biological systems. The olfactory detection of both food and predators via ecological relevant odorant cues are abilities of eminent evolutionary significance for many species. Pyrazines are such volatile cues, some of which act as both human-centered key food odorants (KFOs) and semiochemicals. A pyrazine-selective odorant receptor has been elusive. Here we screened 2,3,5-trimethylpyrazine, a KFO and semiochemical, and 2,5-dihydro-2,4,5-trimethylthiazoline, an innate fear-associated non-KFO, against 616 human odorant receptor variants, in a cell-based luminescence assay. OR5K1 emerged as sole responding receptor. Tested against a comprehensive collection of 178 KFOs, we newly identified 18 pyrazines and (2R/2S)-4-methoxy-2,5-dimethylfuran-3(2H)-one as agonists. Notably, OR5K1 orthologs in mouse and domesticated species displayed a human-like, potency-ranked activation pattern of pyrazines, suggesting a domestication-led co-evolution of OR5K1 and its orthologs. In summary, OR5K1 is a specialized olfactory receptor across mammals for the detection of pyrazine-based key food odors and semiochemicals.
Collapse
Affiliation(s)
- Patrick Marcinek
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.,Hamilton Germany GmbH, Gräfelfing, Germany
| | - Franziska Haag
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Christiane Geithe
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.,Brandenburg University of Technology Cottbus - Senftenberg, Senftenberg, Germany
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Chepurwar S, Gupta A, Haddad R, Gupta N. Sequence-Based Prediction of Olfactory Receptor Responses. Chem Senses 2019; 44:693-703. [PMID: 31665762 DOI: 10.1093/chemse/bjz059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Computational prediction of how strongly an olfactory receptor (OR) responds to various odors can help in bridging the widening gap between the large number of receptors that have been sequenced and the small number of experiments measuring their responses. Previous efforts in this area have predicted the responses of a receptor to some odors, using the known responses of the same receptor to other odors. Here, we present a method to predict the responses of a receptor without any known responses by using available data about the responses of other conspecific receptors and their sequences. We applied this method to ORs in insects Drosophila melanogaster (both adult and larva) and Anopheles gambiae and to mouse and human ORs. We found the predictions to be in significant agreement with the experimental measurements. The method also provides clues about the response-determining positions within the receptor sequences.
Collapse
Affiliation(s)
- Shashank Chepurwar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Abhishek Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Rafi Haddad
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Nitin Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
3
|
Marenco L, Wang R, McDougal R, Olender T, Twik M, Bruford E, Liu X, Zhang J, Lancet D, Shepherd G, Crasto C. ORDB, HORDE, ODORactor and other on-line knowledge resources of olfactory receptor-odorant interactions. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw132. [PMID: 27694208 PMCID: PMC5045865 DOI: 10.1093/database/baw132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/28/2016] [Indexed: 01/15/2023]
Abstract
We present here an exploration of the evolution of three well-established, web-based resources dedicated to the dissemination of information related to olfactory receptors (ORs) and their functional ligands, odorants. These resources are: the Olfactory Receptor Database (ORDB), the Human Olfactory Data Explorer (HORDE) and ODORactor. ORDB is a repository of genomic and proteomic information related to ORs and other chemosensory receptors, such as taste and pheromone receptors. Three companion databases closely integrated with ORDB are OdorDB, ORModelDB and OdorMapDB; these resources are part of the SenseLab suite of databases (http://senselab.med.yale.edu). HORDE (http://genome.weizmann.ac.il/horde/) is a semi-automatically populated database of the OR repertoires of human and several mammals. ODORactor (http://mdl.shsmu.edu.cn/ODORactor/) provides information related to OR-odorant interactions from the perspective of the odorant. All three resources are connected to each other via web-links. Database URL: http://senselab.med.yale.edu; http://genome.weizmann.ac.il/horde/; http://mdl.shsmu.edu.cn/ODORactor/
Collapse
Affiliation(s)
| | - Rixin Wang
- Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Michal Twik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Elspeth Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Xinyi Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | - Chiquito Crasto
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
4
|
Barwich AS. What is so special about smell? Olfaction as a model system in neurobiology. Postgrad Med J 2015; 92:27-33. [PMID: 26534994 DOI: 10.1136/postgradmedj-2015-133249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/05/2015] [Indexed: 11/04/2022]
Abstract
Neurobiology studies mechanisms of cell signalling. A key question is how cells recognise specific signals. In this context, olfaction has become an important experimental system over the past 25 years. The olfactory system responds to an array of structurally diverse stimuli. The discovery of the olfactory receptors (ORs), recognising these stimuli, established the olfactory pathway as part of a greater group of signalling mechanisms mediated by G-protein-coupled receptors (GPCRs). GPCRs are the largest protein family in the mammalian genome and involved in numerous fundamental physiological processes. The OR family exhibits two characteristics that make them an excellent model system to understand GPCRs: its size and the structural diversity of its members. Research on the OR binding site investigates what amino acid sequences determine the receptor-binding capacity. This promises a better understanding of how the basic genetic makeup of GPCRs relates to their diversification in ligand-binding capacities.
Collapse
|
5
|
Li J, Haddad R, Santos V, Bavan S, Luetje CW. Receptive range analysis of a mouse odorant receptor subfamily. J Neurochem 2015; 134:47-55. [PMID: 25772782 DOI: 10.1111/jnc.13095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/09/2015] [Accepted: 03/03/2015] [Indexed: 11/30/2022]
Abstract
Mammals deploy a large array of odorant receptors (ORs) to detect and distinguish a vast number of odorant molecules. ORs vary widely in the type of odorant structures recognized and in the breadth of molecular receptive range (MRR), with some ORs recognizing a small group of closely related molecules and other ORs recognizing a wide range of structures. While closely related ORs have been shown to have similar MRRs, the functional relationships among less closely related ORs are unclear. We screened a small group of ORs with a diverse odorant panel to identify a new odorant-OR pairing (unsaturated aldehydes and MOR263-3). We then extensively screened MOR263-3 and a series of additional MORs related to MOR263-3 in various ways. MORs related by phylogenetic analysis (several other members of the MOR263 subfamily) had MRRs that overlapped with the MRR of MOR263-3, even with amino acid identity as low as 48% (MOR263-2). MOR171-17, predicted to be functionally related to MOR263-3 by an alternative bioinformatic analysis, but with only 39% amino acid identity, had a distinct odorant specificity. Our results support the use of phylogenetic analysis to predict functional relationships among ORs with relatively low amino acid identity. We screened a small group of mouse odorant receptors (MORs) with a diverse odorant panel to identify a new odorant-OR pairing (unsaturated aldehydes and MOR263-3), then extensively screened a series of additional MORs related to MOR263-3 in various ways. MORs related by phylogenetic analysis had odorant specificities that overlapped with that of MOR263-3, but MOR171-17, predicted to be functionally related to MOR263-3 by an alternative bioinformatic analysis, had a distinct odorant specificity.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Rafi Haddad
- Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Vanessa Santos
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Selvan Bavan
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Charles W Luetje
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
6
|
Auffarth B. Understanding smell—The olfactory stimulus problem. Neurosci Biobehav Rev 2013; 37:1667-79. [DOI: 10.1016/j.neubiorev.2013.06.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 05/09/2013] [Accepted: 06/13/2013] [Indexed: 01/30/2023]
|
7
|
Adipietro KA, Mainland JD, Matsunami H. Functional evolution of mammalian odorant receptors. PLoS Genet 2012; 8:e1002821. [PMID: 22807691 PMCID: PMC3395614 DOI: 10.1371/journal.pgen.1002821] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 05/23/2012] [Indexed: 12/23/2022] Open
Abstract
The mammalian odorant receptor (OR) repertoire is an attractive model to study evolution, because ORs have been subjected to rapid evolution between species, presumably caused by changes of the olfactory system to adapt to the environment. However, functional assessment of ORs in related species remains largely untested. Here we investigated the functional properties of primate and rodent ORs to determine how well evolutionary distance predicts functional characteristics. Using human and mouse ORs with previously identified ligands, we cloned 18 OR orthologs from chimpanzee and rhesus macaque and 17 mouse-rat orthologous pairs that are broadly representative of the OR repertoire. We functionally characterized the in vitro responses of ORs to a wide panel of odors and found similar ligand selectivity but dramatic differences in response magnitude. 87% of human-primate orthologs and 94% of mouse-rat orthologs showed differences in receptor potency (EC50) and/or efficacy (dynamic range) to an individual ligand. Notably dN/dS ratio, an indication of selective pressure during evolution, does not predict functional similarities between orthologs. Additionally, we found that orthologs responded to a common ligand 82% of the time, while human OR paralogs of the same subfamily responded to the common ligand only 33% of the time. Our results suggest that, while OR orthologs tend to show conserved ligand selectivity, their potency and/or efficacy dynamically change during evolution, even in closely related species. These functional changes in orthologs provide a platform for examining how the evolution of ORs can meet species-specific demands.
Collapse
Affiliation(s)
- Kaylin A. Adipietro
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joel D. Mainland
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
8
|
Li J, Haddad R, Chen S, Santos V, Luetje CW. A broadly tuned mouse odorant receptor that detects nitrotoluenes. J Neurochem 2012; 121:881-90. [PMID: 22443178 DOI: 10.1111/j.1471-4159.2012.07740.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mammals employ large numbers of odorant receptors to sample and identify volatile chemicals in the environment. These receptors are thought to vary not only in specificity for particular odorants, but also in breadth of tuning. That is, some odorant receptors are narrowly focused on a few closely related structures, while other odorant receptors may be 'broadly tuned', responding to a wide variety of odorant structures. In this study, we have performed a detailed examination the mouse odorant receptor MOR256-17, demonstrating that this receptor is broadly tuned. This receptor responds to odorant structures that span a significant portion of a multi-dimensional odor space. However, we found that broad tuning was not a defining characteristic of other members the MOR256 subfamily. Two additional members of this odorant receptor subfamily (MOR256-8 and MOR256-22) were more narrowly focused on small sets of odorant structures. Interestingly, the receptive range of MOR256-17 encompassed a variety of nitrotoluenes, including various trinitrotoluene synthesis intermediates, degradation products and trinitrotoluene itself, suggesting the potential utility of odorant receptors in the development of sensing technologies for the detection of explosives and other forms of contraband.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33101, USA
| | | | | | | | | |
Collapse
|
9
|
Kim DH, Phillips ME, Chang AY, Patel HK, Nguyen KT, Willhite DC. Lateral Connectivity in the Olfactory Bulb is Sparse and Segregated. Front Neural Circuits 2011; 5:5. [PMID: 21559072 PMCID: PMC3084525 DOI: 10.3389/fncir.2011.00005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/09/2011] [Indexed: 11/27/2022] Open
Abstract
Lateral connections in the olfactory bulb were previously thought to be organized for center–surround inhibition. However, recent anatomical and physiological studies showed sparse and distributed interactions of inhibitory granule cells (GCs) which tended to be organized in columnar clusters. Little is known about how these distributed clusters are interconnected. In this study, we use transsynaptic tracing viruses bearing green or red fluorescent proteins to further elucidate mitral- and tufted-to-GC connectivity. Separate sites in the glomerular layer were injected with each virus. Columns with labeling from both viruses after transsynaptic spread show sparse red or green GCs which tended to be segregated. However, there was a higher incidence of co-labeled cells than chance would predict. Similar segregation of labeling is observed from dual injections into olfactory cortex. Collectively, these results suggest that neighboring mitral and tufted cells receive inhibitory inputs from segregated subsets of GCs, enabling inhibition of a center by specific and discontinuous lateral elements.
Collapse
Affiliation(s)
- David H Kim
- Department of Neurobiology, Yale University School of Medicine New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
The ability of mammals to identify and distinguish among many thousands of different odorants suggests a combinatorial use of odorant receptors, with each receptor detecting multiple odorants and each odorant interacting with multiple receptors. Numerous receptors may be devoted to the sampling of particularly important regions of odor space. In this study, we explore the similarities and differences in the molecular receptive ranges of four mouse odorant receptors (MOR23-1, MOR31-4, MOR32-11 and MOR40-4), which have previously been identified as receptors for aliphatic carboxylic acids. Each receptor was expressed in Xenopus oocytes, along with Galpha(olf) and the cystic fibrosis transmembrane regulator to allow electrophysiological assay of receptor responses. We find that even though these receptors are relatively unrelated, there is extensive overlap among their receptive ranges. That is, these receptors sample a similar region of odor space. However, the receptive range of each receptor is unique. Thus, these receptors contribute to the depth of coverage of this small region of odor space. Such a group of receptors with overlapping, but distinct receptive ranges, may participate in making fine distinctions among complex mixtures of closely related odorant compounds.
Collapse
Affiliation(s)
- Sarah E Repicky
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33101, USA
| | | |
Collapse
|
11
|
Hasin-Brumshtein Y, Lancet D, Olender T. Human olfaction: from genomic variation to phenotypic diversity. Trends Genet 2009; 25:178-84. [PMID: 19303166 DOI: 10.1016/j.tig.2009.02.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/06/2009] [Accepted: 02/06/2009] [Indexed: 12/19/2022]
Abstract
The sense of smell is a complex molecular device, encompassing several hundred olfactory receptor proteins (ORs). These receptors, encoded by the largest human gene superfamily, integrate odorant signals into an accurate 'odor image' in the brain. Widespread phenotypic diversity in human olfaction is, in part, attributable to prevalent genetic variation in OR genes, owing to copy number variation, deletion alleles and deleterious single nucleotide polymorphisms. The development of new genomic tools, including next generation sequencing and CNV assays, provides opportunities to characterize the genetic variations of this system. The advent of large-scale functional screens of expressed ORs, combined with genetic association studies, has the potential to link variations in ORs to human chemosensory phenotypes. This promises to provide a genome-wide view of human olfaction, resulting in a deeper understanding of personalized odor coding, with the potential to decipher flavor and fragrance preferences.
Collapse
Affiliation(s)
- Yehudit Hasin-Brumshtein
- Department of Molecular Genetics and the Crown Human Genome Center, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
12
|
Abstract
Deciphering olfactory encoding requires a thorough description of the ligands that activate each odorant receptor (OR). In mammalian systems, however, ligands are known for fewer than 50 of more than 1400 human and mouse ORs, greatly limiting our understanding of olfactory coding. We performed high-throughput screening of 93 odorants against 464 ORs expressed in heterologous cells and identified agonists for 52 mouse and 10 human ORs. We used the resulting interaction profiles to develop a predictive model relating physicochemical odorant properties, OR sequences, and their interactions. Our results provide a basis for translating odorants into receptor neuron responses and for unraveling mammalian odor coding.
Collapse
Affiliation(s)
- Harumi Saito
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Durham NC 27710, USA
| | - Qiuyi Chi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Durham NC 27710, USA
| | - Hanyi Zhuang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Durham NC 27710, USA
| | - Hiro Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Durham NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Research Drive, Durham NC 27710, USA
| | - Joel D. Mainland
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Research Drive, Durham NC 27710, USA
| |
Collapse
|
13
|
Abstract
Olfactory receptors, in addition to being involved in first step of the physiological processes that leads to olfaction, occupy an important place in mammalian genomes. ORs constitute super families in these genomes. Elucidating ol-factory receptor function at a molecular level can be aided by a computationally derived structure and an understanding of its interactions with odor molecules. Experimental functional analyses of olfactory receptors in conjunction with computational studies serve to validate findings and generate hypotheses. We present here a review of the research efforts in: creating computational models of olfactory receptors, identifying binding strategies for these receptors with odorant molecules, performing medium to long range simulation studies of odor ligands in the receptor binding region, and identifying amino acid positions within the receptor that are responsible for ligand-binding and olfactory receptor activation. Written as a primer and a teaching tool, this review will help researchers extend the methodologies described herein to other GPCRs.
Collapse
Affiliation(s)
- Chiquito J. Crasto
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|