1
|
Membrane protein carbonylation of Plasmodium falciparum infected erythrocytes under conditions of sickle cell trait and G6PD deficiency. Mol Biochem Parasitol 2018; 227:5-14. [PMID: 30472238 DOI: 10.1016/j.molbiopara.2018.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
Deficiency of glucose-6-phosphate dehydrogenase (G6PD) and sickle cell trait (SCT) are described as the polymorphic disorders prevalent in erythrocytes. Both are considered the result of the selective pressure exerted by Plasmodium parasites over human genome, due to a certain degree of resistance to the clinical symptoms of severe malaria. There exist in both a prooxidant environment that favors the oxidative damage on membrane proteins, which probably is part of molecular protector mechanisms. Nevertheless, mechanisms are not completely understood at molecular level for each polymorphism yet, and even less if are commons for several of them. Here, synchronous cultures at high parasitemia levels of P. falciparum 3D7 were used to quantify oxidative damage in membrane proteins of erythrocytes with G6PD deficient and SCT. Carbonyl index by dot blot assay was used to calculate the variation of oxidative damage during the asexual phases. Besides, protein carbonylation profiles were obtained by Western blot and complemented with mass spectrometry using MALDI-TOF-TOF analysis. Erythrocytes with G6PD deficient and SCT showed higher carbonyl index values than control and similar profiles of carbonylated proteins; moreover, cytoskeletal and stress response proteins were identified as the main targets of oxidative damage. Therefore, both polymorphisms promote carbonylation on the same membrane proteins. Finally, these results allowed to reinforce the hypothesis of oxidative damage in erythrocyte membrane proteins as molecular mechanism of human adaptation to malaria infection.
Collapse
|
2
|
Taylor E, Onditi F, Maina N, Ozwara H. Immunization of mice with soluble lysate of interferon gamma expressing Plasmodium berghei ANKA induces high IFN-γ production. Trop Dis Travel Med Vaccines 2017; 3:11. [PMID: 28883981 PMCID: PMC5531070 DOI: 10.1186/s40794-017-0053-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Efforts in search of lasting malaria vaccine have led to the development of transgenic rodent malaria parasites. As a result, wild type Plasmodium berghei ANKA (WTPbA) has recently been transformed to express mouse interferon gamma (mIFN-γ). The immunomodulatory effect of this transgenic parasite on WTPbA infection has been demonstrated. However, the protective immune responses after repeated immunization with soluble lysate of this parasite has not been investigated. METHODS Soluble lysate of transgenic PbA (TPbA) was prepared and concentration of IFN-γ in lysate determined by ELISA. Four groups of 20 BALB/c mice each (two treatment groups and two control groups) were setup. Treatment Groups 1 and 2 were primed (at day 0) with lysate of TPbA containing 75 pg/ml IFN-γ and live TPbA parasites respectively. Infection in Group 2 mice was cured with Coartem™ at 450 mg/kg for 3 days. At day 14 post-priming, both groups were boosted twice at day 14 and day 28 with lysate of TPbA containing 75 pg/ml IFN-γ and 35 pg/ml IFN-γ respectively. Blood and spleen samples were collected at day 0, day 14, day 21 and day 28 for preparation of serum and cell cultures respectively. Serum IgG and cytokines (TNF-α and IFN-γ) levels in culture supernatant were measred by ELISA.Survivorship and parasitemia were daily monitored for 21 days. Data were statistically analyzed using ANOVA student's t test. A p value of <0.05 was considered significant. RESULTS At day 28 post-priming, IFN-γ production in Group 1 was tenfold higher than in RBC control group (p = 0.070) There was significant difference in IFN-γ production among the groups at day 28 (p < 0.0001). TNF-α production in Group 1 mice increased fourfold in Group 2 mice from day 14 to day 28 post-immunization (p = 0.0005). There was no significant effect on serum IgG production. Mice in treatment groups survived 5 to 4 days longer compared to non-immunized group. CONCLUSION The study has demonstrated that, repeated immunization with soluble lysate of TPbA induces Th 1 response leading to increased IFN-γ and TNF-γ production.
Collapse
Affiliation(s)
- Ebenezer Taylor
- Department of Molecular Biology and Biotechnology, Pan African University, Institute for Basic Sciences, Technology and Innovation (PAUSTI), P.O. Box 6200-00200, Nairobi, Kenya
- Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), P.O. Box 24481-00502, Karen, Nairobi, Kenya
| | - Faith Onditi
- Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), P.O. Box 24481-00502, Karen, Nairobi, Kenya
| | - Naomi Maina
- Department of Molecular Biology and Biotechnology, Pan African University, Institute for Basic Sciences, Technology and Innovation (PAUSTI), P.O. Box 6200-00200, Nairobi, Kenya
- Department of Biochemistry, School of Biomedical sciences, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya
| | - Hastings Ozwara
- Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), P.O. Box 24481-00502, Karen, Nairobi, Kenya
| |
Collapse
|
3
|
Moreira CK, Naissant B, Coppi A, Bennett BL, Aime E, Franke-Fayard B, Janse CJ, Coppens I, Sinnis P, Templeton TJ. The Plasmodium PHIST and RESA-Like Protein Families of Human and Rodent Malaria Parasites. PLoS One 2016; 11:e0152510. [PMID: 27022937 PMCID: PMC4811531 DOI: 10.1371/journal.pone.0152510] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/15/2016] [Indexed: 11/19/2022] Open
Abstract
The phist gene family has members identified across the Plasmodium genus, defined by the presence of a domain of roughly 150 amino acids having conserved aromatic residues and an all alpha-helical structure. The family is highly amplified in P. falciparum, with 65 predicted genes in the genome of the 3D7 isolate. In contrast, in the rodent malaria parasite P. berghei 3 genes are identified, one of which is an apparent pseudogene. Transcripts of the P. berghei phist genes are predominant in schizonts, whereas in P. falciparum transcript profiles span different asexual blood stages and gametocytes. We pursued targeted disruption of P. berghei phist genes in order to characterize a simplistic model for the expanded phist gene repertoire in P. falciparum. Unsuccessful attempts to disrupt P. berghei PBANKA_114540 suggest that this phist gene is essential, while knockout of phist PBANKA_122900 shows an apparent normal progression and non-essential function throughout the life cycle. Epitope-tagging of P. falciparum and P. berghei phist genes confirmed protein export to the erythrocyte cytoplasm and localization with a punctate pattern. Three P. berghei PEXEL/HT-positive exported proteins exhibit at least partial co-localization, in support of a common vesicular compartment in the cytoplasm of erythrocytes infected with rodent malaria parasites.
Collapse
Affiliation(s)
- Cristina K. Moreira
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, United States of America
| | - Bernina Naissant
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, United States of America
| | - Alida Coppi
- Department of Medical Parasitology, NYU School of Medicine, New York, NY, 10010, United States of America
| | - Brandy L. Bennett
- Department of Medical Parasitology, NYU School of Medicine, New York, NY, 10010, United States of America
| | - Elena Aime
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Chris J. Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, United States of America
| | - Photini Sinnis
- Department of Medical Parasitology, NYU School of Medicine, New York, NY, 10010, United States of America
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, United States of America
| | - Thomas J. Templeton
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, United States of America
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki 852-8523, Japan
- * E-mail:
| |
Collapse
|
4
|
The Plasmodium berghei translocon of exported proteins reveals spatiotemporal dynamics of tubular extensions. Sci Rep 2015. [PMID: 26219962 PMCID: PMC4518229 DOI: 10.1038/srep12532] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The erythrocyte is an extraordinary host cell for intracellular pathogens and requires extensive remodelling to become permissive for infection. Malaria parasites modify their host red blood cells through protein export to acquire nutrients and evade immune responses. Endogenous fluorescent tagging of three signature proteins of the Plasmodium berghei translocon of exported proteins (PTEX), heat shock protein 101, exported protein 2 (EXP2), and PTEX88, revealed motile, tubular extensions of the parasitophorous vacuole that protrude from the parasite far into the red blood cell. EXP2 displays a more prominent presence at the periphery of the parasite, consistent with its proposed role in pore formation. The tubular compartment is most prominent during trophozoite growth. Distinct spatiotemporal expression of individual PTEX components during sporogony and liver-stage development indicates additional functions and tight regulation of the PTEX translocon during parasite life cycle progression. Together, live cell imaging and correlative light and electron microscopy permitted previously unrecognized spatiotemporal and subcellular resolution of PTEX-containing tubules in murine malaria parasites. These findings further refine current models for Plasmodium-induced erythrocyte makeover.
Collapse
|
5
|
Matthews K, Kalanon M, Chisholm SA, Sturm A, Goodman CD, Dixon MWA, Sanders PR, Nebl T, Fraser F, Haase S, McFadden GI, Gilson PR, Crabb BS, de Koning-Ward TF. The Plasmodium translocon of exported proteins (PTEX) component thioredoxin-2 is important for maintaining normal blood-stage growth. Mol Microbiol 2013; 89:1167-86. [PMID: 23869529 DOI: 10.1111/mmi.12334] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2013] [Indexed: 11/30/2022]
Abstract
Plasmodium parasites remodel their vertebrate host cells by translocating hundreds of proteins across an encasing membrane into the host cell cytosol via a putative export machinery termed PTEX. Previously PTEX150, HSP101 and EXP2 have been shown to be bona fide members of PTEX. Here we validate that PTEX88 and TRX2 are also genuine members of PTEX and provide evidence that expression of PTEX components are also expressed in early gametocytes, mosquito and liver stages, consistent with observations that protein export is not restricted to asexual stages. Although amenable to genetic tagging, HSP101, PTEX150, EXP2 and PTEX88 could not be genetically deleted in Plasmodium berghei, in keeping with the obligatory role this complex is postulated to have in maintaining normal blood-stage growth. In contrast, the putative thioredoxin-like protein TRX2 could be deleted, with knockout parasites displaying reduced grow-rates, both in vivo and in vitro, and reduced capacity to cause severe disease in a cerebral malaria model. Thus, while not essential for parasite survival, TRX2 may help to optimize PTEX activity. Importantly, the generation of TRX2 knockout parasites that display altered phenotypes provides a much-needed tool to dissect PTEX function.
Collapse
Affiliation(s)
- Kathryn Matthews
- School of Medicine, Deakin University, Waurn Ponds, Vic., 3216, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
The exported protein PbCP1 localises to cleft-like structures in the rodent malaria parasite Plasmodium berghei. PLoS One 2013; 8:e61482. [PMID: 23658610 PMCID: PMC3637216 DOI: 10.1371/journal.pone.0061482] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/11/2013] [Indexed: 02/02/2023] Open
Abstract
Protein export into the host red blood cell is one of the key processes in the pathobiology of the malaria parasite Plasmodiumtrl falciparum, which extensively remodels the red blood cell to ensure its virulence and survival. In this study, we aimed to shed further light on the protein export mechanisms in the rodent malaria parasite P. berghei and provide further proof of the conserved nature of host cell remodeling in Plasmodium spp. Based on the presence of an export motif (R/KxLxE/Q/D) termed PEXEL (Plasmodium export element), we have generated transgenic P. berghei parasite lines expressing GFP chimera of putatively exported proteins and analysed one of the newly identified exported proteins in detail. This essential protein, termed PbCP1 (P. berghei Cleft-like Protein 1), harbours an atypical PEXEL motif (RxLxY) and is further characterised by two predicted transmembrane domains (2TMD) in the C-terminal end of the protein. We have functionally validated the unusual PEXEL motif in PbCP1 and analysed the role of the 2TMD region, which is required to recruit PbCP1 to discrete membranous structures in the red blood cell cytosol that have a convoluted, vesico-tubular morphology by electron microscopy. Importantly, this study reveals that rodent malaria species also induce modifications to their host red blood cell.
Collapse
|
7
|
Pasini EM, Braks JA, Fonager J, Klop O, Aime E, Spaccapelo R, Otto TD, Berriman M, Hiss JA, Thomas AW, Mann M, Janse CJ, Kocken CHM, Franke-Fayard B. Proteomic and genetic analyses demonstrate that Plasmodium berghei blood stages export a large and diverse repertoire of proteins. Mol Cell Proteomics 2012. [PMID: 23197789 PMCID: PMC3567864 DOI: 10.1074/mcp.m112.021238] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Malaria parasites actively remodel the infected red blood cell (irbc) by exporting proteins into the host cell cytoplasm. The human parasite Plasmodium falciparum exports particularly large numbers of proteins, including proteins that establish a vesicular network allowing the trafficking of proteins onto the surface of irbcs that are responsible for tissue sequestration. Like P. falciparum, the rodent parasite P. berghei ANKA sequesters via irbc interactions with the host receptor CD36. We have applied proteomic, genomic, and reverse-genetic approaches to identify P. berghei proteins potentially involved in the transport of proteins to the irbc surface. A comparative proteomics analysis of P. berghei non-sequestering and sequestering parasites was used to determine changes in the irbc membrane associated with sequestration. Subsequent tagging experiments identified 13 proteins (Plasmodium export element (PEXEL)-positive as well as PEXEL-negative) that are exported into the irbc cytoplasm and have distinct localization patterns: a dispersed and/or patchy distribution, a punctate vesicle-like pattern in the cytoplasm, or a distinct location at the irbc membrane. Members of the PEXEL-negative BIR and PEXEL-positive Pb-fam-3 show a dispersed localization in the irbc cytoplasm, but not at the irbc surface. Two of the identified exported proteins are transported to the irbc membrane and were named erythrocyte membrane associated proteins. EMAP1 is a member of the PEXEL-negative Pb-fam-1 family, and EMAP2 is a PEXEL-positive protein encoded by a single copy gene; neither protein plays a direct role in sequestration. Our observations clearly indicate that P. berghei traffics a diverse range of proteins to different cellular locations via mechanisms that are analogous to those employed by P. falciparum. This information can be exploited to generate transgenic humanized rodent P. berghei parasites expressing chimeric P. berghei/P. falciparum proteins on the surface of rodent irbc, thereby opening new avenues for in vivo screening adjunct therapies that block sequestration.
Collapse
Affiliation(s)
- Erica M Pasini
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ingmundson A, Nahar C, Brinkmann V, Lehmann MJ, Matuschewski K. The exported Plasmodium berghei protein IBIS1 delineates membranous structures in infected red blood cells. Mol Microbiol 2012; 83:1229-43. [PMID: 22329949 PMCID: PMC3502748 DOI: 10.1111/j.1365-2958.2012.08004.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2012] [Indexed: 12/01/2022]
Abstract
The importance of pathogen-induced host cell remodelling has been well established for red blood cell infection by the human malaria parasite Plasmodium falciparum. Exported parasite-encoded proteins, which often possess a signature motif, termed Plasmodium export element (PEXEL) or host-targeting (HT) signal, are critical for the extensive red blood cell modifications. To what extent remodelling of erythrocyte membranes also occurs in non-primate hosts and whether it is in fact a hallmark of all mammalian Plasmodium parasites remains elusive. Here we characterize a novel Plasmodium berghei PEXEL/HT-containing protein, which we term IBIS1. Temporal expression and spatial localization determined by fluorescent tagging revealed the presence of IBIS1 at the parasite/host interface during both liver and blood stages of infection. Targeted deletion of the IBIS1 protein revealed a mild impairment of intra-erythrocytic growth indicating a role for these structures in the rapid expansion of the parasite population in the blood in vivo. In red blood cells, the protein localizes to dynamic, punctate structures external to the parasite. Biochemical and microscopic data revealed that these intra-erythrocytic P. berghei-induced structures (IBIS) are membranous indicating that P. berghei, like P. falciparum, creates an intracellular membranous network in infected red blood cells.
Collapse
Affiliation(s)
- Alyssa Ingmundson
- Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
9
|
Currà C, Pace T, Franke-Fayard BMD, Picci L, Bertuccini L, Ponzi M. Erythrocyte remodeling in Plasmodium berghei infection: the contribution of SEP family members. Traffic 2011; 13:388-99. [PMID: 22106924 DOI: 10.1111/j.1600-0854.2011.01313.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 02/06/2023]
Abstract
The malaria parasite Plasmodium largely modifies the infected erythrocyte through the export of proteins to multiple sites within the host cell. This remodeling is crucial for pathology and translocation of virulence factors to the erythrocyte surface. In this study, we investigated localization and export of small exported proteins/early transcribed membrane proteins (SEP/ETRAMPs), conserved within Plasmodium genus. This protein family is characterized by a predicted signal peptide, a short lysine-rich stretch, an internal transmembrane domain and a highly charged C-terminal region of variable length. We show here that members of the rodent Plasmodium berghei family are components of the parasitophorous vacuole membrane (PVM), which surrounds the parasite throughout the erythrocytic cycle. During P. berghei development, vesicle-like structures containing these proteins detach from the PVM en route to the host cytosol. These SEP-containing vesicles remain associated with the infected erythrocyte ghosts most probably anchored to the membrane skeleton. Transgenic lines expressing the green fluorescent protein appended to different portions of sep-coding region allowed us to define motifs required for protein export. The highly charged terminal region appears to be involved in protein-protein interactions.
Collapse
Affiliation(s)
- Chiara Currà
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Rome, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Pick C, Ebersberger I, Spielmann T, Bruchhaus I, Burmester T. Phylogenomic analyses of malaria parasites and evolution of their exported proteins. BMC Evol Biol 2011; 11:167. [PMID: 21676252 PMCID: PMC3146879 DOI: 10.1186/1471-2148-11-167] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/15/2011] [Indexed: 01/11/2023] Open
Abstract
Background Plasmodium falciparum is the most malignant agent of human malaria. It belongs to the taxon Laverania, which includes other ape-infecting Plasmodium species. The origin of the Laverania is still debated. P. falciparum exports pathogenicity-related proteins into the host cell using the Plasmodium export element (PEXEL). Predictions based on the presence of a PEXEL motif suggest that more than 300 proteins are exported by P. falciparum, while there are many fewer exported proteins in non-Laverania. Results A whole-genome approach was applied to resolve the phylogeny of eight Plasmodium species and four outgroup taxa. By using 218 orthologous proteins we received unanimous support for a sister group position of Laverania and avian malaria parasites. This observation was corroborated by the analyses of 28 exported proteins with orthologs present in all Plasmodium species. Most interestingly, several deviations from the P. falciparum PEXEL motif were found to be present in the orthologous sequences of non-Laverania. Conclusion Our phylogenomic analyses strongly support the hypotheses that the Laverania have been founded by a single Plasmodium species switching from birds to African great apes or vice versa. The deviations from the canonical PEXEL motif in orthologs may explain the comparably low number of exported proteins that have been predicted in non-Laverania.
Collapse
Affiliation(s)
- Christian Pick
- Institute of Zoology and Zoological Museum, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
| | | | | | | | | |
Collapse
|
11
|
Predicting malaria interactome classifications from time-course transcriptomic data along the intraerythrocytic developmental cycle. Artif Intell Med 2010; 49:167-76. [DOI: 10.1016/j.artmed.2010.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 03/28/2010] [Accepted: 03/29/2010] [Indexed: 12/15/2022]
|
12
|
Sijwali PS, Rosenthal PJ. Functional evaluation of Plasmodium export signals in Plasmodium berghei suggests multiple modes of protein export. PLoS One 2010; 5:e10227. [PMID: 20419102 PMCID: PMC2856681 DOI: 10.1371/journal.pone.0010227] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 03/29/2010] [Indexed: 12/20/2022] Open
Abstract
The erythrocytic stage development of malaria parasites occurs within the parasitophorous vacuole inside the infected-erythrocytes, and requires transport of several parasite-encoded proteins across the parasitophorous vacuole to several locations, including the cytosol and membrane of the infected cell. These proteins are called exported proteins; and a large number of such proteins have been predicted for Plasmodium falciparum based on the presence of an N-terminal motif known as the Plasmodium export element (PEXEL) or vacuolar transport signal (VTS), which has been shown to mediate export. The majority of exported proteins contain one or more transmembrane domains at the C-terminus and one of three types of N-terminus domain architectures. (1) The majority, including the knob-associated histidine rich protein (KAHRP), contain a signal/hydrophobic sequence preceding the PEXEL/VTS motif. (2) Other exported proteins, including the P. berghei variant antigen family bir and the P. falciparum skeleton binding protein-1, do not appear to contain a PEXEL/VTS motif. (3) The P. falciparum erythrocyte membrane protein-1 (PfEMP1) family lacks a signal/hydrophobic sequence before the motif. These different domain architectures suggest the presence of multiple export pathways in malaria parasites. To determine if export pathways are conserved in plasmodia and to develop an experimental system for studying these processes, we investigated export of GFP fused with N- and C-terminus putative export domains in the rodent malaria parasite P. berghei. Export was dependent on specific N- and C-terminal domains. Constructs with a KAHRP-like or bir N-terminus, but not the PfEMP1 N-terminus, exported GFP into the erythrocyte. The C-terminus of a P. falciparum variant antigen rifin prevented GFP export by the KAHRP-like N-terminus. In contrast, GFP chimeras containing KAHRP-like N-termini and the PfEMP1 C-terminus were exported to the surface of erythrocytes. Taken together, these results suggest that proteins with KAHRP-like architecture follow a common export pathway, but that PfEMP1s utilize an alternative pathway. Functional validation of common putative export domains of malaria parasites in P. berghei provides an alternative and simpler system to investigate export mechanisms.
Collapse
Affiliation(s)
- Puran Singh Sijwali
- Centre for Cellular and Molecular Biology, Hyderabad, India
- * E-mail: (PSS); (PJR)
| | - Philip J. Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (PSS); (PJR)
| |
Collapse
|
13
|
Abstract
In order to survive and promote its virulence the malaria parasite must export hundreds of its proteins beyond an encasing vacuole and membrane into the host red blood cell. In the last few years, several major advances have been made that have significantly contributed to our understanding of this export process. These include: (i) the identification of sequences that direct protein export (a signal sequence and a motif termed PEXEL), which have allowed predictions of the exportomes of Plasmodium species that are the cause of malaria, (ii) the recognition that the fate of proteins destined for export is already decided within the parasite's endoplasmic reticulum and involves the PEXEL motif being recognized and cleaved by the aspartic protease plasmepsin V and (iii) the discovery of the Plasmodium translocon of exported proteins (PTEX) that is responsible for the passage of proteins across the vacuolar membrane. We review protein export in Plasmodium and these latest developments in the field that have now provided a new platform from which trafficking of malaria proteins can be dissected.
Collapse
Affiliation(s)
- Silvia Haase
- Strategic Research Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Vic., Australia
| | | |
Collapse
|
14
|
Grouffaud S, van West P, Avrova AO, Birch PRJ, Whisson SC. Plasmodium falciparum and Hyaloperonospora parasitica effector translocation motifs are functional in Phytophthora infestans. MICROBIOLOGY (READING, ENGLAND) 2008; 154:3743-3751. [PMID: 19047742 DOI: 10.1099/mic.0.2008/021964-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The oomycete potato late blight pathogen, Phytophthora infestans, and the apicomplexan malaria parasite Plasmodium falciparum translocate effector proteins inside host cells, presumably to the benefit of the pathogen or parasite. Many oomycete candidate secreted effector proteins possess a peptide domain with the core conserved motif, RxLR, located near the N-terminal secretion signal peptide. In the Ph. infestans effector Avr3a, RxLR and an additional EER motif are essential for translocation into host cells during infection. Avr3a is recognized in the host cytoplasm by the R3a resistance protein. We have exploited this cytoplasmic recognition to report on replacement of the RxLR-EER of Avr3a with the equivalent sequences from the intracellular effectors ATR1NdWsB and ATR13 from the related oomycete pathogen, Hyaloperonospora parasitica, and the host targeting signal from the Pl. falciparum virulence protein PfHRPII. Introduction of these chimeric transgenes into Ph. infestans and subsequent virulence testing on potato plants expressing R3a demonstrated the alternative motifs to be functional in translocating Avr3a inside plant cells. These results suggest common mechanisms for protein translocation in both malaria and oomycete pathosystems.
Collapse
Affiliation(s)
- Severine Grouffaud
- Aberdeen Oomycete Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Pieter van West
- Aberdeen Oomycete Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Anna O Avrova
- Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Paul R J Birch
- University of Dundee, Division of Plant Sciences, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Stephen C Whisson
- Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
15
|
Lüder CGK, Stanway RR, Chaussepied M, Langsley G, Heussler VT. Intracellular survival of apicomplexan parasites and host cell modification. Int J Parasitol 2008; 39:163-73. [PMID: 19000910 DOI: 10.1016/j.ijpara.2008.09.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 11/15/2022]
Abstract
The intracellular stages of apicomplexan parasites are known to extensively modify their host cells to ensure their own survival. Recently, considerable progress has been made in understanding the molecular details of these parasite-dependent effects for Plasmodium-, Toxoplasma- and Theileria-infected cells. We have begun to understand how Plasmodium liver stage parasites protect their host hepatocytes from apoptosis during parasite development and how they induce an ordered cell death at the end of the liver stage. Toxoplasma parasites are also known to regulate host cell survival pathways and it has been convincingly demonstrated that they block host cell major histocompatibility complex (MHC)-dependent antigen presentation of parasite epitopes to avoid cell-mediated immune responses. Theileria parasites are the masters of host cell modulation because their presence immortalises the infected cell. It is now accepted that multiple pathways are activated to induce Theileria-dependent host cell transformation. Although it is now known that similar host cell pathways are affected by the different parasites, the outcome for the infected cell varies considerably. Improved imaging techniques and new methods to control expression of parasite and host cell proteins will help us to analyse the molecular details of parasite-dependent host cell modifications.
Collapse
Affiliation(s)
- Carsten G K Lüder
- Institute for Medical Microbiology, Georg-August-University Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
| | | | | | | | | |
Collapse
|