1
|
Barra ALC, Ullah N, Brognaro H, Gutierrez RF, Wrenger C, Betzel C, Nascimento AS. Structure and dynamics of the staphylococcal pyridoxal 5-phosphate synthase complex reveal transient interactions at the enzyme interface. J Biol Chem 2024; 300:107404. [PMID: 38782204 PMCID: PMC11237949 DOI: 10.1016/j.jbc.2024.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Infectious diseases are a significant cause of death, and recent studies estimate that common bacterial infectious diseases were responsible for 13.6% of all global deaths in 2019. Among the most significant bacterial pathogens is Staphylococcus aureus, accounting for more than 1.1 million deaths worldwide in 2019. Vitamin biosynthesis has been proposed as a promising target for antibacterial therapy. Here, we investigated the biochemical, structural, and dynamic properties of the enzyme complex responsible for vitamin B6 (pyridoxal 5-phosphate, PLP) biosynthesis in S. aureus, which comprises enzymes SaPdx1 and SaPdx2. The crystal structure of the 24-mer complex of SaPdx1-SaPdx2 enzymes indicated that the S. aureus PLP synthase complex forms a highly dynamic assembly with transient interaction between the enzymes. Solution scattering data indicated that SaPdx2 typically binds to SaPdx1 at a substoichiometric ratio. We propose a structure-based view of the PLP synthesis mechanism initiated with the assembly of SaPLP synthase complex that proceeds in a highly dynamic interaction between Pdx1 and Pdx2. This interface interaction can be further explored as a potentially druggable site for the design of new antibiotics.
Collapse
Affiliation(s)
- Angélica Luana C Barra
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil; Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany
| | - Najeeb Ullah
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany; Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Hévila Brognaro
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany
| | - Raissa F Gutierrez
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany; Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | |
Collapse
|
2
|
Tewari SG, Kwan B, Elahi R, Rajaram K, Reifman J, Prigge ST, Vaidya AB, Wallqvist A. Metabolic adjustments of blood-stage Plasmodium falciparum in response to sublethal pyrazoleamide exposure. Sci Rep 2022; 12:1167. [PMID: 35064153 PMCID: PMC8782945 DOI: 10.1038/s41598-022-04985-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022] Open
Abstract
Due to the recurring loss of antimalarial drugs to resistance, there is a need for novel targets, drugs, and combination therapies to ensure the availability of current and future countermeasures. Pyrazoleamides belong to a novel class of antimalarial drugs that disrupt sodium ion homeostasis, although the exact consequences of this disruption in Plasmodium falciparum remain under investigation. In vitro experiments demonstrated that parasites carrying mutations in the metabolic enzyme PfATP4 develop resistance to pyrazoleamide compounds. However, the underlying mechanisms that allow mutant parasites to evade pyrazoleamide treatment are unclear. Here, we first performed experiments to identify the sublethal dose of a pyrazoleamide compound (PA21A092) that caused a significant reduction in growth over one intraerythrocytic developmental cycle (IDC). At this drug concentration, we collected transcriptomic and metabolomic data at multiple time points during the IDC to quantify gene- and metabolite-level alterations in the treated parasites. To probe the effects of pyrazoleamide treatment on parasite metabolism, we coupled the time-resolved omics data with a metabolic network model of P. falciparum. We found that the drug-treated parasites adjusted carbohydrate metabolism to enhance synthesis of myoinositol-a precursor for phosphatidylinositol biosynthesis. This metabolic adaptation caused a decrease in metabolite flux through the pentose phosphate pathway, causing a decreased rate of RNA synthesis and an increase in oxidative stress. Our model analyses suggest that downstream consequences of enhanced myoinositol synthesis may underlie adjustments that could lead to resistance emergence in P. falciparum exposed to a sublethal dose of a pyrazoleamide drug.
Collapse
Affiliation(s)
- Shivendra G Tewari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Bobby Kwan
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Akhil B Vaidya
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA.
| |
Collapse
|
3
|
Pina AF, Sousa SF, Cerqueira NMFSA. The Catalytic Mechanism of Pdx2 Glutaminase Driven by a Cys-His-Glu Triad: A Computational Study. Chembiochem 2021; 23:e202100555. [PMID: 34762772 DOI: 10.1002/cbic.202100555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/10/2021] [Indexed: 11/08/2022]
Abstract
The catalytic mechanism of Pdx2 was studied with atomic detail employing the computational ONIOM hybrid QM/MM methodology. Pdx2 employs a Cys-His-Glu catalytic triad to deaminate glutamine to glutamate and ammonia - the source of the nitrogen of pyridoxal 5'-phosphate (PLP). This enzyme is, therefore, a rate-limiting step in the PLP biosynthetic pathway of Malaria and Tuberculosis pathogens that rely on this mechanism to obtain PLP. For this reason, Pdx2 is considered a novel and promising drug target to treat these diseases. The results obtained show that the catalytic mechanism of Pdx2 occurs in six steps that can be divided into four stages: (i) activation of Cys87 , (ii) deamination of glutamine with the formation of the glutamyl-thioester intermediate, (iii) hydrolysis of the formed intermediate, and (iv) enzymatic turnover. The kinetic data available in the literature (19.1-19.5 kcal mol-1 ) agree very well with the calculated free energy barrier of the hydrolytic step (18.2 kcal.mol-11 ), which is the rate-limiting step of the catalytic process when substrate is readily available in the active site. This catalytic mechanism differs from other known amidases in three main points: i) it requires the activation of the nucleophile Cys87 to a thiolate; ii) the hydrolysis occurs in a single step and therefore does not require the formation of a second tetrahedral reaction intermediate, as it is proposed, and iii) Glu198 does not have a direct role in the catalytic process. Together, these results can be used for the synthesis of new transition state analogue inhibitors capable of inhibiting Pdx2 and impair diseases like Malaria and Tuberculosis.
Collapse
Affiliation(s)
- André F Pina
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Sérgio F Sousa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Nuno M F S A Cerqueira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| |
Collapse
|
4
|
Barra ALC, Ullah N, Morão LG, Wrenger C, Betzel C, Nascimento AS. Structural Dynamics and Perspectives of Vitamin B6 Biosynthesis Enzymes in Plasmodium: Advances and Open Questions. Front Cell Infect Microbiol 2021; 11:688380. [PMID: 34327152 PMCID: PMC8313854 DOI: 10.3389/fcimb.2021.688380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria is still today one of the most concerning diseases, with 219 million infections in 2019, most of them in Sub-Saharan Africa and Latin America, causing approx. 409,000 deaths per year. Despite the tremendous advances in malaria treatment and prevention, there is still no vaccine for this disease yet available and the increasing parasite resistance to already existing drugs is becoming an alarming issue globally. In this context, several potential targets for the development of new drug candidates have been proposed and, among those, the de novo biosynthesis pathway for the B6 vitamin was identified to be a promising candidate. The reason behind its significance is the absence of the pathway in humans and its essential presence in the metabolism of major pathogenic organisms. The pathway consists of two enzymes i.e. Pdx1 (PLP synthase domain) and Pdx2 (glutaminase domain), the last constituting a transient and dynamic complex with Pdx1 as the prime player and harboring the catalytic center. In this review, we discuss the structural biology of Pdx1 and Pdx2, together with and the understanding of the PLP biosynthesis provided by the crystallographic data. We also highlight the existing evidence of the effect of PLP synthesis inhibition on parasite proliferation. The existing data provide a flourishing environment for the structure-based design and optimization of new substrate analogs that could serve as inhibitors or even suicide inhibitors.
Collapse
Affiliation(s)
- Angélica Luana C Barra
- Pólo TerRa, São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil.,Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany
| | - Najeeb Ullah
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany
| | - Luana G Morão
- Pólo TerRa, São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany
| | | |
Collapse
|
5
|
Rokkam SK, Yadav M, Joshi M, Choudhury AR, Sahal D, Golakoti NR. Synthesis, in vitro anti-plasmodial potency, in-silico-cum-SPR binding with inhibition of PfPyridoxal synthase and rapid parasiticidal action by 3,5-bis{( E) arylidene}- N-methyl-4-piperidones. NEW J CHEM 2021. [DOI: 10.1039/d1nj04604g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DANMPs have been identified as new pharmacophores that have the ability to target PfPyridoxal synthase and cause rapid killing of the malaria parasite.
Collapse
Affiliation(s)
- Siva Kumar Rokkam
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India
| | - Mamta Yadav
- Malaria Drug Discovery Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Mayank Joshi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Sector 81, S. A. S. Nagar, Manauli PO, Mohali, Punjab, 140306, India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Sector 81, S. A. S. Nagar, Manauli PO, Mohali, Punjab, 140306, India
| | - Dinkar Sahal
- Malaria Drug Discovery Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Nageswara Rao Golakoti
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India
| |
Collapse
|
6
|
Ullah N, Andaleeb H, Mudogo CN, Falke S, Betzel C, Wrenger C. Solution Structures and Dynamic Assembly of the 24-Meric Plasmodial Pdx1-Pdx2 Complex. Int J Mol Sci 2020; 21:ijms21175971. [PMID: 32825141 PMCID: PMC7504066 DOI: 10.3390/ijms21175971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022] Open
Abstract
Plasmodium species are protozoan parasites causing the deadly malaria disease. They have developed effective resistance mechanisms against most antimalarial medication, causing an urgent need to identify new antimalarial drug targets. Ideally, new drugs would be generated to specifically target the parasite with minimal or no toxicity to humans, requiring these drug targets to be distinctly different from the host’s metabolic processes or even absent in the host. In this context, the essential presence of vitamin B6 biosynthesis enzymes in Plasmodium, the pyridoxal phosphate (PLP) biosynthesis enzyme complex, and its absence in humans is recognized as a potential drug target. To characterize the PLP enzyme complex in terms of initial drug discovery investigations, we performed structural analysis of the Plasmodium vivax PLP synthase domain (Pdx1), glutaminase domain (Pdx2), and Pdx1–Pdx2 (Pdx) complex (PLP synthase complex) by utilizing complementary bioanalytical techniques, such as dynamic light scattering (DLS), X-ray solution scattering (SAXS), and electron microscopy (EM). Our investigations revealed a dodecameric Pdx1 and a monodispersed Pdx complex. Pdx2 was identified in monomeric and in different oligomeric states in solution. Interestingly, mixing oligomeric and polydisperse Pdx2 with dodecameric monodisperse Pdx1 resulted in a monodispersed Pdx complex. SAXS measurements revealed the low-resolution dodecameric structure of Pdx1, different oligomeric structures for Pdx2, and a ring-shaped dodecameric Pdx1 decorated with Pdx2, forming a heteromeric 24-meric Pdx complex.
Collapse
Affiliation(s)
- Najeeb Ullah
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Build. 22a. Notkestr. 85, 22603 Hamburg, Germany; (N.U.); (H.A.); (C.N.M.); (S.F.)
- Department of Biochemistry, Bahauddin Zakariya University, Multan-60800, Punjab, Pakistan
| | - Hina Andaleeb
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Build. 22a. Notkestr. 85, 22603 Hamburg, Germany; (N.U.); (H.A.); (C.N.M.); (S.F.)
- Department of Biochemistry, Bahauddin Zakariya University, Multan-60800, Punjab, Pakistan
| | - Celestin Nzanzu Mudogo
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Build. 22a. Notkestr. 85, 22603 Hamburg, Germany; (N.U.); (H.A.); (C.N.M.); (S.F.)
- Department of Basic Sciences, School of Medicine, University of Kinshasa, Kinshasa BP834 KinXI, Congo
| | - Sven Falke
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Build. 22a. Notkestr. 85, 22603 Hamburg, Germany; (N.U.); (H.A.); (C.N.M.); (S.F.)
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Build. 22a. Notkestr. 85, 22603 Hamburg, Germany; (N.U.); (H.A.); (C.N.M.); (S.F.)
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
- Correspondence: (C.B.); (C.W.); Tel.: +49-(40)-8998-4744 (C.B.); +55-(11)-3091-7265 (C.W.)
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil
- Correspondence: (C.B.); (C.W.); Tel.: +49-(40)-8998-4744 (C.B.); +55-(11)-3091-7265 (C.W.)
| |
Collapse
|
7
|
Vitamin B6-dependent enzymes in the human malaria parasite Plasmodium falciparum: a druggable target? BIOMED RESEARCH INTERNATIONAL 2014; 2014:108516. [PMID: 24524072 PMCID: PMC3912857 DOI: 10.1155/2014/108516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 10/24/2013] [Accepted: 11/28/2013] [Indexed: 11/17/2022]
Abstract
Malaria is a deadly infectious disease which affects millions of people each year in tropical regions. There is no effective vaccine available and the treatment is based on drugs which are currently facing an emergence of drug resistance and in this sense the search for new drug targets is indispensable. It is well established that vitamin biosynthetic pathways, such as the vitamin B6 de novo synthesis present in Plasmodium, are excellent drug targets. The active form of vitamin B6, pyridoxal 5-phosphate, is, besides its antioxidative properties, a cofactor for a variety of essential enzymes present in the malaria parasite which includes the ornithine decarboxylase (ODC, synthesis of polyamines), the aspartate aminotransferase (AspAT, involved in the protein biosynthesis), and the serine hydroxymethyltransferase (SHMT, a key enzyme within the folate metabolism).
Collapse
|
8
|
Chemical and genetic validation of thiamine utilization as an antimalarial drug target. Nat Commun 2013; 4:2060. [PMID: 23804074 DOI: 10.1038/ncomms3060] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/28/2013] [Indexed: 11/08/2022] Open
Abstract
Thiamine is metabolized into an essential cofactor for several enzymes. Here we show that oxythiamine, a thiamine analog, inhibits proliferation of the malaria parasite Plasmodium falciparum in vitro via a thiamine-related pathway and significantly reduces parasite growth in a mouse malaria model. Overexpression of thiamine pyrophosphokinase (the enzyme that converts thiamine into its active form, thiamine pyrophosphate) hypersensitizes parasites to oxythiamine by up to 1,700-fold, consistent with oxythiamine being a substrate for thiamine pyrophosphokinase and its conversion into an antimetabolite. We show that parasites overexpressing the thiamine pyrophosphate-dependent enzymes oxoglutarate dehydrogenase and pyruvate dehydrogenase are up to 15-fold more resistant to oxythiamine, consistent with the antimetabolite inactivating thiamine pyrophosphate-dependent enzymes. Our studies therefore validate thiamine utilization as an antimalarial drug target and demonstrate that a single antimalarial can simultaneously target several enzymes located within distinct organelles.
Collapse
|
9
|
Exploring inhibition of Pdx1, a component of the PLP synthase complex of the human malaria parasite Plasmodium falciparum. Biochem J 2013; 449:175-87. [PMID: 23039077 DOI: 10.1042/bj20120925] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Malaria tropica is a devastating infectious disease caused by Plasmodium falciparum. This parasite synthesizes vitamin B6 de novo via the PLP (pyridoxal 5'-phosphate) synthase enzymatic complex consisting of PfPdx1 and PfPdx2 proteins. Biosynthesis of PLP is largely performed by PfPdx1, ammonia provided by PfPdx2 subunits is condensed together with R5P (D-ribose 5-phosphate) and G3P (DL-glyceraldehyde 3-phosphate). PfPdx1 accommodates both the R5P and G3P substrates and intricately co-ordinates the reaction mechanism, which is composed of a series of imine bond formations, leading to the production of PLP. We demonstrate that E4P (D-erythrose 4-phosphate) inhibits PfPdx1 in a dose-dependent manner. We propose that the acyclic phospho-sugar E4P, with a C1 aldehyde group similar to acyclic R5P, could interfere with R5P imine bond formations in the PfPdx1 reaction mechanism. Molecular docking and subsequent screening identified the E4P hydrazide analogue 4PEHz (4-phospho-D-erythronhydrazide), which selectively inhibited PfPdx1 with an IC50 of 43 μM. PfPdx1 contained in the heteromeric PLP synthase complex was shown to be more sensitive to 4PEHz and was inhibited with an IC50 of 16 μM. Moreover, the compound had an IC50 value of 10 μM against cultured P. falciparum intraerythrocytic parasites. To analyse further the selectivity of 4PEHz, transgenic cell lines overexpressing PfPdx1 and PfPdx2 showed that additional copies of the protein complex conferred protection against 4PEHz, indicating that the PLP synthase is directly affected by 4PEHz in vivo. These PfPdx1 inhibitors represent novel lead scaffolds which are capable of targeting PLP biosynthesis, and we propose this as a viable strategy for the development of new therapeutics against malaria.
Collapse
|
10
|
The antioxidative effect of de novo generated vitamin B6 in Plasmodium falciparum validated by protein interference. Biochem J 2012; 443:397-405. [PMID: 22242896 DOI: 10.1042/bj20111542] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The malaria parasite Plasmodium falciparum is able to synthesize de novo PLP (pyridoxal 5'-phosphate), the active form of vitamin B6. In the present study, we have shown that the de novo synthesized PLP is used by the parasite to detoxify 1O2 (singlet molecular oxygen), a highly destructive reactive oxygen species arising from haemoglobin digestion. The formation of 1O2 and the response of the parasite were monitored by live-cell fluorescence microscopy, by transcription analysis and by determination of PLP levels in the parasite. Pull-down experiments of transgenic parasites overexpressing the vitamin B6-biosynthetic enzymes PfPdx1 and PfPdx2 clearly demonstrated an interaction of the two proteins in vivo which results in an elevated PLP level from 12.5 μM in wild-type parasites to 36.6 μM in the PfPdx1/PfPdx2-overexpressing cells and thus to a higher tolerance towards 1O2. In contrast, by applying the dominant-negative effect on the cellular level using inactive mutants of PfPdx1 and PfPdx2, P. falciparum becomes susceptible to 1O2. Our results demonstrate clearly the crucial role of vitamin B6 biosynthesis in the detoxification of 1O2 in P. falciparum. Besides the known role of PLP as a cofactor of many essential enzymes, this second important task of the vitamin B6 de novo synthesis as antioxidant emphasizes the high potential of this pathway as a target of new anti-malarial drugs.
Collapse
|
11
|
Guédez G, Hipp K, Windeisen V, Derrer B, Gengenbacher M, Böttcher B, Sinning I, Kappes B, Tews I. Assembly of the eukaryotic PLP-synthase complex from Plasmodium and activation of the Pdx1 enzyme. Structure 2012; 20:172-84. [PMID: 22244765 DOI: 10.1016/j.str.2011.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/04/2011] [Accepted: 11/05/2011] [Indexed: 11/26/2022]
Abstract
Biosynthesis of vitamins is fundamental to malaria parasites. Plasmodia synthesize the active form of vitamin B(6) (pyridoxal 5'-phosphate, PLP) using a PLP synthase complex. The EM analysis shown here reveals a random association pattern of up to 12 Pdx2 glutaminase subunits to the dodecameric Pdx1 core complex. Interestingly, Plasmodium falciparum PLP synthase organizes in fibers. The crystal structure shows differences in complex formation to bacterial orthologs as interface variations. Alternative positioning of an α helix distinguishes an open conformation from a closed state when the enzyme binds substrate. The pentose substrate is covalently attached through its C1 and forms a Schiff base with Lys84. Ammonia transfer between Pdx2 glutaminase and Pdx1 active sites is regulated by a transient tunnel. The mutagenesis analysis allows defining the requirement for conservation of critical methionines, whereas there is also plasticity in ammonia tunnel construction as seen from comparison across different species.
Collapse
Affiliation(s)
- Gabriela Guédez
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Moccand C, Kaufmann M, Fitzpatrick TB. It takes two to tango: defining an essential second active site in pyridoxal 5'-phosphate synthase. PLoS One 2011; 6:e16042. [PMID: 21283685 PMCID: PMC3024981 DOI: 10.1371/journal.pone.0016042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/09/2010] [Indexed: 11/24/2022] Open
Abstract
The prevalent de novo biosynthetic pathway of vitamin B6 involves only two enzymes (Pdx1 and Pdx2) that form an ornate multisubunit complex functioning as a glutamine amidotransferase. The synthase subunit, Pdx1, utilizes ribose 5-phosphate and glyceraldehyde 3-phosphate, as well as ammonia derived from the glutaminase activity of Pdx2 to directly form the cofactor vitamer, pyridoxal 5′-phosphate. Given the fact that a single enzyme performs the majority of the chemistry behind this reaction, a complicated mechanism is anticipated. Recently, the individual steps along the reaction co-ordinate are beginning to be unraveled. In particular, the binding of the pentose substrate and the first steps of the reaction have been elucidated but it is not known if the latter part of the chemistry, involving the triose sugar, takes place in the same or a disparate site. Here, we demonstrate through the use of enzyme assays, enzyme kinetics, and mutagenesis studies that indeed a second site is involved in binding the triose sugar and moreover, is the location of the final vitamin product, pyridoxal 5′-phosphate. Furthermore, we show that product release is triggered by the presence of a PLP-dependent enzyme. Finally, we provide evidence that a single arginine residue of the C terminus of Pdx1 is responsible for coordinating co-operativity in this elaborate protein machinery.
Collapse
Affiliation(s)
- Cyril Moccand
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Markus Kaufmann
- Bio-Molecular Analysis Platform, University of Geneva, Geneva, Switzerland
| | - Teresa B. Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
13
|
Derrer B, Windeisen V, Guédez Rodríguez G, Seidler J, Gengenbacher M, Lehmann WD, Rippe K, Sinning I, Tews I, Kappes B. Defining the structural requirements for ribose 5-phosphate-binding and intersubunit cross-talk of the malarial pyridoxal 5-phosphate synthase. FEBS Lett 2010; 584:4169-74. [PMID: 20837012 DOI: 10.1016/j.febslet.2010.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/23/2010] [Accepted: 09/02/2010] [Indexed: 11/28/2022]
Abstract
Most organisms synthesise the B(6) vitamer pyridoxal 5-phosphate (PLP) via the glutamine amidotransferase PLP synthase, a large enzyme complex of 12 Pdx1 synthase subunits with up to 12 Pdx2 glutaminase subunits attached. Deletion analysis revealed that the C-terminus has four distinct functionalities: assembly of the Pdx1 monomers, binding of the pentose substrate (ribose 5-phosphate), formation of the reaction intermediate I(320), and finally PLP synthesis. Deletions of distinct C-terminal regions distinguish between these individual functions. PLP formation is the only function that is conferred to the enzyme by the C-terminus acting in trans, explaining the cooperative nature of the complex.
Collapse
Affiliation(s)
- Bianca Derrer
- University Hospital Heidelberg, Department of Infectious Diseases, Parasitology, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Leuendorf JE, Osorio S, Szewczyk A, Fernie AR, Hellmann H. Complex assembly and metabolic profiling of Arabidopsis thaliana plants overexpressing vitamin B₆ biosynthesis proteins. MOLECULAR PLANT 2010; 3:890-903. [PMID: 20675613 DOI: 10.1093/mp/ssq041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In plants, vitamin B₆ biosynthesis requires the activity of PDX1 and PDX2 proteins. Arabidopsis thaliana encodes for three PDX1 proteins, named PDX1.1, 1.2, and 1.3, but only one PDX2. Here, we show in planta complex assembly of PDX proteins, based on split-YFP and FPLC assays, and can demonstrate their presence in higher complexes of around 750 kDa. Metabolic profiling of plants ectopically expressing the different PDX proteins indicates a negative influence of PDX1.2 on vitamin B₆ biosynthesis and a correlation between aberrant vitamin B6 content, PDX1 gene expression, and light sensitivity specifically for PDX1.3. These findings provide first insights into in planta vitamin B₆ synthase complex assembly and new information on how the different PDX proteins affect plant metabolism.
Collapse
|
15
|
Mooney S, Hellmann H. Vitamin B6: Killing two birds with one stone? PHYTOCHEMISTRY 2010; 71:495-501. [PMID: 20089286 DOI: 10.1016/j.phytochem.2009.12.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/23/2009] [Accepted: 12/30/2009] [Indexed: 05/24/2023]
Abstract
Vitamin B6 comprises a group of compounds that are involved in a surprisingly high diversity of biochemical reactions. Actually, most of these reactions are co-catalyzed by a single B6 vitamer, pyridoxal 5'-phosphate, making it a crucial and versatile co-factor in many metabolic processes in the cell. In addition, it has been demonstrated in recent years that vitamin B6 has a second important function by being an effective antioxidant. Because of these two characteristics the vitamin is an interesting compound to study in plants. This review provides a brief overview and update on such important aspects like vitamin B6-dependent enzymes and known biosynthetic pathways in plants, phenotypes of plant mutants affected in vitamin B6 biosynthesis, and the potential benefits of modifying vitamin B6 content in plants.
Collapse
Affiliation(s)
- Sutton Mooney
- Washington State University, Pullman, Abelson Hall, WA 99164, USA
| | | |
Collapse
|
16
|
Müller IB, Hyde JE, Wrenger C. Vitamin B metabolism in Plasmodium falciparum as a source of drug targets. Trends Parasitol 2009; 26:35-43. [PMID: 19939733 DOI: 10.1016/j.pt.2009.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 09/25/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
Abstract
The malaria parasite Plasmodium falciparum depends primarily on nutrient sources from its human host. Most compounds, such as glucose, purines, amino acids, as well as cofactors and vitamins, are abundantly available in the host cell, and can be readily salvaged by the parasite. However, in some cases the parasite can also synthesize cofactors de novo in reactions that appear to be essential. Importantly, the three biosynthetic pathways that produce vitamins B(1), B(6) and B(9) are absent from the host, but are well established in P. falciparum. This review summarizes and updates the current knowledge of vitamin B de novo synthesis and salvage in P. falciparum and focuses on their potential as targets for drug intervention.
Collapse
Affiliation(s)
- Ingrid B Müller
- Department of Biochemistry, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | |
Collapse
|
17
|
The vitamin B1 metabolism of Staphylococcus aureus is controlled at enzymatic and transcriptional levels. PLoS One 2009; 4:e7656. [PMID: 19888457 PMCID: PMC2766623 DOI: 10.1371/journal.pone.0007656] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/07/2009] [Indexed: 12/03/2022] Open
Abstract
Vitamin B1 is in its active form thiamine pyrophosphate (TPP), an essential cofactor for several key enzymes in the carbohydrate metabolism. Mammals must salvage this crucial nutrient from their diet in order to complement the deficiency of de novo synthesis. In the human pathogenic bacterium Staphylococcus aureus, two operons were identified which are involved in vitamin B1 metabolism. The first operon encodes for the thiaminase type II (TenA), 4-amino-5-hydroxymethyl-2-methylpyrimidine kinase (ThiD), 5-(2-hydroxyethyl)-4-methylthiazole kinase (ThiM) and thiamine phosphate synthase (ThiE). The second operon encodes a phosphatase, an epimerase and the thiamine pyrophosphokinase (TPK). The open reading frames of the individual operons were cloned, their corresponding proteins were recombinantly expressed and biochemically analysed. The kinetic properties of the enzymes as well as the binding of TPP to the in vitro transcribed RNA of the proposed operons suggest that the vitamin B1 homeostasis in S. aureus is strongly regulated at transcriptional as well as enzymatic levels.
Collapse
|
18
|
Knöckel J, Jordanova R, Müller IB, Wrenger C, Groves MR. Mobility of the conserved glycine 155 is required for formation of the active plasmodial Pdx1 dodecamer. Biochim Biophys Acta Gen Subj 2009; 1790:347-50. [PMID: 19272411 DOI: 10.1016/j.bbagen.2009.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/19/2009] [Accepted: 02/23/2009] [Indexed: 11/25/2022]
Abstract
BACKGROUND Vitamin B6 synthesis requires a functional Pdx1 assembly that is dodecameric in vivo. We have previously shown that mutation of a catalytic lysine in the plasmodial Pdx1 protein results in a protein that is both inactive and hexameric in vitro. METHODS Static and dynamic light scattering, circular dichroism, co-purification and enzyme assays are used to investigate the role of a glycine conserved in all Pdx1 family members. RESULTS Static light scattering indicates that a glycine to alanine mutant is present as a hexamer in vitro. Subsequent circular dichroism experiments demonstrate that a significant change in secondary structure content is induced by this mutation. However, this mutant is still competent to bind and support Pdx2 activity. CONCLUSIONS As the mutated glycine occupies an unrestricted region of the Ramachandran plot the additional stereo-chemical restrictions imposed on alanine residues strongly support our hypothesis that significant structural rearrangement of Pdx1 is required during the transition from hexamer to dodecamer. GENERAL SIGNIFICANCE The presented results demonstrate that reduction in the mobility of this region in Pdx1 proteins is required for formation of the in vivo dodecamer, negatively affecting the activity of Pdx1, opening the possibility of allosteric Pdx1 inhibitors.
Collapse
Affiliation(s)
- Julia Knöckel
- Bernhard Nocht Institute for Tropical Medicine, Department of Biochemistry, Bernhard Nocht Strasse 74, D-20359 Hamburg, Germany
| | | | | | | | | |
Collapse
|
19
|
Müller IB, Wu F, Bergmann B, Knöckel J, Walter RD, Gehring H, Wrenger C. Poisoning pyridoxal 5-phosphate-dependent enzymes: a new strategy to target the malaria parasite Plasmodium falciparum. PLoS One 2009; 4:e4406. [PMID: 19197387 PMCID: PMC2634962 DOI: 10.1371/journal.pone.0004406] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 12/12/2008] [Indexed: 11/18/2022] Open
Abstract
The human malaria parasite Plasmodium falciparum is able to synthesize de novo pyridoxal 5-phosphate (PLP), a crucial cofactor, during erythrocytic schizogony. However, the parasite possesses additionally a pyridoxine/pyridoxal kinase (PdxK) to activate B6 vitamers salvaged from the host. We describe a strategy whereby synthetic pyridoxyl-amino acid adducts are channelled into the parasite. Trapped upon phosphorylation by the plasmodial PdxK, these compounds block PLP-dependent enzymes and thus impair the growth of P. falciparum. The novel compound PT3, a cyclic pyridoxyl-tryptophan methyl ester, inhibited the proliferation of Plasmodium very efficiently (IC(50)-value of 14 microM) without harming human cells. The non-cyclic pyridoxyl-tryptophan methyl ester PT5 and the pyridoxyl-histidine methyl ester PHME were at least one order of magnitude less effective or completely ineffective in the case of the latter. Modeling in silico indicates that the phosphorylated forms of PT3 and PT5 fit well into the PLP-binding site of plasmodial ornithine decarboxylase (PfODC), the key enzyme of polyamine synthesis, consistent with the ability to abolish ODC activity in vitro. Furthermore, the antiplasmodial effect of PT3 is directly linked to the capability of Plasmodium to trap this pyridoxyl analog, as shown by an increased sensitivity of parasites overexpressing PfPdxK in their cytosol, as visualized by GFP fluorescence.
Collapse
Affiliation(s)
- Ingrid B Müller
- Department of Biochemistry, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|