1
|
Bhalodia R, Elhabian S, Adams J, Tao W, Kavan L, Whitaker R. DeepSSM: A blueprint for image-to-shape deep learning models. Med Image Anal 2024; 91:103034. [PMID: 37984127 PMCID: PMC11087075 DOI: 10.1016/j.media.2023.103034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/06/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Statistical shape modeling (SSM) characterizes anatomical variations in a population of shapes generated from medical images. Statistical analysis of shapes requires consistent shape representation across samples in shape cohort. Establishing this representation entails a processing pipeline that includes anatomy segmentation, image re-sampling, shape-based registration, and non-linear, iterative optimization. These shape representations are then used to extract low-dimensional shape descriptors that are anatomically relevant to facilitate subsequent statistical analyses in different applications. However, the current process of obtaining these shape descriptors from imaging data relies on human and computational resources, requiring domain expertise for segmenting anatomies of interest. Moreover, this same taxing pipeline needs to be repeated to infer shape descriptors for new image data using a pre-trained/existing shape model. Here, we propose DeepSSM, a deep learning-based framework for learning the functional mapping from images to low-dimensional shape descriptors and their associated shape representations, thereby inferring statistical representation of anatomy directly from 3D images. Once trained using an existing shape model, DeepSSM circumvents the heavy and manual pre-processing and segmentation required by classical models and significantly improves the computational time, making it a viable solution for fully end-to-end shape modeling applications. In addition, we introduce a model-based data-augmentation strategy to address data scarcity, a typical scenario in shape modeling applications. Finally, this paper presents and analyzes two different architectural variants of DeepSSM with different loss functions using three medical datasets and their downstream clinical application. Experiments showcase that DeepSSM performs comparably or better to the state-of-the-art SSM both quantitatively and on application-driven downstream tasks. Therefore, DeepSSM aims to provide a comprehensive blueprint for deep learning-based image-to-shape models.
Collapse
Affiliation(s)
- Riddhish Bhalodia
- Scientific Computing and Imaging Institute, 72 Central Campus Dr, University of Utah, Salt Lake City, UT 84112, USA; School of Computing, 50 Central Campus Dr, University of Utah, Salt Lake City, UT 84112, USA.
| | - Shireen Elhabian
- Scientific Computing and Imaging Institute, 72 Central Campus Dr, University of Utah, Salt Lake City, UT 84112, USA; School of Computing, 50 Central Campus Dr, University of Utah, Salt Lake City, UT 84112, USA
| | - Jadie Adams
- Scientific Computing and Imaging Institute, 72 Central Campus Dr, University of Utah, Salt Lake City, UT 84112, USA; School of Computing, 50 Central Campus Dr, University of Utah, Salt Lake City, UT 84112, USA
| | - Wenzheng Tao
- Scientific Computing and Imaging Institute, 72 Central Campus Dr, University of Utah, Salt Lake City, UT 84112, USA; School of Computing, 50 Central Campus Dr, University of Utah, Salt Lake City, UT 84112, USA
| | - Ladislav Kavan
- School of Computing, 50 Central Campus Dr, University of Utah, Salt Lake City, UT 84112, USA
| | - Ross Whitaker
- Scientific Computing and Imaging Institute, 72 Central Campus Dr, University of Utah, Salt Lake City, UT 84112, USA; School of Computing, 50 Central Campus Dr, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Aziz AZB, Adams J, Elhabian S. Progressive DeepSSM: Training Methodology for Image-To-Shape Deep Models. SHAPE IN MEDICAL IMAGING : INTERNATIONAL WORKSHOP, SHAPEMI 2023, HELD IN CONJUNCTION WITH MICCAI 2023, VANCOUVER, BC, CANADA, OCTOBER 8, 2023, PROCEEDINGS. SHAPEMI (WORKSHOP) (2023 : VANCOUVER, B.C.) 2023; 14350:157-172. [PMID: 38745942 PMCID: PMC11090218 DOI: 10.1007/978-3-031-46914-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Statistical shape modeling (SSM) is an enabling quantitative tool to study anatomical shapes in various medical applications. However, directly using 3D images in these applications still has a long way to go. Recent deep learning methods have paved the way for reducing the substantial preprocessing steps to construct SSMs directly from unsegmented images. Nevertheless, the performance of these models is not up to the mark. Inspired by multiscale/multiresolution learning, we propose a new training strategy, progressive DeepSSM, to train image-to-shape deep learning models. The training is performed in multiple scales, and each scale utilizes the output from the previous scale. This strategy enables the model to learn coarse shape features in the first scales and gradually learn detailed fine shape features in the later scales. We leverage shape priors via segmentation-guided multi-task learning and employ deep supervision loss to ensure learning at each scale. Experiments show the superiority of models trained by the proposed strategy from both quantitative and qualitative perspectives. This training methodology can be employed to improve the stability and accuracy of any deep learning method for inferring statistical representations of anatomies from medical images and can be adopted by existing deep learning methods to improve model accuracy and training stability.
Collapse
Affiliation(s)
- Abu Zahid Bin Aziz
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA
- Kahlert School of Computing, University of Utah, Salt Lake City, Utah, USA
| | - Jadie Adams
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA
- Kahlert School of Computing, University of Utah, Salt Lake City, Utah, USA
| | - Shireen Elhabian
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA
- Kahlert School of Computing, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Karanam MST, Kataria T, Iyer K, Elhabian SY. ADASSM: Adversarial Data Augmentation in Statistical Shape Models From Images. SHAPE IN MEDICAL IMAGING : INTERNATIONAL WORKSHOP, SHAPEMI 2023, HELD IN CONJUNCTION WITH MICCAI 2023, VANCOUVER, BC, CANADA, OCTOBER 8, 2023, PROCEEDINGS. SHAPEMI (WORKSHOP) (2023 : VANCOUVER, B.C.) 2023; 14350:90-104. [PMID: 39022299 PMCID: PMC11251192 DOI: 10.1007/978-3-031-46914-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Statistical shape models (SSM) have been well-established as an excellent tool for identifying variations in the morphology of anatomy across the underlying population. Shape models use consistent shape representation across all the samples in a given cohort, which helps to compare shapes and identify the variations that can detect pathologies and help in formulating treatment plans. In medical imaging, computing these shape representations from CT/MRI scans requires time-intensive preprocessing operations, including but not limited to anatomy segmentation annotations, registration, and texture denoising. Deep learning models have demonstrated exceptional capabilities in learning shape representations directly from volumetric images, giving rise to highly effective and efficient Image-to-SSM networks. Nevertheless, these models are data-hungry and due to the limited availability of medical data, deep learning models tend to overfit. Offline data augmentation techniques, that use kernel density estimation based (KDE) methods for generating shape-augmented samples, have successfully aided Image-to-SSM networks in achieving comparable accuracy to traditional SSM methods. However, these augmentation methods focus on shape augmentation, whereas deep learning models exhibit image-based texture bias resulting in sub-optimal models. This paper introduces a novel strategy for on-the-fly data augmentation for the Image-to-SSM framework by leveraging data-dependent noise generation or texture augmentation. The proposed framework is trained as an adversary to the Image-to-SSM network, augmenting diverse and challenging noisy samples. Our approach achieves improved accuracy by encouraging the model to focus on the underlying geometry rather than relying solely on pixel values.
Collapse
Affiliation(s)
- Mokshagna Sai Teja Karanam
- Kahlert School of Computing, University Of Utah
- Scientific Computing and Imaging Institute, University of Utah
| | - Tushar Kataria
- Kahlert School of Computing, University Of Utah
- Scientific Computing and Imaging Institute, University of Utah
| | - Krithika Iyer
- Kahlert School of Computing, University Of Utah
- Scientific Computing and Imaging Institute, University of Utah
| | - Shireen Y. Elhabian
- Kahlert School of Computing, University Of Utah
- Scientific Computing and Imaging Institute, University of Utah
| |
Collapse
|
4
|
Vasenina EE. [Gender characteristics of anxiety disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:48-53. [PMID: 37966439 DOI: 10.17116/jnevro202312310148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Anxiety and depression are an extremely significant issue of the modern society. According to the epidemiological data, the development of various affective syndromes shows gender-related differences. For example, clinically significant anxiety occurs 2.5 times more often in women than in men. Anxiety disorders in women are characterized by less favorable course, a tendency to relapses and chronification, and also by poor clinical response to therapy. Taking gender differences into account, a significant role of reproductive hormones may be assumed in development of both affective disorders and the features of the course of the disease. In this review we discuss various effects of testosterone, estrogens that can influence development risks of anxiety and depression, as well as possibly influence therapeutic choices.
Collapse
Affiliation(s)
- E E Vasenina
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
5
|
Guimond S, Mothi SS, Makowski C, Chakravarty MM, Keshavan MS. Altered amygdala shape trajectories and emotion recognition in youth at familial high risk of schizophrenia who develop psychosis. Transl Psychiatry 2022; 12:202. [PMID: 35562339 PMCID: PMC9106712 DOI: 10.1038/s41398-022-01957-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 01/04/2023] Open
Abstract
Relatives of individuals with schizophrenia have a higher risk of developing the illness compared to the general population. Thus, youth at familial high risk (FHR) offer a unique opportunity to identify neuroimaging-based endophenotypes of psychosis. Previous studies have identified lower amygdalo-hippocampal volume in FHR, as well as lower verbal memory and emotion recognition. However, whether these phenotypes increase the risk of transition to psychosis remains unclear. To determine if individuals who develop psychosis have abnormal neurodevelopmental trajectories of the amygdala and hippocampus, we investigated longitudinal changes of these structures in a unique cohort of 82 youth FHR and 56 healthy controls during a 3-year period. Ten individuals from the FHR group converted to psychosis. Longitudinal changes were compared using linear mixed-effects models. Group differences in verbal memory and emotion recognition performance at baseline were also analyzed. Surface-based morphometry measures revealed variation in amygdalar shape (concave shape of the right dorsomedial region) in those who converted to psychosis. Significantly lower emotion recognition performance at baseline was observed in converters. Percent trial-to-trial transfer on the verbal learning task was also significantly impaired in FHR, independently of the conversion status. Our results identify abnormal shape development trajectories in the dorsomedial amygdala and lower emotion recognition abilities as phenotypes of transition to psychosis. Our findings illustrate potential markers for early identification of psychosis, aiding prevention efforts in youth at risk of schizophrenia.
Collapse
Affiliation(s)
- Synthia Guimond
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Psychoeducation and Psychology, University of Quebec in Outaouais, Gatineau, QC, Canada
| | - Suraj S Mothi
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Carolina Makowski
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, Montreal, QC, Canada
- Center for Multimodal Imaging and Genetics, Department of Radiology, University of California San Diego, San Diego, United States
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Goparaju A, Iyer K, Bône A, Hu N, Henninger HB, Anderson AE, Durrleman S, Jacxsens M, Morris A, Csecs I, Marrouche N, Elhabian SY. Benchmarking off-the-shelf statistical shape modeling tools in clinical applications. Med Image Anal 2022; 76:102271. [PMID: 34974213 PMCID: PMC8792348 DOI: 10.1016/j.media.2021.102271] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023]
Abstract
Statistical shape modeling (SSM) is widely used in biology and medicine as a new generation of morphometric approaches for the quantitative analysis of anatomical shapes. Technological advancements of in vivo imaging have led to the development of open-source computational tools that automate the modeling of anatomical shapes and their population-level variability. However, little work has been done on the evaluation and validation of such tools in clinical applications that rely on morphometric quantifications(e.g., implant design and lesion screening). Here, we systematically assess the outcome of widely used, state-of-the-art SSM tools, namely ShapeWorks, Deformetrica, and SPHARM-PDM. We use both quantitative and qualitative metrics to evaluate shape models from different tools. We propose validation frameworks for anatomical landmark/measurement inference and lesion screening. We also present a lesion screening method to objectively characterize subtle abnormal shape changes with respect to learned population-level statistics of controls. Results demonstrate that SSM tools display different levels of consistencies, where ShapeWorks and Deformetrica models are more consistent compared to models from SPHARM-PDM due to the groupwise approach of estimating surface correspondences. Furthermore, ShapeWorks and Deformetrica shape models are found to capture clinically relevant population-level variability compared to SPHARM-PDM models.
Collapse
Affiliation(s)
- Anupama Goparaju
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; School of Computing, University of Utah, Salt Lake City, UT, USA
| | - Krithika Iyer
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; School of Computing, University of Utah, Salt Lake City, UT, USA
| | - Alexandre Bône
- ARAMIS Lab, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne University, Inria, Paris, France
| | - Nan Hu
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Heath B Henninger
- Department of Orthopaedics, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Andrew E Anderson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Department of Orthopaedics, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Stanley Durrleman
- ARAMIS Lab, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne University, Inria, Paris, France
| | - Matthijs Jacxsens
- Department of Orthopaedics, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Alan Morris
- Division of Cardiovascular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Ibolya Csecs
- Division of Cardiovascular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Nassir Marrouche
- Division of Cardiovascular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Shireen Y Elhabian
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; School of Computing, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
7
|
Lee S, Kim TD, Kim RY, Joo Y, Chung YA, Lim SM, Lyoo IK, Kim J, Yoon S. Hippocampal subregional alterations and verbal fluency in the early stage of type 2 diabetes mellitus. Eur J Neurosci 2021; 54:7550-7559. [PMID: 34687097 DOI: 10.1111/ejn.15505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
Abstract
Growing evidence indicates that type 2 diabetes mellitus (T2DM)-related cognitive dysfunction may develop in the early stage of the disease and is often accompanied by hippocampal structural alterations. In the current study, we investigated volume and shape alterations of the hippocampus at a subregional level in patients with T2DM. With the use of high-resolution brain structural images that were obtained from 30 T2DM patients with less than 5 years of disease duration and 30 healthy individuals, volumetric and shape analyses were performed. We also assessed the relationship between T2DM-related hippocampal structural alterations and performance on verbal fluency. In volumetric analysis, total hippocampal volume was smaller in the T2DM group, relative to the control group. At a subregional level, T2DM patients showed significant inward deformation and volume reduction of the right dentate gyrus and cornu ammonis 2/3 subregions as compared with healthy individuals. In particular, T2DM patients with lower performance on verbal fluency had smaller right dentate gyrus volumes relative to those with higher performance. These findings suggest that the hippocampus may undergo atrophy at a subregional level even in the early stage of T2DM, and this subregion-specific atrophy may be associated with reduced performance on verbal fluency.
Collapse
Affiliation(s)
- Suji Lee
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Tammy D Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Rye Young Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Yoonji Joo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Yong-An Chung
- Department of Radiology, Incheon St. Mary's Hospital, The Catholic University of Korea College of Medicine, Incheon, South Korea
| | - Soo Mee Lim
- Department of Radiology, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea.,The Brain Institute and Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
8
|
Geraets AF, Köhler S, Jansen JF, Eussen SJ, Stehouwer CDA, Schaper NC, Wesselius A, Verhey FR, Schram MT. The association of markers of cerebral small vessel disease and brain atrophy with incidence and course of depressive symptoms - the maastricht study. J Affect Disord 2021; 292:439-447. [PMID: 34144369 DOI: 10.1016/j.jad.2021.05.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/29/2021] [Accepted: 05/30/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) and neurodegeneration may be involved in the development and persistence of late-life depressive symptoms, but longitudinal evidence is scarce. We investigated the longitudinal associations of markers of CSVD and brain atrophy with incident depressive symptoms and the course of depressive symptoms, above and below 60 years of age. METHODS White matter hyperintensity volumes (WMH), presence of lacunar infarcts and cerebral microbleeds, and white matter, grey matter, and cerebral spinal fluid volumes were assessed at baseline by 3T MRI in The Maastricht Study (mean age 59.5±8.5 years, 49.6% women, n=4,347; 16,535 person-years of follow-up). Clinically relevant depressive symptoms (9-item Patient Health Questionnaire≥10) were assessed at baseline and annually over seven years. We used Cox regression and multinomial logistic regression analyses adjusted for demographic, cardiovascular, and lifestyle risk factors. RESULTS Above 60 years of age, larger WMH volumes were associated with an increased risk for incident depressive symptoms (HR[95%CI]:1.24[1.04;1.48] per SD) and a persistent course of depressive symptoms (OR:1.44[1.04;2.00] per SD). Total CSVD burden was associated with persistent depressive symptoms irrespective of age (adjusted OR:1.58[1.03;2.43]), while no associations were found for general markers of brain atrophy. LIMITATIONSS Our findings need replication in other large-scale population-based studies. CONCLUSIONS Our findings may suggest a temporal association of larger WMH volume with the incidence and persistence of late-life depression in the general population and may provide a potential target for the prevention of chronic late-life depression.
Collapse
Affiliation(s)
- Anouk Fj Geraets
- Department of Psychiatry and Neuropsychology; Alzheimer Centrum Limburg, the Netherlands; Department of Internal Medicine; School for Mental Health and Neuroscience; School for Cardiovascular Diseases (CARIM)
| | - Sebastian Köhler
- Department of Psychiatry and Neuropsychology; Alzheimer Centrum Limburg, the Netherlands; School for Mental Health and Neuroscience
| | - Jacobus Fa Jansen
- Department of Radiology and Nuclear Medicine; School for Mental Health and Neuroscience
| | - Simone Jpm Eussen
- Department of Epidemiology; School for Cardiovascular Diseases (CARIM)
| | - Coen DA Stehouwer
- Department of Internal Medicine; School for Cardiovascular Diseases (CARIM)
| | - Nicolaas C Schaper
- Department of Internal Medicine; School for Cardiovascular Diseases (CARIM)
| | - Anke Wesselius
- Department of Genetics & Cell Biology, Complex Genetics, Maastricht University Medical Center (MUMC+), 6202 AZ, Maastricht, Limburg, the Netherlands; School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200 MD, Maastricht, Limburg, the Netherlands
| | - Frans Rj Verhey
- Department of Psychiatry and Neuropsychology; Alzheimer Centrum Limburg, the Netherlands; School for Mental Health and Neuroscience
| | - Miranda T Schram
- Department of Psychiatry and Neuropsychology; Department of Internal Medicine; School for Mental Health and Neuroscience; School for Cardiovascular Diseases (CARIM).
| |
Collapse
|
9
|
Reckziegel D, Abdullah T, Wu B, Wu B, Huang L, Schnitzer TJ, Apkarian AV. Hippocampus shape deformation: a potential diagnostic biomarker for chronic back pain in women. Pain 2021; 162:1457-1467. [PMID: 33181581 PMCID: PMC8049947 DOI: 10.1097/j.pain.0000000000002143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
ABSTRACT Sex differences in the quality and prevalence of chronic pain are manifold, with women generally presenting higher incidence and severity. Uncovering chronic pain-related sex differences inform neural mechanisms and may lead to novel treatment routes. In a multicenter morphological study (total n = 374), we investigated whether the shape of subcortical regions would reflect sex differences in back pain. Given the hormone-dependent functions of the hippocampus, and its role in the transition to chronic pain, this region constituted our primary candidate. We found that the anterior part of the left hippocampus (alHP) presented outer deformation in women with chronic back pain (CBP), identified in CBP in the United States (n = 77 women vs n = 78 men) and validated in a Chinese data set (n = 29 women vs n = 58 men with CBP, in contrast to n = 53 female and n = 43 male healthy controls). Next, we examined this region in subacute back pain who persisted with back pain a year later (SBPp; n = 18 women vs n = 18 men) and in a subgroup with persistent back pain for 3 years. Weeks after onset of back pain, there was no deformation within alHP, but at 1 and 3 years women exhibited a trend for outer deformation. The alHP partly overlapped with the subiculum and entorhinal cortex, whose functional connectivity, in healthy subjects, was associated with emotional and episodic memory related terms (Neurosynth, reverse inference). These findings suggest that in women the alHP undergoes anatomical changes with pain persistence, highlighting sexually dimorphic involvement of emotional and episodic memory-related circuitry with chronic pain.
Collapse
Affiliation(s)
- Diane Reckziegel
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Taha Abdullah
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Touro College of Osteopathic Medicine, New York, USA
| | - Binbin Wu
- Department of Pain Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bo Wu
- Department of Information, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lejian Huang
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Thomas J Schnitzer
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Rheumatology, Northwestern University, Feinberg School of Medicine, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - A Vania Apkarian
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Anesthesia, Northwestern University Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
10
|
Martí‐Juan G, Sanroma‐Guell G, Cacciaglia R, Falcon C, Operto G, Molinuevo JL, González Ballester MÁ, Gispert JD, Piella G. Nonlinear interaction between APOE ε4 allele load and age in the hippocampal surface of cognitively intact individuals. Hum Brain Mapp 2021; 42:47-64. [PMID: 33017488 PMCID: PMC7721244 DOI: 10.1002/hbm.25202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/16/2020] [Accepted: 08/11/2020] [Indexed: 01/27/2023] Open
Abstract
The ε4 allele of the gene Apolipoprotein E is the major genetic risk factor for Alzheimer's Disease. APOE ε4 has been associated with changes in brain structure in cognitively impaired and unimpaired subjects, including atrophy of the hippocampus, which is one of the brain structures that is early affected by AD. In this work we analyzed the impact of APOE ε4 gene dose and its association with age, on hippocampal shape assessed with multivariate surface analysis, in a ε4-enriched cohort of n = 479 cognitively healthy individuals. Furthermore, we sought to replicate our findings on an independent dataset of n = 969 individuals covering the entire AD spectrum. We segmented the hippocampus of the subjects with a multi-atlas-based approach, obtaining high-dimensional meshes that can be analyzed in a multivariate way. We analyzed the effects of different factors including APOE, sex, and age (in both cohorts) as well as clinical diagnosis on the local 3D hippocampal surface changes. We found specific regions on the hippocampal surface where the effect is modulated by significant APOE ε4 linear and quadratic interactions with age. We compared between APOE and diagnosis effects from both cohorts, finding similarities between APOE ε4 and AD effects on specific regions, and suggesting that age may modulate the effect of APOE ε4 and AD in a similar way.
Collapse
Affiliation(s)
- Gerard Martí‐Juan
- BCN MedTech, Departament de Tecnologies de la Informació i les ComunicacionsUniversitat Pompeu FabraBarcelonaSpain
| | | | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Centro de Investigación Biomédica en Red de BioingenieríaBiomateriales y Nanomedicina (CIBERBBN)MadridSpain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Miguel Ángel González Ballester
- BCN MedTech, Departament de Tecnologies de la Informació i les ComunicacionsUniversitat Pompeu FabraBarcelonaSpain
- ICREABarcelonaSpain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
- Centro de Investigación Biomédica en Red de BioingenieríaBiomateriales y Nanomedicina (CIBERBBN)MadridSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Gemma Piella
- BCN MedTech, Departament de Tecnologies de la Informació i les ComunicacionsUniversitat Pompeu FabraBarcelonaSpain
| | | | | |
Collapse
|
11
|
Agrawal P, Mozingo JD, Elhabian SY, Anderson AE, Whitaker RT. Combined Estimation of Shape and Pose for Statistical Analysis of Articulating Joints. SHAPE IN MEDICAL IMAGING : INTERNATIONAL WORKSHOP, SHAPEMI 2020, HELD IN CONJUNCTION WITH MICCAI 2020, LIMA, PERU, OCTOBER 4, 2020, PROCEEDINGS 2020; 12474:111-121. [PMID: 33738463 DOI: 10.1007/978-3-030-61056-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Quantifying shape variations in articulated joints is of utmost interest to understand the underlying joint biomechanics and associated clinical symptoms. For joint comparisons and analysis, the relative positions of the bones can confound subsequent analysis. Clinicians design specific image acquisition protocols to neutralize the individual pose variations. However, recent studies have shown that even specific acquisition protocols fail to achieve consistent pose. The individual pose variations are largely attributed to the day-to-day functioning of the patient, such as gait during walk, as well as interactions between specific morphologies and joint alignment. This paper presents a novel two-step method to neutralize such patient-specific variations while simultaneously preserving the inherent relationship of the articulated joint. The resulting shape models are then used to discover clinically relevant shape variations in a population of hip joints.
Collapse
Affiliation(s)
- Praful Agrawal
- Scientific Computing and Imaging Institute, University of Utah
| | | | | | | | - Ross T Whitaker
- Scientific Computing and Imaging Institute, University of Utah
| |
Collapse
|
12
|
Adams J, Bhalodia R, Elhabian S. Uncertain-DeepSSM: From Images to Probabilistic Shape Models. SHAPE IN MEDICAL IMAGING : INTERNATIONAL WORKSHOP, SHAPEMI 2020, HELD IN CONJUNCTION WITH MICCAI 2020, LIMA, PERU, OCTOBER 4, 2020, PROCEEDINGS 2020; 12474:57-72. [PMID: 33817703 PMCID: PMC8011333 DOI: 10.1007/978-3-030-61056-2_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Statistical shape modeling (SSM) has recently taken advantage of advances in deep learning to alleviate the need for a time-consuming and expert-driven workflow of anatomy segmentation, shape registration, and the optimization of population-level shape representations. DeepSSM is an end-to-end deep learning approach that extracts statistical shape representation directly from unsegmented images with little manual overhead. It performs comparably with state-of-the-art shape modeling methods for estimating morphologies that are viable for subsequent downstream tasks. Nonetheless, DeepSSM produces an overconfident estimate of shape that cannot be blindly assumed to be accurate. Hence, conveying what DeepSSM does not know, via quantifying granular estimates of uncertainty, is critical for its direct clinical application as an on-demand diagnostic tool to determine how trustworthy the model output is. Here, we propose Uncertain-DeepSSM as a unified model that quantifies both, data-dependent aleatoric uncertainty by adapting the network to predict intrinsic input variance, and model-dependent epistemic uncertainty via a Monte Carlo dropout sampling to approximate a variational distribution over the network parameters. Experiments show an accuracy improvement over DeepSSM while maintaining the same benefits of being end-to-end with little pre-processing.
Collapse
Affiliation(s)
- Jadie Adams
- Scientific Computing and Imaging Institute, University of Utah, UT, USA
- School of Computing, University of Utah, UT, USA
| | - Riddhish Bhalodia
- Scientific Computing and Imaging Institute, University of Utah, UT, USA
- School of Computing, University of Utah, UT, USA
| | - Shireen Elhabian
- Scientific Computing and Imaging Institute, University of Utah, UT, USA
- School of Computing, University of Utah, UT, USA
| |
Collapse
|
13
|
Lee S, Pyun SB, Choi KW, Tae WS. Shape and Volumetric Differences in the Corpus Callosum between Patients with Major Depressive Disorder and Healthy Controls. Psychiatry Investig 2020; 17:941-950. [PMID: 32933236 PMCID: PMC7538242 DOI: 10.30773/pi.2020.0157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/29/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the morphometric differences in the corpus callosum between patients with major depressive disorder (MDD) and healthy controls and analyze their relationship to gray matter changes. METHODS Twenty female MDD patients and 21 healthy controls (HCs) were included in the study. To identify the difference in the regional gray matter concentration (GMC), VBM was performed with T1 magnetic resonance imaging. The shape analysis of the corpus callosum was processed. Diffusion tensor imaging (DTI) fiber-tracking was performed to identify the regional tract pathways in the damaged corpus callosal areas. RESULTS In the shape analysis, regional shape contractions in the rostrum and splenium were found in the MDD patients. VBM analysis showed a significantly lower white matter concentration in the genu and splenium, and a significantly lower GMC in the frontal, limbic, insular, and temporal regions of the MDD patients compared to the HCs. In DTI fiber-tracking, the fibers crossing the damaged areas of the genu, rostrum, and splenium were anatomically connected to the areas of lower GMC in MDD patients. CONCLUSION These findings support that major depressive disorder may be due to disturbances in multiple neuronal circuits, especially those associated with the corpus callosum.
Collapse
Affiliation(s)
- Sekwang Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sung-Bom Pyun
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, Seoul, Republic of Korea.,Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Kwan Woo Choi
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| |
Collapse
|
14
|
Karim HT, Reynolds CF, Smagula SF. Neuroimaging biomarkers of late-life major depressive disorder pathophysiology, pathogenesis, and treatment response. PERSONALIZED PSYCHIATRY 2020:339-356. [DOI: 10.1016/b978-0-12-813176-3.00027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Yang S, Wu M, Ajilore O, Lamar M, Kumar A. Impaired biophysical integrity of macromolecular protein pools in the uncinate circuit in late-life depression. Mol Psychiatry 2019; 24:1844-1855. [PMID: 29880885 PMCID: PMC8806152 DOI: 10.1038/s41380-018-0085-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 02/02/2023]
Abstract
Major depressive disorder is a common mood disorder in the elderly. Although the neuroanatomical abnormalities have been identified in patients with late-life depression (LLD), the precise biological basis of LLD remains largely unknown. The purpose of this study was to examine the biophysical integrity of macromolecular protein pools in the nodal regions of the "uncinate circuit," a component of fronto-limbic circuitry that is connected by the uncinate fasciculus and is critical in the regulation of mood and emotions, using novel magnetization transfer (MT) imaging. Twenty-four patients with LLD and 27 non-depressed healthy control subjects (HCs) of comparable age, sex, and race were recruited from the communities of the greater Chicago Area. The nodal regions of the uncinate circuit, i.e., bilateral amygdala, hippocampus, and lateral and medial orbitofrontal cortices (OFCs), were examined. Compared with HCs, patients with LLD had significantly lower magnetization transfer ratio (MTR), a measure of the biophysical integrity of macromolecular protein pools, in bilateral amygdala and hippocampus. The lower MTR was negatively correlated with the depression score. Moreover, the MTR of these regions decreased with age and positively correlated with neuropsychological performance in the LLD group but not in the HC group. These findings suggest that LLD is associated with compromised biophysical integrity of macromolecular protein pools in nodal regions of the uncinate circuit, and that major depression may accentuate age-related attenuation of the biophysical integrity of macromolecular protein pools in this circuit. These findings provide important new insights into the neurobiological mechanisms of the pathophysiology of LLD.
Collapse
Affiliation(s)
- Shaolin Yang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA. .,Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, 60612, USA. .,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, 60612, USA.
| | - Minjie Wu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA 15213, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Melissa Lamar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Anand Kumar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA.
| |
Collapse
|
16
|
Hillerer KM, Slattery DA, Pletzer B. Neurobiological mechanisms underlying sex-related differences in stress-related disorders: Effects of neuroactive steroids on the hippocampus. Front Neuroendocrinol 2019; 55:100796. [PMID: 31580837 PMCID: PMC7115954 DOI: 10.1016/j.yfrne.2019.100796] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
Abstract
Men and women differ in their vulnerability to a variety of stress-related illnesses, but the underlying neurobiological mechanisms are not well understood. This is likely due to a comparative dearth of neurobiological studies that assess male and female rodents at the same time, while human neuroimaging studies often don't model sex as a variable of interest. These sex differences are often attributed to the actions of sex hormones, i.e. estrogens, progestogens and androgens. In this review, we summarize the results on sex hormone actions in the hippocampus and seek to bridge the gap between animal models and findings in humans. However, while effects of sex hormones on the hippocampus are largely consistent in animals and humans, methodological differences challenge the comparability of animal and human studies on stress effects. We summarise our current understanding of the neurobiological mechanisms that underlie sex-related differences in behavior and discuss implications for stress-related illnesses.
Collapse
Affiliation(s)
- Katharina M Hillerer
- Department of Obstetrics and Gynaecology, Salzburger Landeskrankenhaus (SALK), Paracelsus Medical University (PMU), Clinical Research Center Salzburg (CRCS), Salzburg, Austria.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Belinda Pletzer
- Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
17
|
Santos MAO, Bezerra LS, Carvalho ARMR, Brainer-Lima AM. Global hippocampal atrophy in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2018; 40:369-378. [PMID: 30234890 DOI: 10.1590/2237-6089-2017-0130] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/06/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Major depressive disorder (MDD), an incapacitating mental disorder, is characterized by episodes of at least 2 weeks of apparent changes in mood, cognition, and neurovegetative functions. Many neuroimaging studies using magnetic resonance imaging (MRI) have examined morphometric changes in patients with MDD, but the results are not conclusive. This study aims to review the literature and perform a meta-analysis on hippocampal volume (HcV) in patients with MDD. METHODS Studies on HcV in patients with MDD diagnosis were identified from major databases (MEDLINE, EMBASE, The Cochrane Library, Scopus, PsycINFO, and SciELO) using the search terms depression, major depressive disorder, MDD, unipolar, magnetic resonance imaging, MRI, and hippocampus. RESULTS A meta-analysis of 29 studies fulfilling specific criteria was performed. The sample included 1327 patients and 1004 healthy participants. The studies were highly heterogeneous with respect to age, sex, age of onset, and average illness duration. However, the pooled effect size of depression was significant in both hippocampi. MDD was associated with right (-0.43; 95% confidence interval [95%CI] -0.66 to -0.21) and left (-0.40; 95%CI -0.66 to -0.15) hippocampal atrophy. CONCLUSIONS MDD seems to be associated with global HcV atrophy. Larger longitudinal follow-up studies designed to analyze the influence of sociodemographic variables on this relationship are required to yield better evidence about this topic.
Collapse
Affiliation(s)
- Marcelo Antônio Oliveira Santos
- Grupo de Pesquisa em Epidemiologia e Cardiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil.,Centro Universitário Maurício de Nassau, Recife, PE, Brazil
| | - Lucas Soares Bezerra
- Grupo de Pesquisa em Epidemiologia e Cardiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil.,Centro Universitário Maurício de Nassau, Recife, PE, Brazil
| | | | - Alessandra Mertens Brainer-Lima
- Centro Universitário Maurício de Nassau, Recife, PE, Brazil.,Pronto-Socorro Cardiológico Universitário de Pernambuco (PROCAPE), Universidade de Pernambuco (UPE), Recife, PE, Brazil
| |
Collapse
|
18
|
O'Shea DM, Dotson VM, Woods AJ, Porges EC, Williamson JB, O'Shea A, Cohen R. Depressive Symptom Dimensions and Their Association with Hippocampal and Entorhinal Cortex Volumes in Community Dwelling Older Adults. Front Aging Neurosci 2018. [PMID: 29515435 PMCID: PMC5826180 DOI: 10.3389/fnagi.2018.00040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective: Research has shown that depression is a risk factor for Alzheimer’s disease (AD) and subsequent cognitive decline. This is compounded by evidence showing an association between depression and reduced hippocampal volumes; a primary structure implicated in the pathogenesis of the disease. Less is known about the relationship between depression and other AD vulnerable regions such as the entorhinal cortex. Given the heterogeneity of depressive symptom presentation, we examined whether symptom dimensions were associated with hippocampal and entorhinal cortex volumes in community dwelling older adults. Methods: Eighty-one community dwelling adults completed the Beck Depression Inventory – second edition and underwent structural neuroimaging. Measures of hippocampal and entorhinal cortex volumes were obtained using FreeSurfer software. Linear regression models included regions of interest as dependent variables, with depressive symptom dimensions, as independent variables, controlling for total intracranial volumes, age, education, and gender. Results: Somatic symptoms were negatively associated with total, right, and left hippocampal volumes. Affective symptoms were negatively associated with total entorhinal cortex volumes, with a marginal main effect on left entorhinal cortex volumes. Conclusion: Our findings provide support for examining depressive symptoms and their association with AD vulnerable regions along subdimensions of affective, cognitive, and somatic symptoms to better understand profiles of symptoms most associated with these regions. Conceptualizing depressive symptoms in this way may also better inform treatment approaches in terms of targeting types of symptoms that may be more closely linked to poorer brain and cognitive health outcomes.
Collapse
Affiliation(s)
- Deirdre M O'Shea
- Department of Aging and Geriatric Research, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Vonetta M Dotson
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Adam J Woods
- Department of Aging and Geriatric Research, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Eric C Porges
- Department of Aging and Geriatric Research, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - John B Williamson
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center, Gainesville, FL, United States
| | - Andrew O'Shea
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Ronald Cohen
- Department of Aging and Geriatric Research, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
19
|
Geerlings MI, Gerritsen L. Late-Life Depression, Hippocampal Volumes, and Hypothalamic-Pituitary-Adrenal Axis Regulation: A Systematic Review and Meta-analysis. Biol Psychiatry 2017; 82:339-350. [PMID: 28318491 DOI: 10.1016/j.biopsych.2016.12.032] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND We systematically reviewed and meta-analyzed the association of late-life depression (LLD) with hippocampal volume (HCV) and total brain volume (TBV), and of cortisol levels with HCV, including subgroup analyses of depression characteristics and methodological aspects. METHODS We searched PubMed and Embase for original studies that examined the cross-sectional relationship between LLD and HCV or TBV, and 46 studies fulfilled the inclusion criteria. Standardized mean differences (Hedges' g) between LLD and control subjects were calculated from crude or adjusted brain volumes using random effects. Standardized Fisher transformations of the correlations between cortisol levels and HCVs were calculated using random effects. RESULTS We included 2702 LLD patients and 11,165 control subjects from 35 studies examining HCV. Relative to control subjects, patients had significantly smaller HCVs (standardized mean difference = -0.32 [95% confidence interval, -0.44 to -0.19]). Subgroup analyses showed that late-onset depression was more strongly associated with HCV than early-onset depression. In addition, effect sizes were larger for case-control studies, studies with lower quality, and studies with small sample size, and were almost absent in cohort studies and studies with larger sample sizes. For TBV, 2523 patients and 7880 control subjects from 31 studies were included. The standardized mean difference in TBV between LLD and control subjects was -0.10 (95% confidence interval, -0.16 to -0.04). Of the 12 studies included, higher levels of cortisol were associated with smaller HCV (correlation = -0.11 [95% confidence interval, -0.18 to -0.04]). CONCLUSIONS While an overall measure of LLD may be associated with smaller HCVs, differentiating clinical aspects of LLD and examining methodological issues show that this relationship is not straightforward.
Collapse
Affiliation(s)
- Mirjam I Geerlings
- University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht, The Netherlands.
| | - Lotte Gerritsen
- Department of Clinical Psychology, Utrecht University, Utrecht, The Netherlands; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Enriched environment ameliorates depression-induced cognitive deficits and restores abnormal hippocampal synaptic plasticity. Neurobiol Learn Mem 2016; 134 Pt B:379-91. [DOI: 10.1016/j.nlm.2016.08.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/06/2016] [Accepted: 08/19/2016] [Indexed: 01/19/2023]
|
21
|
Zhou H, Li R, Ma Z, Rossi S, Zhu X, Li J. Smaller gray matter volume of hippocampus/parahippocampus in elderly people with subthreshold depression: a cross-sectional study. BMC Psychiatry 2016; 16:219. [PMID: 27389007 PMCID: PMC4936263 DOI: 10.1186/s12888-016-0928-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 06/15/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Hippocampal/parahippocampal structural changes accompany major depressive disorders in the elderly, but whether subthreshold depression (StD) at an advanced age is also accompanied by similar changes in hippocampal/parahippocampal volumes is still unknown. By using voxel-based morphometry (VBM) analysis of the gray matter, we explored whether there are structural alterations of the hippocampus/parahippocampus and the correlations between its volume and participants' self-reported depressive symptoms. METHODS Participants were 19 community-dwelling older adults with StD assessed by the Center for Epidemiologic Studies Depression scale (CES-D) scores. We collected magnetic resonance images of their brain compared to images of 17 healthy aged-matched adults. We used VBM to analyze differences in gray matter volume (GMV) of the hippocampus/parahippocampus between the two groups. Moreover, we examined the correlation between the GMV of the hippocampus/parahippocampus and participants' self-reported depressive symptoms. RESULTS VBM revealed that elderly individuals with StD had substantially reduced volumes of the right parahippocampus compared to healthy controls. Furthermore, the volumes of the hippocampus/parahippocampus were significantly associated with participants' self-reported depressive symptoms in StD. CONCLUSIONS Gray matter volume alterations in the hippocampus/parahippocampus are correlated with subthreshold depression suggesting that early structural changes in the hippocampus/parahippocampus can constitute a risk indicator of depression.
Collapse
Affiliation(s)
- Huixia Zhou
- Center on Aging Psychology, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101 China
| | - Rui Li
- Center on Aging Psychology, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101 China
| | - Zhenling Ma
- Center on Aging Psychology, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101 China ,School of Nursing, Peking Union Medical College, Beijing, China
| | - Sonja Rossi
- Clinic for Hearing-, Speech- and Voice Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Xinyi Zhu
- Center on Aging Psychology, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101 China
| | - Juan Li
- Center on Aging Psychology, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China. .,Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
22
|
Agudelo C, Aizenstein HJ, Karp JF, Reynolds CF. Applications of magnetic resonance imaging for treatment-resistant late-life depression. DIALOGUES IN CLINICAL NEUROSCIENCE 2016. [PMID: 26246790 PMCID: PMC4518699 DOI: 10.31887/dcns.2015.17.2/cagudelo] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Late-life depression (LLD) is a growing public and global health concern with diverse clinical manifestations and etiology. This literature review summarizes neuroimaging findings associated with depression in older adults and treatment-response variability. LLD has been associated with cerebral atrophy, diminished myelin integrity, and cerebral lesions in frontostriatal-limbic regions. These associations help explain the depression-executive dysfunction syndrome observed in LLD, and support cerebrovascular burden as a pathogenic mechanism. Furthermore, this review suggests that neuroimaging determinants of treatment resistance also reflect cerebrovascular burden. Of the theoretical etiologies of LLD, cerebrovascular burden may mediate treatment resistance. This review proposes that neuroimaging has the potential for clinical translation. Controlled trials may identify neuroimaging biomarkers that may inform treatment by identifying depressed adults likely to remit with pharmacotherapy, identifying individualized therapeutic dose, and facilitating earlier treatment response measures. Neuroimaging also has the potential to similarly inform treatment response variability from treatment with aripiprazole (dopamine modulator) and buprenorphine (opiate modulator).
Collapse
Affiliation(s)
- Christian Agudelo
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jordan F Karp
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Charles F Reynolds
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
23
|
Palomares JA, Tummala S, Wang DJJ, Park B, Woo MA, Kang DW, St Lawrence KS, Harper RM, Kumar R. Water Exchange across the Blood-Brain Barrier in Obstructive Sleep Apnea: An MRI Diffusion-Weighted Pseudo-Continuous Arterial Spin Labeling Study. J Neuroimaging 2015; 25:900-5. [PMID: 26333175 DOI: 10.1111/jon.12288] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/17/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Obstructive sleep apnea (OSA) subjects show brain injury in sites that control autonomic, cognitive, and mood functions that are deficient in the condition. The processes contributing to injury may include altered blood-brain barrier (BBB) actions. Our aim was to examine BBB function, based on diffusion-weighted pseudo-continuous arterial spin labeling (DW-pCASL) procedures, in OSA compared to controls. METHODS We performed DW-pCASL imaging in nine OSA and nine controls on a 3.0-Tesla MRI scanner. Global mean gray and white matter arterial transient time (ATT, an index of large artery integrity), water exchange rate across the BBB (Kw, BBB function), DW-pCASL ratio, and cerebral blood flow (CBF) values were compared between OSA and control subjects. RESULTS Global mean gray and white matter ATT (OSA vs. controls; gray matter, 1.691 ± .120 vs. 1.658 ± .109 second, P = .49; white matter, 1.700 ± .115 vs. 1.650 ± .114 second, P = .44), and CBF values (gray matter, 57.4 ± 15.8 vs. 58.2 ± 10.7 ml/100 g/min, P = .67; white matter, 24.2 ± 7.0 vs. 24.6 ± 6.7 ml/100 g/min, P = .91) did not differ significantly, but global gray and white matter Kw (gray matter, 158.0 ± 28.9 vs. 220.8 ± 40.6 min(-1) , P = .002; white matter, 177.5 ± 57.2 vs. 261.1 ± 51.0 min(-1) , P = .006), and DW-pCASL ratio (gray matter, .727 ± .076 vs. .823 ± .069, P = .011; white matter, .722 ± .144 vs. .888 ± .100, P = .004) values were significantly reduced in OSA over controls. CONCLUSIONS OSA subjects show compromised BBB function, but intact large artery integrity. The BBB alterations may introduce neural damage contributing to abnormal functions in OSA, and suggest a need to repair BBB function with strategies commonly used in other fields.
Collapse
Affiliation(s)
- Jose A Palomares
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, CA
| | - Sudhakar Tummala
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, CA
| | - Danny J J Wang
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Bumhee Park
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, CA
| | - Mary A Woo
- UCLA School of Nursing, University of California, Los Angeles, Los Angeles, CA
| | - Daniel W Kang
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | | | - Ronald M Harper
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA
| | - Rajesh Kumar
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, CA.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
24
|
Voineskos AN, Winterburn JL, Felsky D, Pipitone J, Rajji TK, Mulsant BH, Chakravarty MM. Hippocampal (subfield) volume and shape in relation to cognitive performance across the adult lifespan. Hum Brain Mapp 2015; 36:3020-37. [PMID: 25959503 PMCID: PMC6869683 DOI: 10.1002/hbm.22825] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 01/18/2023] Open
Abstract
Newer approaches to characterizing hippocampal morphology can provide novel insights regarding cognitive function across the lifespan. We comprehensively assessed the relationships among age, hippocampal morphology, and hippocampal-dependent cognitive function in 137 healthy individuals across the adult lifespan (18-86 years of age). They underwent MRI, cognitive assessments and genotyping for Apolipoprotein E status. We measured hippocampal subfield volumes using a new multiatlas segmentation tool (MAGeT-Brain) and assessed vertex-wise (inward and outward displacements) and global surface-based descriptions of hippocampus morphology. We examined the effects of age on hippocampal morphology, as well as the relationship among age, hippocampal morphology, and episodic and working memory performance. Age and volume were modestly correlated across hippocampal subfields. Significant patterns of inward and outward displacement in hippocampal head and tail were associated with age. The first principal shape component of the left hippocampus, characterized by a lengthening of the antero-posterior axis was prominently associated with working memory performance across the adult lifespan. In contrast, no significant relationships were found among subfield volumes and cognitive performance. Our findings demonstrate that hippocampal shape plays a unique and important role in hippocampal-dependent cognitive aging across the adult lifespan, meriting consideration as a biomarker in strategies targeting the delay of cognitive aging.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Kimel Family Translational Imaging Genetics Laboratory, Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Geriatric Mental Health Service, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Julie L Winterburn
- Kimel Family Translational Imaging Genetics Laboratory, Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Daniel Felsky
- Kimel Family Translational Imaging Genetics Laboratory, Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jon Pipitone
- Kimel Family Translational Imaging Genetics Laboratory, Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tarek K Rajji
- Geriatric Mental Health Service, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Benoit H Mulsant
- Geriatric Mental Health Service, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - M Mallar Chakravarty
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
- Departments of Psychiatry and Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
25
|
Hahn C, Lim HK, Won WY, Joo SH, Ahn KJ, Jung WS, Lee CU. Sub-regional volumes changes of the corpus callosum in the drug naive patients with late-onset depression. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:46-51. [PMID: 25134843 DOI: 10.1016/j.pnpbp.2014.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/20/2022]
Abstract
Although sub-regional analysis methods of the corpus callosum (CC) have been developed, there has been no in vivo magnetic resonance imaging (MRI) study on a sub-regional volume analysis of the CC of late-onset depression (LOD). The aim of this study was to investigate the CC volume differences between LOD subjects and healthy elderly controls using a sub-regional analysis technique. Forty subjects with LOD and thirty nine group-matched healthy control subjects underwent 3T MRI scanning, and sub-regional volumes of the CC were measured and compared between the groups. The volumes of total (F=5.8, p=0.001), the anterior (F=5.2, p=0.001) and the posterior CC (F=5.1, p=0.001) were significantly reduced in the LOD group as compared to the control group. We measured cognitive functions in several different domains (language functions, verbal learning, visuospatial functions, delayed recall, memory consolidation, recognition memory, and executive functions) through the Korean version of the Consortium to Establish a Registry for Alzheimer's Disease. The anterior CC volume in the LOD group showed significant positive correlation with the Verbal Fluency scores. The posterior CC volume in the LOD group was positively correlated significantly with the Word List Memory, the Word List Recall and the Constructional Praxis scores. This study is the first to elaborate the sub-regional volume differences of the CC between controls and LOD patients. These structural changes in the CC might be at the core of the underlying neurobiological mechanisms in LOD.
Collapse
Affiliation(s)
- Changtae Hahn
- Department of Psychiatry, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Republic of Korea; Catholic Argo-Medical Center, Seoul, Republic of Korea
| | - Hyun-Kook Lim
- Department of Psychiatry, The Catholic University of Korea, St. Vincent's Hospital, Suwon, Republic of Korea; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Wang Youn Won
- Department of Psychiatry, The Catholic University of Korea, Uijeongbu St. Mary's Hospital, Uijeongbu, Republic of Korea
| | - Soo-Hyun Joo
- Department of Psychiatry, The Catholic University of Korea, St. Vincent's Hospital, Suwon, Republic of Korea
| | - Kook Jin Ahn
- Department of Radiology, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Won-Sang Jung
- Department of Radiology, The Catholic University of Korea, St. Vincent's Hospital, Suwon, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Republic of Korea; Catholic Argo-Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Fusion analysis of first episode depression: where brain shape deformations meet local composition of tissue. NEUROIMAGE-CLINICAL 2014; 7:114-21. [PMID: 25610773 PMCID: PMC4299971 DOI: 10.1016/j.nicl.2014.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/09/2014] [Accepted: 11/23/2014] [Indexed: 12/15/2022]
Abstract
Computational neuroanatomical techniques that are used to evaluate the structural correlates of disorders in the brain typically measure regional differences in gray matter or white matter, or measure regional differences in the deformation fields required to warp individual datasets to a standard space. Our aim in this study was to combine measurements of regional tissue composition and of deformations in order to characterize a particular brain disorder (here, major depressive disorder). We use structural Magnetic Resonance Imaging (MRI) data from young adults in a first episode of depression, and from an age- and sex-matched group of non-depressed individuals, and create population gray matter (GM) and white matter (WM) tissue average templates using DARTEL groupwise registration. We obtained GM and WM tissue maps in the template space, along with the deformation fields required to co-register the DARTEL template and the GM and WM maps in the population. These three features, reflecting tissue composition and shape of the brain, were used within a joint independent-components analysis (jICA) to extract spatially independent joint sources and their corresponding modulation profiles. Coefficients of the modulation profiles were used to capture differences between depressed and non-depressed groups. The combination of hippocampal shape deformations and local composition of tissue (but neither shape nor local composition of tissue alone) was shown to discriminate reliably between individuals in a first episode of depression and healthy controls, suggesting that brain structural differences between depressed and non-depressed individuals do not simply reflect chronicity of the disorder but are there from the very outset. We combine measurements of regional tissue composition and of deformations to characterize major depressive disorder. We use structural MRI data from young adults in a first episode of depression. The combination of hippocampal shape deformations and tissue composition was shown to discriminate between individuals.
Collapse
|
27
|
Degree of contribution (DoC) feature selection algorithm for structural brain MRI volumetric features in depression detection. Int J Comput Assist Radiol Surg 2014; 10:1003-16. [DOI: 10.1007/s11548-014-1130-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
|
28
|
Fujishima M, Maikusa N, Nakamura K, Nakatsuka M, Matsuda H, Meguro K. Mild cognitive impairment, poor episodic memory, and late-life depression are associated with cerebral cortical thinning and increased white matter hyperintensities. Front Aging Neurosci 2014; 6:306. [PMID: 25426066 PMCID: PMC4224123 DOI: 10.3389/fnagi.2014.00306] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/20/2014] [Indexed: 12/22/2022] Open
Abstract
In various independent studies to date, cerebral cortical thickness and white matter hyperintensity (WMH) volume have been associated with episodic memory, depression, and mild cognitive impairment (MCI). The aim of this study was to uncover variations in cortical thickness and WMH volume in association with episodic memory, depressive state, and the presence of MCI simultaneously in a single study population. The participants were 186 individuals with MCI (clinical dementia rating [CDR] of 0.5) and 136 healthy elderly controls (HCs; CDR of 0) drawn from two community-based cohort studies in northern Japan. We computed cerebral cortical thickness and WMH volume by using MR scans and statistically analyzed differences in these indices between HCs and MCI participants. We also assessed the associations of these indices with memory performance and depressive state in participants with MCI. Compared with HCs, MCI participants exhibited thinner cortices in the temporal and inferior parietal lobes and greater WMH volumes in the corona radiata and semioval center. In MCI participants, poor episodic memory was associated with thinner cortices in the left entorhinal region and increased WMH volume in the posterior periventricular regions. Compared with non-depressed MCI participants, depressed MCI participants showed reduced cortical thickness in the anterior medial temporal lobe and gyrus adjacent to the amygdala bilaterally, as well as greater WMH volume as a percentage of the total intracranial volume (WMHr). A higher WMHr was associated with cortical thinning in the frontal, temporal, and parietal regions in MCI participants. These results demonstrate that episodic memory and depression are associated with both cortical thickness and WMH volume in MCI participants. Additional longitudinal studies are needed to clarify the dynamic associations and interactions among these indices.
Collapse
Affiliation(s)
- Motonobu Fujishima
- Department of Nuclear Medicine, Saitama Medical University International Medical Center Hidaka, Japan ; Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), Kodaira Tokyo, Japan
| | - Norihide Maikusa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), Kodaira Tokyo, Japan
| | - Kei Nakamura
- Division of Geriatric Behavioral Neurology, Cyclotron and Radioisotope Center, Tohoku University Sendai, Japan
| | - Masahiro Nakatsuka
- Division of Geriatric Behavioral Neurology, Cyclotron and Radioisotope Center, Tohoku University Sendai, Japan
| | - Hiroshi Matsuda
- Department of Nuclear Medicine, Saitama Medical University International Medical Center Hidaka, Japan ; Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), Kodaira Tokyo, Japan
| | - Kenichi Meguro
- Division of Geriatric Behavioral Neurology, Cyclotron and Radioisotope Center, Tohoku University Sendai, Japan
| |
Collapse
|
29
|
Weisenbach SL, Kassel MT, Rao J, Weldon AL, Avery ET, Briceno EM, Ajilore O, Mann M, Kales HC, Welsh RC, Zubieta JK, Langenecker SA. Differential prefrontal and subcortical circuitry engagement during encoding of semantically related words in patients with late-life depression. Int J Geriatr Psychiatry 2014; 29:1104-15. [PMID: 24948034 PMCID: PMC4337801 DOI: 10.1002/gps.4165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/28/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Verbal memory difficulties are common among individuals with late-life depression (LLD), though there is limited knowledge about disruptions to underlying cerebral circuitry. The purpose of this study is to examine aberrations to cerebral networks implicated in encoding novel verbal semantic material among older adults with LLD. METHODS Twenty-four older adults with early-onset LLD and 23 non-depressed comparisons participated in the study. Participants completed a word list-learning task while undergoing functional magnetic resonance imaging. RESULTS In the context of equivalent recall and recognition of words following scanning and similar hippocampal volumes, patients with LLD exhibited less activation in structures known to be relevant for new learning and memory, including hippocampus, parahippocampal gyrus, insula, and cingulate, relative to non-ill comparisons. An important region in which the LLD group displayed greater activation than the non-depressed comparison group was in left inferior frontal gyrus, an area involved in cognitive control and controlled semantic/phonological retrieval and analysis; this region may be critical for LLD patients to consolidate encoded words into memory. CONCLUSIONS Functional irregularities found in LLD patients may reflect different modes of processing to-be-remembered information and/or early changes predictive of incipient cognitive decline. Future studies might consider mechanisms that could contribute to these functional differences, including hypothalamic-pituitary-adrenal axis functioning and vascular integrity, and utilize longitudinal designs in order to understand whether functional changes are predictive of incipient cognitive decline.
Collapse
Affiliation(s)
- Sara L. Weisenbach
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL,University of Michigan Medical School, Department of Psychiatry, Ann Arbor, MI,Jesse Brown VA Medical Center, Research & Development, Chicago, IL
| | - Michelle T. Kassel
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL
| | - Julia Rao
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL
| | - Annie L. Weldon
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL
| | - Erich T. Avery
- University of Michigan Medical School, Department of Psychiatry, Ann Arbor, MI
| | - Emily M. Briceno
- University of Michigan Medical School, Department of Psychiatry, Ann Arbor, MI
| | - Olusala Ajilore
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL
| | - Megan Mann
- University of Michigan Medical School, Department of Psychiatry, Ann Arbor, MI
| | - Helen C. Kales
- University of Michigan Medical School, Department of Psychiatry, Ann Arbor, MI
| | - Robert C. Welsh
- University of Michigan Medical School, Department of Psychiatry, Ann Arbor, MI
| | - Jon-Kar Zubieta
- University of Michigan Medical School, Department of Psychiatry, Ann Arbor, MI
| | - Scott A. Langenecker
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL,University of Michigan Medical School, Department of Psychiatry, Ann Arbor, MI
| |
Collapse
|
30
|
O'Leary OF, Cryan JF. A ventral view on antidepressant action: roles for adult hippocampal neurogenesis along the dorsoventral axis. Trends Pharmacol Sci 2014; 35:675-87. [PMID: 25455365 DOI: 10.1016/j.tips.2014.09.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/26/2022]
Abstract
Adult hippocampal neurogenesis is implicated in antidepressant action, stress responses, and cognitive functioning. The hippocampus is functionally segregated along its longitudinal axis into dorsal (dHi) and ventral (vHi) regions in rodents, and analogous posterior and anterior regions in primates, whereby the vHi preferentially regulates stress and anxiety, while the dHi preferentially regulates spatial learning and memory. Given the role of neurogenesis in functions preferentially regulated by the dHi or vHi, it is plausible that neurogenesis is preferentially regulated in either the dHi or vHi depending upon the stimulus. We appraise here the literature on the effects of stress and antidepressants on neurogenesis along the hippocampal longitudinal axis and explore whether preferential regulation of neurogenesis in the vHi/anterior hippocampus contributes to stress resilience and antidepressant action.
Collapse
Affiliation(s)
- Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
31
|
Kalman E, Keay KA. Different patterns of morphological changes in the hippocampus and dentate gyrus accompany the differential expression of disability following nerve injury. J Anat 2014; 225:591-603. [PMID: 25269883 DOI: 10.1111/joa.12238] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2014] [Indexed: 12/11/2022] Open
Abstract
Physical and psychological trauma which results in mood disorders and the disruption of complex behaviours is associated with reductions in hippocampal volume. Clinical evaluation of neuropathic pain reveals mood and behavioural change in a significant number of patients. A rat model of neuropathic injury results in complex behavioural changes in a subpopulation (~30%) of injured rats; these changes are co-morbid with a range of other 'disabilities'. The specific objective of this study was to determine in rats the morphology of the hippocampus and dentate gyrus in individuals with and without complex behavioural disruptions following a constriction injury of the sciatic nerve, and to determine whether rats that develop disabilities following nerve injury have a reduced hippocampal volume compared with injured rats with no disabilities. The social behaviours of nerve-injured rats were evaluated before and after nerve injury. The morphology of the hippocampus of rats with and without behavioural disruptions was compared in serial histological sections. Single-housing and repeated social-interaction testing had no effect on the morphology of either the hippocampus or the dentate gyrus. Rats with transient or ongoing disability identified by behavioural disruption following sciatic nerve injury, show bilateral reductions in hippocampal volume, and lateralised reduction in the dentate gyrus (left side). Disabled rats display a combination of behavioural and physiological changes, which resemble many of the criteria used clinically to diagnose mood disorders. They also show reductions in the volume of the hippocampus similar to people with clinically diagnosed mood disorders. The sciatic nerve injury model reveals a similarity to the human neuropathic pain presentation presenting an anatomically specific focus for the investigation of the neural mechanisms underpinning the co-morbidity of chronic pain and mood disorder.
Collapse
Affiliation(s)
- Eszter Kalman
- School of Medical Sciences (Anatomy & Histology), University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
32
|
Ramezani M, Johnsrude I, Rasoulian A, Bosma R, Tong R, Hollenstein T, Harkness K, Abolmaesumi P. Temporal-lobe morphology differs between healthy adolescents and those with early-onset of depression. Neuroimage Clin 2014; 6:145-55. [PMID: 25379426 PMCID: PMC4215529 DOI: 10.1016/j.nicl.2014.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/01/2014] [Accepted: 08/12/2014] [Indexed: 01/07/2023]
Abstract
Major depressive disorder (MDD) has previously been linked to structural changes in several brain regions, particularly in the medial temporal lobes (Bellani, Baiano, Brambilla, 2010; Bellani, Baiano, Brambilla, 2011). This has been determined using voxel-based morphometry, segmentation algorithms, and analysis of shape deformations (Bell-McGinty et al., 2002; Bergouignan et al., 2009; Posener et al., 2003; Vasic et al., 2008; Zhao et al., 2008): these are methods in which information related to the shape and the pose (the size, and anatomical position and orientation) of structures is lost. Here, we incorporate information about shape and pose to measure structural deformation in adolescents and young adults with and without depression (as measured using the Beck Depression Inventory and Diagnostic and Statistical Manual of Mental Disorders criteria). As a hypothesis-generating study, a significance level of p < 0.05, uncorrected for multiple comparisons, was used, so that subtle morphological differences in brain structures between adolescent depressed individuals and control participants could be identified. We focus on changes in cortical and subcortical temporal structures, and use a multi-object statistical pose and shape model to analyze imaging data from 16 females (aged 16-21) and 3 males (aged 18) with early-onset MDD, and 25 female and 1 male normal control participants, drawn from the same age range. The hippocampus, parahippocampal gyrus, putamen, and superior, inferior and middle temporal gyri in both hemispheres of the brain were automatically segmented using the LONI Probabilistic Brain Atlas (Shattuck et al., 2008) in MNI space. Points on the surface of each structure in the atlas were extracted and warped to each participant's structural MRI. These surface points were analyzed to extract the pose and shape features. Pose differences were detected between the two groups, particularly in the left and right putamina, right hippocampus, and left and right inferior temporal gyri. Shape differences were detected between the two groups, particularly in the left hippocampus and in the left and right parahippocampal gyri. Furthermore, pose measures were significantly correlated with BDI score across the whole (clinical and control) sample. Since the clinical participants were experiencing their very first episodes of MDD, morphological alteration in the medial temporal lobe appears to be an early sign of MDD, and is unlikely to result from treatment with antidepressants. Pose and shape measures of morphology, which are not usually analyzed in neuromorphometric studies, appear to be sensitive to depressive symptomatology.
Collapse
Affiliation(s)
- Mahdi Ramezani
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ingrid Johnsrude
- Department of Psychology, Queen's University, Kingston, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Behavioural Sciences and Learning, Linnaeus Centre for Hearing and Deafness, Linköping University, Linköping SE-581 83, Sweden
| | - Abtin Rasoulian
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rachael Bosma
- Department of Psychology, Queen's University, Kingston, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ryan Tong
- Department of Psychology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Tom Hollenstein
- Department of Psychology, Queen's University, Kingston, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kate Harkness
- Department of Psychology, Queen's University, Kingston, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Purang Abolmaesumi
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
33
|
Physical exercise-induced adult neurogenesis: a good strategy to prevent cognitive decline in neurodegenerative diseases? BIOMED RESEARCH INTERNATIONAL 2014; 2014:403120. [PMID: 24818140 PMCID: PMC4000963 DOI: 10.1155/2014/403120] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/16/2014] [Accepted: 02/16/2014] [Indexed: 01/19/2023]
Abstract
Cumulative evidence has indicated that there is an important role for adult hippocampal neurogenesis in cognitive function. With the increasing prevalence of cognitive decline associated with neurodegenerative diseases among the ageing population, physical exercise, a potent enhancer of adult hippocampal neurogenesis, has emerged as a potential preventative strategy/treatment to reduce cognitive decline. Here we review the functional role of adult hippocampal neurogenesis in learning and memory, and how this form of structural plasticity is altered in neurodegenerative diseases known to involve cognitive impairment. We further discuss how physical exercise may contribute to cognitive improvement in the ageing brain by preserving adult neurogenesis, and review the recent approaches for measuring changes in neurogenesis in the live human brain.
Collapse
|
34
|
Ribeiz SRI, Duran F, Oliveira MC, Bezerra D, Castro CC, Steffens DC, Busatto Filho G, Bottino CMC. Structural brain changes as biomarkers and outcome predictors in patients with late-life depression: a cross-sectional and prospective study. PLoS One 2013; 8:e80049. [PMID: 24244606 PMCID: PMC3828217 DOI: 10.1371/journal.pone.0080049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 09/30/2013] [Indexed: 11/25/2022] Open
Abstract
The relationship between structural changes in grey matter and treatment response in patients with late-life depression remains an intriguing area of research. This magnetic resonance imaging (MRI) study compares the baseline grey matter volume of elderly people with and without major depression (according to the DSM-IV-TR criteria) and assesses its association with antidepressant treatment response. Brain MRI scans were processed using statistical parametric mapping and voxel-based morphometry. The sample consisted of 30 patients with depression and 22 healthy controls. We found a significant volumetric reduction in the orbitofrontal cortex bilaterally in patients in comparison with controls. According to their remission status after antidepressant treatment, patients were classified as remitted or not remitted. Compared with controls, remitted patients showed a volumetric reduction in the orbitofrontal cortex bilaterally and in another cluster in the right middle temporal pole. Non-remitted patients showed an even greater volumetric reduction in the orbitofrontal cortex bilaterally compared with controls. To investigate predictive factors of remission after antidepressant treatment, we used a logistic regression. Both baseline Mini Mental State Examination score and baseline left superior lateral orbitofrontal cortex volume (standardized to the total grey matter volume) were associated with remission status. Our findings support the use of regional brain atrophy as a potential biomarker for depression. In addition, baseline cognitive impairment and regional grey matter abnormalities predict antidepressant response in patients with late-life depression.
Collapse
Affiliation(s)
- Salma R. I. Ribeiz
- Old Age Research Group (PROTER), Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
- * E-mail:
| | - Fabio Duran
- Laboratory of Psychiatric Neuroimaging (LIM 21), Institute and Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Melaine C. Oliveira
- Institute of Mathematic and Statistics (IME), University of São Paulo, São Paulo, Brazil
| | - Diana Bezerra
- Old Age Research Group (PROTER), Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Claudio Campi Castro
- Department of Diagnostic Imaging, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - David C. Steffens
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
| | - Geraldo Busatto Filho
- Laboratory of Psychiatric Neuroimaging (LIM 21), Institute and Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Cássio M. C. Bottino
- Old Age Research Group (PROTER), Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
35
|
Zurkovsky L, Taylor WD, Newhouse PA. Cognition as a therapeutic target in late-life depression: potential for nicotinic therapeutics. Biochem Pharmacol 2013; 86:1133-44. [PMID: 23933385 PMCID: PMC3856552 DOI: 10.1016/j.bcp.2013.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/19/2022]
Abstract
Depression is associated with impairments to cognition and brain function at any age, but such impairments in the elderly are particularly problematic because of the additional burden of normal cognitive aging and in some cases, structural brain pathology. Individuals with late-life depression exhibit impairments in cognition and brain structural integrity, alongside mood dysfunction. Antidepressant treatment improves symptoms in some but not all patients, and those who benefit may not return to the cognitive and functional level of nondepressed elderly. Thus, for comprehensive treatment of late-life depression, it may be necessary to address both the affective and cognitive deficits. In this review, we propose a model for the treatment of late-life depression in which nicotinic stimulation is used to improve cognitive performance and improve the efficacy of an antidepressant treatment of the syndrome of late-life depression. The cholinergic system is well-established as important to cognition. Although muscarinic stimulation may exacerbate depressive symptoms, nicotinic stimulation may improve cognition and neural functioning without a detriment to mood. While some studies of nicotinic subtype specific receptor agonists have shown promise in improving cognitive performance, less is known regarding how nicotinic receptor stimulation affects cognition in depressed elderly patients. Late-life depression thus represents a new therapeutic target for the development of nicotinic agonist drugs. Parallel treatment of cognitive dysfunction along with medical and psychological approaches to treating mood dysfunction may be necessary to ensure full resolution of depressive illness in aging.
Collapse
Affiliation(s)
- Lilia Zurkovsky
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University School of Medicine, 1601 23rd Avenue South, Nashville, TN 37212, United States
| | | | | |
Collapse
|
36
|
Lin M, Fwu PT, Buss C, Davis EP, Head K, Muftuler LT, Sandman CA, Su MY. Developmental changes in hippocampal shape among preadolescent children. Int J Dev Neurosci 2013; 31:473-81. [PMID: 23773912 DOI: 10.1016/j.ijdevneu.2013.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 11/25/2022] Open
Abstract
It is known that the largest developmental changes in the hippocampus take place during the prenatal period and during the first two years of postnatal life. Few studies have been conducted to address the normal developmental trajectory of the hippocampus during childhood. In this study shape analysis was applied to study the normal developing hippocampus in a group of 103 typically developing 6- to 10-year-old preadolescent children. The individual brain was normalized to a template, and then the hippocampus was manually segmented and further divided into the head, body, and tail sub-regions. Three different methods were applied for hippocampal shape analysis: radial distance mapping, surface-based template registration using the robust point matching (RPM) algorithm, and volume-based template registration using the Demons algorithm. All three methods show that the older children have bilateral expanded head segments compared to the younger children. The results analyzed based on radial distance to the centerline were consistent with those analyzed using template-based registration methods. In analyses stratified by sex, it was found that the age-associated anatomical changes were similar in boys and girls, but the age-association was strongest in girls. Total hippocampal volume and sub-regional volumes analyzed using manual segmentation did not show a significant age-association. Our results suggest that shape analysis is sensitive to detect sub-regional differences that are not revealed in volumetric analysis. The three methods presented in this study may be applied in future studies to investigate the normal developmental trajectory of the hippocampus in children. They may be further applied to detect early deviations from the normal developmental trajectory in young children for evaluating susceptibility for psychopathological disorders involving hippocampus.
Collapse
Affiliation(s)
- Muqing Lin
- Tu & Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sexton CE, Mackay CE, Ebmeier KP. A systematic review and meta-analysis of magnetic resonance imaging studies in late-life depression. Am J Geriatr Psychiatry 2013; 21:184-95. [PMID: 23343492 DOI: 10.1016/j.jagp.2012.10.019] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 08/30/2011] [Accepted: 09/30/2011] [Indexed: 11/26/2022]
Abstract
Gray matter abnormalities within frontal-subcortical and limbic networks are hypothesized to play a key role in the pathophysiology of late-life depression. In this work, gray matter abnormalities in late-life depression are examined in a systematic review and meta-analysis of magnetic resonance imaging studies. In the systematic review, 27 articles were identified that compared participants with late-life depression with comparison group participants, and 17 studies were suitable for inclusion in meta-analyses of volumes of the whole brain, orbitofrontal cortex, caudate, hippocampus, putamen, and thalamus. Volume reductions were detected in 7 of 15 comparisons of the hippocampus and a meta-analysis revealed a significant, but small, effect size. Although examined by fewer studies, meta-analyses also revealed significant volume reductions in the orbitofrontal cortex, putamen, and thalamus. A more systematic and comprehensive analysis of the global distribution of gray matter abnormalities, and an examination of subcortical abnormalities were identified as key areas for future research.
Collapse
Affiliation(s)
- Claire E Sexton
- University Department of Psychiatry, University of Oxford, United Kingdom
| | | | | |
Collapse
|
38
|
Liu W, Shao QM. A Cramér moderate deviation theorem for Hotelling’s $T^{2}$-statistic with applications to global tests. Ann Stat 2013. [DOI: 10.1214/12-aos1082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Towards automated detection of depression from brain structural magnetic resonance images. Neuroradiology 2013; 55:567-84. [PMID: 23338839 DOI: 10.1007/s00234-013-1139-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 01/07/2013] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Depression is a major issue worldwide and is seen as a significant health problem. Stigma and patient denial, clinical experience, time limitations, and reliability of psychometrics are barriers to the clinical diagnoses of depression. Thus, the establishment of an automated system that could detect such abnormalities would assist medical experts in their decision-making process. This paper reviews existing methods for the automated detection of depression from brain structural magnetic resonance images (sMRI). METHODS Relevant sources were identified from various databases and online sites using a combination of keywords and terms including depression, major depressive disorder, detection, classification, and MRI databases. Reference lists of chosen articles were further reviewed for associated publications. RESULTS The paper introduces a generic structure for representing and describing the methods developed for the detection of depression from sMRI of the brain. It consists of a number of components including acquisition and preprocessing, feature extraction, feature selection, and classification. CONCLUSION Automated sMRI-based detection methods have the potential to provide an objective measure of depression, hence improving the confidence level in the diagnosis and prognosis of depression.
Collapse
|
40
|
Lim HK, Hong SC, Jung WS, Ahn KJ, Won WY, Hahn C, Kim I, Lee CU. Automated hippocampal subfields segmentation in late life depression. J Affect Disord 2012; 143:253-6. [PMID: 22840623 DOI: 10.1016/j.jad.2012.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
Although a few automated hippocampal subfields segmentation methods have been developed, there has been no in vivo Magnetic Resonance Imaging (MRI) study on the hippocampal subfields volumes of Late Life Depression (LLD). The aim of this study was to investigate the hippocampal subfields volume differences between LLD subjects and healthy elderly controls using an automated hippocampal subfields segmentation technique. Thirty subjects with LLD and 30 group-matched healthy control subjects underwent 3T MRI scanning, and hippocampal subfields volumes were measured and compared between the groups. Subjects with LLD exhibited significant hippocampal volume reductions in the total hippocampus, subiculum, and Cornu Ammonis (CA) 2-3 areas compared with healthy subjects (uncorrected, p<0.001). This study is the first to elaborate the subfields volume differences of both hippocampi between controls and LLD patients. These structural changes in the hippocampal presubiculum, subiculum, and CA2-3 areas might be at the core of the underlying neurobiological mechanisms of hippocampal dysfunction in LLD.
Collapse
Affiliation(s)
- Hyun Kook Lim
- Department of Psychiatry, The Saint Vincent Hospital, Suwon, The College of Medicine, The Catholic University of Korea, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Xie C, Li W, Chen G, Ward BD, Franczak MB, Jones JL, Antuono PG, Li SJ, Goveas JS. The co-existence of geriatric depression and amnestic mild cognitive impairment detrimentally affect gray matter volumes: voxel-based morphometry study. Behav Brain Res 2012; 235:244-50. [PMID: 22909988 PMCID: PMC3561929 DOI: 10.1016/j.bbr.2012.08.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/02/2012] [Accepted: 08/05/2012] [Indexed: 11/24/2022]
Abstract
While late-life depression (LLD) and amnestic mild cognitive impairment (aMCI), alone and in combination, is associated with an increased risk of incident Alzheimer's disease (AD), the neurobiological mechanisms of this link are unclear. We examined the main and interactive effects of LLD and aMCI on the gray matter (GM) volumes in 72 physically healthy participants aged 60 and older. Participants were separated into normal controls, cognitively normal depressed, non-depressed aMCI, and depressed aMCI groups. Optimized voxel-based morphometry estimated GM volumes. The main and interactive effects of LLD and aMCI, and of depressive symptoms and episodic memory deficits on the GM volumes were analyzed. While decreased GM volumes in the mood regulating circuitry structures were associated with depression, GM atrophy in regions essential for various cognitive performance were related to aMCI. LLD-aMCI interactions were associated with widespread subcortical and cortical GM volume loss of brain structures implicated in AD. The interactions between episodic memory deficits and depressive symptom severity are associated with volume loss in right inferior frontal gyrus/anterior insula and left medial frontal gyrus clusters. Our findings suggest that the co-existence of these clinical phenotypes is a potential marker for higher risk of AD.
Collapse
Affiliation(s)
- Chunming Xie
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Wenjun Li
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gang Chen
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - B. Douglas Ward
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Jennifer L. Jones
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Piero G. Antuono
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shi-Jiang Li
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Joseph S. Goveas
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
42
|
Gregory SM, Parker B, Thompson PD. Physical activity, cognitive function, and brain health: what is the role of exercise training in the prevention of dementia? Brain Sci 2012; 2:684-708. [PMID: 24961266 PMCID: PMC4061820 DOI: 10.3390/brainsci2040684] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/22/2012] [Accepted: 11/13/2012] [Indexed: 12/20/2022] Open
Abstract
Tor preventive measures are necessary to attenuate the increased economic and social burden of dementia. This review will focus on the potential for physical activity and exercise training to promote brain health and improve cognitive function via neurophysiological changes. We will review pertinent animal and human research examining the effects of physical activity on cognitive function and neurophysiology. We will discuss cross-sectional and longitudinal studies addressing the relationship between neurocognitive health and cardiorespiratory fitness or habitual activity level. We will then present and discuss longitudinal investigations examining the effects of exercise training on cognitive function and neurophysiology. We will conclude by summarizing our current understanding of the relationship between physical activity and brain health, and present areas for future research given the current gaps in our understanding of this issue.
Collapse
Affiliation(s)
- Sara M Gregory
- Department of Preventive Cardiology, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA.
| | - Beth Parker
- Department of Preventive Cardiology, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA.
| | - Paul D Thompson
- Department of Preventive Cardiology, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA.
| |
Collapse
|
43
|
Abstract
Late life depression (LLD) is an important area of research given the growing elderly population. The purpose of this review is to examine the available evidence for the biological basis of LLD. Structural neuroimaging shows specific gray matter structural changes in LLD as well as ischemic lesion burden via white matter hyperintensities. Similarly, specific neuropsychological deficits have been found in LLD. An inflammatory response is another possible underlying contributor to the pathophysiology of LLD. We review the available literature examining these multiple facets of LLD and how each may affect clinical outcome in the depressed elderly.
Collapse
Affiliation(s)
- Brianne M Disabato
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
44
|
Naismith SL, Norrie LM, Mowszowski L, Hickie IB. The neurobiology of depression in later-life: Clinical, neuropsychological, neuroimaging and pathophysiological features. Prog Neurobiol 2012; 98:99-143. [DOI: 10.1016/j.pneurobio.2012.05.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/03/2012] [Accepted: 05/09/2012] [Indexed: 02/07/2023]
|
45
|
Janssen J, Alemán-Gómez Y, Reig S, Schnack HG, Parellada M, Graell M, Moreno C, Moreno D, Mateos-Pérez JM, Udias JM, Arango C, Desco M. Regional specificity of thalamic volume deficits in male adolescents with early-onset psychosis. Br J Psychiatry 2012; 200:30-6. [PMID: 22116979 DOI: 10.1192/bjp.bp.111.093732] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Thalamic volume deficits are associated with psychosis but it is unclear whether the volume reduction is uniformly distributed or whether it is more severe in particular thalamic regions. AIMS To quantify whole and regional thalamic volume in males with early-onset psychosis and healthy male controls. METHOD Brain scans were obtained for 80 adolescents: 46 individuals with early-onset psychosis with a duration of positive symptoms less than 6 months and 34 healthy controls. All participants were younger than 19 years. Total thalamic volumes were assessed using FreeSurfer and FSL-FIRST, group comparisons of regional thalamic volumes were studied with a surface-based approach. RESULTS Total thalamic volume was smaller in participants with early-onset psychosis relative to controls. Regional thalamic volume reduction was most significant in the right anterior mediodorsal area and pulvinar. CONCLUSIONS In males with minimally treated early-onset psychosis, thalamic volume deficits may be most pronounced in the anterior mediodorsal and posterior pulvinar regions, adding strength to findings from post-mortem studies in adults with psychosis.
Collapse
Affiliation(s)
- Joost Janssen
- Unidad de Medicina y Cirugía Experimental, Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses. Eur Neuropsychopharmacol 2012; 22:1-16. [PMID: 21723712 DOI: 10.1016/j.euroneuro.2011.05.003] [Citation(s) in RCA: 364] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 03/28/2011] [Accepted: 05/11/2011] [Indexed: 01/25/2023]
Abstract
Previous meta-analyses of structural MRI studies have shown diffuse cortical and sub-cortical abnormalities in unipolar depression. However, the presence of duplicate publications, recruitment of particular age groups and the selection of specific regions of interest means that there is uncertainty about the balance of current research. Moreover, the lack of systematic exploration of highly significant heterogeneity has prevented the generalisability of finding. A systematic review and random-effects meta-analysis was carried out to estimate effect sizes. Possible publication bias, and the impact of various study design characteristics on the magnitude of the observed effect size were systematically explored. The aim of this study was 1) to include structural MRI studies systematically comparing unipolar depression with bipolar disorder and healthy volunteers; 2) to consider all available structures of interest without specific age limits, avoiding data duplication, and 3) to explore the influence of factors contributing to the measured effect sizes systematically with meta-regression analyses. Unipolar depression was characterised by reduced brain volume in areas involved in emotional processing, including the frontal cortex, orbitofrontal cortex, cingulate cortex, hippocampus and striatum. There was also evidence of pituitary enlargement and an excess of white matter hyperintensity volume in unipolar depression. Factors which influenced the magnitude of the observed effect sizes were differences in methods, clinical variables, pharmacological interventions and sample age.
Collapse
|
47
|
Colloby SJ, Vasudev A, O'Brien JT, Firbank MJ, Parry SW, Thomas AJ. Relationship of orthostatic blood pressure to white matter hyperintensities and subcortical volumes in late-life depression. Br J Psychiatry 2011; 199:404-10. [PMID: 21903666 DOI: 10.1192/bjp.bp.110.090423] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Structural brain abnormalities are associated with late-life major depression, with numerous studies reporting increased white matter hyperintensities (WMH) and reduced cortical/subcortical grey matter volumes. There is strong evidence linking vascular disease to WMH, but limited evidence on its association with subcortical volumes. AIMS To investigate the relationship of orthostatic blood pressure changes to WMH and subcortical grey matter volumes in late-life depression. METHOD Thirty-eight people with depression and a similarly aged comparison group (n = 30) underwent fluid attenuated inversion recovery (FLAIR) and T(1)-weighted magnetic resonance imaging as well as systematic orthostatic blood pressure assessments. Volumetric estimates of WMH and subcortical grey matter were obtained for each participant and the relationship to blood pressure drop on active stand was examined. RESULTS An association between orthostatic systolic blood pressure drop and WMH volumes in temporal and parietal regions was found in the depression group (age-corrected partial correlation r' = 0.31-0.35, P<0.05). Subcortical volumes were not related to blood pressure changes or WMH volumes in either group. CONCLUSIONS We found evidence for an association between the degree of orthostatic systolic blood pressure drop and WMH volume in the depression group. Since blood pressure drops lead to WMH in animals our findings suggest systolic blood pressure drops may be a factor contributing to these lesions in late-life depression.
Collapse
Affiliation(s)
- Sean J Colloby
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | |
Collapse
|
48
|
Petrik D, Lagace DC, Eisch AJ. The neurogenesis hypothesis of affective and anxiety disorders: are we mistaking the scaffolding for the building? Neuropharmacology 2011; 62:21-34. [PMID: 21945290 DOI: 10.1016/j.neuropharm.2011.09.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/03/2011] [Accepted: 09/06/2011] [Indexed: 01/22/2023]
Abstract
Hypotheses are scaffoldings erected in front of a building and then dismantled when the building is finished. They are indispensable for the workman; but you mustn't mistake the scaffolding for the building. Johann Wolfgang von Goethe. The neurogenesis hypothesis of affective disorders - in its simplest form - postulates that the generation of neurons in the postnatal hippocampal dentate gyrus is involved in the etiology and treatment efficacy of major depressive disorder (MDD). The hypothesis was established in the 1990s but was built on a broad foundation of earlier research on the hippocampus, serotonin and MDD. It has gone through several growth phases fueled by discoveries both correlative and causative in nature. Recently, the hypothesis has also been broadened to also include potential relevance for anxiety disorders, like post-traumatic stress disorder (PTSD). As any hypothesis should be, it has been tested and challenged, sometimes vigorously. Here we review the current standing of the neurogenesis hypothesis of affective and anxiety disorders, noting in particular how a central postulate - that decreased neurogenesis results in depression or anxiety - has, in general, been rejected. We also review the controversies on whether treatments for these disorders, like antidepressants, rely on intact neurogenesis for their efficacy, and the existence of neurogenesis-dependent and -independent effects of antidepressants. In addition, we review the implications that the hypothesis has for the response to stress, PTSD, and the neurobiology of resilience, and highlight our own work showing that adult-generated neurons are functionally important for the behavioral response to social stress. We conclude by emphasizing how advancements in transgenic mouse technology, rodent behavioral analyses, and our understanding of the neurogenesis process will allow us to refine our conclusions and perform ever more specific experiments. Such scrutiny is critical, since if we "mistake the scaffolding for the building" we could overlook opportunities for translational impact in the clinic. This article is part of a special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- David Petrik
- Department of Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9070, USA
| | | | | |
Collapse
|
49
|
Structural abnormalities of the thalamus in juvenile myoclonic epilepsy. Epilepsy Behav 2011; 21:407-11. [PMID: 21700499 DOI: 10.1016/j.yebeh.2011.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/12/2011] [Accepted: 05/14/2011] [Indexed: 11/23/2022]
Abstract
Studies have suggested that the thalamus is a key structure in the pathophysiology of juvenile myoclonic epilepsy. The objective of the present investigation was to examine the thalami of patients with juvenile myoclonic epilepsy using a combination of multiple structural neuroimaging modalities. The association between these techniques may reveal the mechanisms underlying juvenile myoclonic epilepsy and help to identify the neuroanatomical structures involved. Twenty-one patients with juvenile myoclonic epilepsy (13 women, mean age=30±9 years) and a control group of 20 healthy individuals (10 women, mean age=31±8 years) underwent MRI in a 2-T scanner. The volumetric three-dimensional sequence was used for structural investigation. Evaluation of the thalamus comprised voxel-based morphometry, automatic volumetry, and shape analysis. Comparisons were performed between patient and control groups. Voxel-based morphometry analysis identified areas of atrophy located in the anterior portion of the thalamus. Post hoc analysis of automatic volumetry did not reveal significant differences between the groups. Shape analysis disclosed differences between patients and controls in the anterior and inferior portions of the right thalamus and in the anterior portion of the left thalamus. The present investigation confirms that thalami of patients with juvenile myoclonic epilepsy are structurally abnormal with impairments located mainly in the anterior and inferior sections.
Collapse
|
50
|
Walterfang M, Looi JCL, Styner M, Walker RH, Danek A, Niethammer M, Evans A, Kotschet K, Rodrigues GR, Hughes A, Velakoulis D. Shape alterations in the striatum in chorea-acanthocytosis. Psychiatry Res 2011; 192:29-36. [PMID: 21377843 PMCID: PMC3324182 DOI: 10.1016/j.pscychresns.2010.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 10/21/2010] [Accepted: 10/21/2010] [Indexed: 11/17/2022]
Abstract
Chorea-acanthocytosis (ChAc) is an uncommon autosomal recessive disorder due to mutations of the VPS13A gene, which encodes for the membrane protein chorein. ChAc presents with progressive limb and orobuccal chorea, but there is often a marked dysexecutive syndrome. ChAc may first present with neuropsychiatric disturbance such as obsessive-compulsive disorder (OCD), suggesting a particular role for disruption to striatal structures involved in non-motor frontostriatal loops, such as the head of the caudate nucleus. Two previous studies have suggested a marked reduction in volume in the caudate nucleus and putamen, but did not examine morphometric change. We investigated morphometric change in 13 patients with genetically or biochemically confirmed ChAc and 26 age- and gender-matched controls. Subjects underwent magnetic resonance imaging and manual segmentation of the caudate nucleus and putamen, and shape analysis using a non-parametric spherical harmonic technique. Both structures showed significant and marked reductions in volume compared with controls, with reduction greatest in the caudate nucleus. Both structures showed significant shape differences, particularly in the head of the caudate nucleus. No significant correlation was shown between duration of illness and striatal volume or shape, suggesting that much structural change may have already taken place at the time of symptom onset. Our results suggest that striatal neuron loss may occur early in the disease process, and follows a dorsal-ventral gradient that may correlate with early neuropsychiatric and cognitive presentations of the disease.
Collapse
Affiliation(s)
- Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital 3050, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|