1
|
Tegler L, Corin K, Pick H, Brookes J, Skuhersky M, Vogel H, Zhang S. The G protein coupled receptor CXCR4 designed by the QTY code becomes more hydrophilic and retains cell signaling activity. Sci Rep 2020; 10:21371. [PMID: 33288780 PMCID: PMC7721705 DOI: 10.1038/s41598-020-77659-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are vital for diverse biological functions, including vision, smell, and aging. They are involved in a wide range of diseases, and are among the most important targets of medicinal drugs. Tools that facilitate GPCR studies or GPCR-based technologies or therapies are thus critical to develop. Here we report using our QTY (glutamine, threonine, tyrosine) code to systematically replace 29 membrane-facing leucine, isoleucine, valine, and phenylalanine residues in the transmembrane α-helices of the GPCR CXCR4. This variant, CXCR4QTY29, became more hydrophilic, while retaining the ability to bind its ligand CXCL12. When transfected into HEK293 cells, it inserted into the cell membrane, and initiated cellular signaling. This QTY code has the potential to improve GPCR and membrane protein studies by making it possible to design functional hydrophilic receptors. This tool can be applied to diverse α-helical membrane proteins, and may aid in the development of other applications, including clinical therapies.
Collapse
Affiliation(s)
- Lotta Tegler
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
- Molecular Biotechnology/IFM, Linköping University, 58183, Linköping, Sweden
| | - Karolina Corin
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA.
- Biomedical Engineering Research Group, School of Electrical and Information Engineering, and Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095-1570, USA.
| | - Horst Pick
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jennifer Brookes
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK
- Biophysics, Computational Physics, Quantum Physics, University College London, London, UK
| | - Michael Skuhersky
- Synthetic Neurobiology Group, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
| | - Horst Vogel
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Shuguang Zhang
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA.
| |
Collapse
|
2
|
Jones EM, Jajoo R, Cancilla D, Lubock NB, Wang J, Satyadi M, Chong R, de March C, Bloom JS, Matsunami H, Kosuri S. A Scalable, Multiplexed Assay for Decoding GPCR-Ligand Interactions with RNA Sequencing. Cell Syst 2019; 8:254-260.e6. [PMID: 30904378 PMCID: PMC6907015 DOI: 10.1016/j.cels.2019.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/16/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) are central to how mammalian cells sense and respond to chemicals. Mammalian olfactory receptors (ORs), the largest family of GPCRs, mediate the sense of smell through activation by small molecules, though for most bonafide ligands, they have not been identified. Here, we introduce a platform to screen large chemical panels against multiplexed GPCR libraries using next-generation sequencing of barcoded genetic reporters in stably engineered human cell lines. We mapped 39 mammalian ORs against 181 odorants and identified 79 interactions that have not been reported to our knowledge, including ligands for 15 previously orphaned receptors. This multiplexed receptor assay allows the cost-effective mapping of large chemical libraries to receptor repertoires at scale.
Collapse
Affiliation(s)
- Eric M Jones
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Rishi Jajoo
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Daniel Cancilla
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Nathan B Lubock
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Jeffrey Wang
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Megan Satyadi
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Rockie Chong
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Claire de March
- Department of Molecular Genetics and Microbiology, and Department of Neurobiology, and Duke Institute for Brain Sciences, Duke University Medical Center, Research Drive, Durham, NC 27710, USA
| | - Joshua S Bloom
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, and Department of Neurobiology, and Duke Institute for Brain Sciences, Duke University Medical Center, Research Drive, Durham, NC 27710, USA
| | - Sriram Kosuri
- Department of Chemistry and Biochemistry, UCLA-, DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Li J, Liu X, Man Y, Chen Q, Pei D, Wu W. Cell-free expression, purification and characterization of Drosophila melanogaster odorant receptor OR42a and its co-receptor. Protein Expr Purif 2019; 159:27-33. [PMID: 30872132 DOI: 10.1016/j.pep.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/06/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
Olfactory receptors (OR), a group of classic membrane proteins, plays a vital role in insect reproduction and acclimatization. Deciphering the molecular mechanism of insect olfaction could enhance pest control and environmental protection. Studies on ORs have faced a major bottleneck due to the notoriously strong hydrophobicity of ORs, which results in difficult expression in heterologous cell systems. Here, we demonstrated that insect ORs could be functionally produced using the E. coli cell-free protein synthesis system (CFPS), in which the highest yield of total ORs is 350 μg per 1 ml reaction. We tested the effects of detergent types and concentrations on soluble expression of ORs. The ORs showed a classic α-helical infrared spectrum. Quartz crystal microbalance (QCM) was used to demonstrate that ORs fold correctly and respond to their ligands. This is the first report that insect OR42a could be functionally produced in vitro. This approach may facilitate the development of biomimetic olfactory biosensors and may also be utilized for drug positioning and development, environmental protection and agriculture.
Collapse
Affiliation(s)
- Jianyong Li
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Xingping Liu
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Yahui Man
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Qian Chen
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Di Pei
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Wenjian Wu
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China.
| |
Collapse
|
4
|
Applications and Advances in Bioelectronic Noses for Odour Sensing. SENSORS 2018; 18:s18010103. [PMID: 29301263 PMCID: PMC5795383 DOI: 10.3390/s18010103] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/22/2017] [Accepted: 11/25/2017] [Indexed: 01/15/2023]
Abstract
A bioelectronic nose, an intelligent chemical sensor array system coupled with bio-receptors to identify gases and vapours, resembles mammalian olfaction by which many vertebrates can sniff out volatile organic compounds (VOCs) sensitively and specifically even at very low concentrations. Olfaction is undertaken by the olfactory system, which detects odorants that are inhaled through the nose where they come into contact with the olfactory epithelium containing olfactory receptors (ORs). Because of its ability to mimic biological olfaction, a bio-inspired electronic nose has been used to detect a variety of important compounds in complex environments. Recently, biosensor systems have been introduced that combine nanoelectronic technology and olfactory receptors themselves as a source of capturing elements for biosensing. In this article, we will present the latest advances in bioelectronic nose technology mimicking the olfactory system, including biological recognition elements, emerging detection systems, production and immobilization of sensing elements on sensor surface, and applications of bioelectronic noses. Furthermore, current research trends and future challenges in this field will be discussed.
Collapse
|
5
|
Belloir C, Miller-Leseigneur ML, Neiers F, Briand L, Le Bon AM. Biophysical and functional characterization of the human olfactory receptor OR1A1 expressed in a mammalian inducible cell line. Protein Expr Purif 2017; 129:31-43. [DOI: 10.1016/j.pep.2016.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 10/21/2022]
|
6
|
Pambou E, Crewe J, Yaseen M, Padia FN, Rogers S, Wang D, Xu H, Lu JR. Structural Features of Micelles of Zwitterionic Dodecyl-phosphocholine (C₁₂PC) Surfactants Studied by Small-Angle Neutron Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9781-9789. [PMID: 26301341 DOI: 10.1021/acs.langmuir.5b02077] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Small-angle neutron scattering (SANS) was used to investigate the size and shape of zwitterionic dodecyl phosphocholine (C12PC) micelles formed at various concentrations above its critical micelle concentration (CMC = 0.91 mM). The predominant spherical shape of micelles is revealed by SANS while the average micellar size was found to be broadly consistent with the hydrodynamic diameters determined by dynamic light scattering (DLS). Cryogenic tunneling electron microscopy (cryo-TEM) shows a uniform distribution of structures, proposing micelle monodispersity ( Supporting Information ). H/D substitution was utilized to selectively label the chain, head, or entire surfactant so that structural distributions within the micellar assembly could be investigated using fully protonated, head-deuterated, and tail-deuterated PC surfactants in D2O and fully deuterated surfactants in H2O. Using the analysis software we have developed, the four C12PC contrasts at a given concentration were simultaneously analyzed using various core-shell models consisting of a hydrophobic core and a shell representing hydrated polar headgroups. Results show that at 10 mM, C12PC micelles can be well represented by a spherical core-shell model with a core radius and shell thicknesses of 16.9 ± 0.5 and 10.2 ± 2.0 Å (total radius 27.1 ± 2.0 Å), respectively, with a surfactant aggregation number of 57 ± 5. As the concentration was increased, the SANS data revealed an increase in core-shell mixing, characterized by the emergence of an intermediate mixing region at the spherical core-shell interface. C12PC micelles at 100 mM were found to have a core radius and shell thicknesses of 19.6 ± 0.5 and 7.8 ± 2.0 Å, with an intermediate mixing region of 3.0 ± 0.5 Å. Further reduction in the shell thickness with concentration was also observed, coupled with an increased mixing of the core and shell regions and a reduction in miceller hydration, suggesting that concentration has a significant influence on surfactant packing and aggregation within micelles.
Collapse
Affiliation(s)
- Elias Pambou
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - John Crewe
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Mohammed Yaseen
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Faheem N Padia
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sarah Rogers
- STFC ISIS Facility, Rutherford Appleton Laboratory , Didcot OX11 0QX, United Kingdom
| | - Dong Wang
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266555, China
| | - Hai Xu
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266555, China
| | - Jian R Lu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
7
|
Tegler LT, Corin K, Hillger J, Wassie B, Yu Y, Zhang S. Cell-free expression, purification, and ligand-binding analysis of Drosophila melanogaster olfactory receptors DmOR67a, DmOR85b and DmORCO. Sci Rep 2015; 5:7867. [PMID: 25597985 PMCID: PMC4297953 DOI: 10.1038/srep07867] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/11/2014] [Indexed: 01/25/2023] Open
Abstract
Insects transmit numerous devastating diseases, including malaria, dengue fever, and sleeping sickness. Olfactory cues guide insects to their hosts, and are thus responsible for disease transmission. Understanding the molecular basis of insect olfaction could facilitate the development of interventions. The first step is to heterologously overexpress and purify insect olfactory receptors (ORs). This is challenging, as ORs are membrane proteins. Here, we show that insect ORs and their co-receptor can be expressed in an E. coli cell-free system. After immunoaffinity chromatography, the ORs are ~95% pure, and up to 1 mg/10 ml reaction is obtained. Circular dichroism together with microscale thermophoresis indicate that each receptor is properly folded, and can bind its respective ligand. This is the first time insect ORs have been expressed in an E. coli system. The methods described here could facilitate future structure-function studies, which may aid in developments to alleviate the suffering of millions caused by insect-transmitted diseases.
Collapse
Affiliation(s)
- Lotta Tollstoy Tegler
- 1] Center for Bits and Atoms, Massachusetts Institute of Technology, 77 Massachusetts, Cambridge, MA 02139-4307, USA [2] Division of Chemistry, Department of Physics, Chemistry and Biology, Linkoping University, SE-581 83 Linkoping, Sweden
| | - Karolina Corin
- 1] Center for Bits and Atoms, Massachusetts Institute of Technology, 77 Massachusetts, Cambridge, MA 02139-4307, USA [2] Biomedical Engineering Research Group, School of Electrical and Information Engineering University of the Witwatersrand, Johannesburg, South Africa [3] Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | - Julia Hillger
- Center for Bits and Atoms, Massachusetts Institute of Technology, 77 Massachusetts, Cambridge, MA 02139-4307, USA
| | - Brooke Wassie
- Center for Bits and Atoms, Massachusetts Institute of Technology, 77 Massachusetts, Cambridge, MA 02139-4307, USA
| | - Yanmei Yu
- 1] Center for Bits and Atoms, Massachusetts Institute of Technology, 77 Massachusetts, Cambridge, MA 02139-4307, USA [2] College of Electronics and Information Engineering, Sichuan University, Chengdu, China 610065
| | - Shuguang Zhang
- Center for Bits and Atoms, Massachusetts Institute of Technology, 77 Massachusetts, Cambridge, MA 02139-4307, USA
| |
Collapse
|
8
|
Methodological advances: the unsung heroes of the GPCR structural revolution. Nat Rev Mol Cell Biol 2015; 16:69-81. [DOI: 10.1038/nrm3933] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Structural analysis of bacteriorhodopsin solubilized by lipid-like phosphocholine biosurfactants with varying micelle concentrations. J Colloid Interface Sci 2015; 437:170-180. [DOI: 10.1016/j.jcis.2014.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/18/2022]
|
10
|
Kuhlmann K, Tschapek A, Wiese H, Eisenacher M, Meyer HE, Hatt HH, Oeljeklaus S, Warscheid B. The membrane proteome of sensory cilia to the depth of olfactory receptors. Mol Cell Proteomics 2014; 13:1828-43. [PMID: 24748648 DOI: 10.1074/mcp.m113.035378] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the nasal cavity, the nonmotile cilium of olfactory sensory neurons (OSNs) constitutes the chemosensory interface between the ambient environment and the brain. The unique sensory organelle facilitates odor detection for which it includes all necessary components of initial and downstream olfactory signal transduction. In addition to its function in olfaction, a more universal role in modulating different signaling pathways is implicated, for example, in neurogenesis, apoptosis, and neural regeneration. To further extend our knowledge about this multifunctional signaling organelle, it is of high importance to establish a most detailed proteome map of the ciliary membrane compartment down to the level of transmembrane receptors. We detached cilia from mouse olfactory epithelia via Ca(2+)/K(+) shock followed by the enrichment of ciliary membrane proteins at alkaline pH, and we identified a total of 4,403 proteins by gel-based and gel-free methods in conjunction with high resolution LC/MS. This study is the first to report the detection of 62 native olfactory receptor proteins and to provide evidence for their heterogeneous expression at the protein level. Quantitative data evaluation revealed four ciliary membrane-associated candidate proteins (the annexins ANXA1, ANXA2, ANXA5, and S100A5) with a suggested function in the regulation of olfactory signal transduction, and their presence in ciliary structures was confirmed by immunohistochemistry. Moreover, we corroborated the ciliary localization of the potassium-dependent Na(+)/Ca(2+) exchanger (NCKX) 4 and the plasma membrane Ca(2+)-ATPase 1 (PMCA1) involved in olfactory signal termination, and we detected for the first time NCKX2 in olfactory cilia. Through comparison with transcriptome data specific for mature, ciliated OSNs, we finally delineated the membrane ciliome of OSNs. The membrane proteome of olfactory cilia established here is the most complete today, thus allowing us to pave new avenues for the study of diverse molecular functions and signaling pathways in and out of olfactory cilia and thus to advance our understanding of the biology of sensory organelles in general.
Collapse
Affiliation(s)
- Katja Kuhlmann
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum
| | - Astrid Tschapek
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum
| | - Heike Wiese
- the ¶Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg
| | - Martin Eisenacher
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum
| | - Helmut E Meyer
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, the ‖Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, and
| | - Hanns H Hatt
- the **Department of Cell Physiology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Silke Oeljeklaus
- the ¶Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg
| | - Bettina Warscheid
- the ¶Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg,
| |
Collapse
|
11
|
Zheng X, Dong S, Zheng J, Li D, Li F, Luo Z. Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants. Biotechnol Adv 2014; 32:564-74. [PMID: 24566241 DOI: 10.1016/j.biotechadv.2014.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/13/2013] [Accepted: 02/17/2014] [Indexed: 12/21/2022]
Abstract
G-protein coupled receptors (GPCRs) are involved in regulating most of physiological actions and metabolism in the bodies, which have become most frequently addressed therapeutic targets for various disorders and diseases. Purified GPCR-based drug discoveries have become routine that approaches to structural study, novel biophysical and biochemical function analyses. However, several bottlenecks that GPCR-directed drugs need to conquer the problems including overexpression, solubilization, and purification as well as stabilization. The breakthroughs are to obtain efficient protein yield and stabilize their functional conformation which are both urgently requiring of effective protein synthesis system methods and optimal surfactants. Cell-free protein synthesis system is superior to the high yields and post-translation modifications, and early signs of self-assembly peptide detergents also emerged to superiority in purification of membrane proteins. We herein focus several predominant protein synthesis systems and surfactants involving the novel peptide detergents, and uncover the advantages of cell-free protein synthesis system with self-assembling peptide detergents in purification of functional GPCRs. This review is useful to further study in membrane proteins as well as the new drug exploration.
Collapse
Affiliation(s)
- Xuan Zheng
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Shuangshuang Dong
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Jie Zheng
- College of laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Duanhua Li
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Feng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Expression and functional characterization of membrane-integrated mammalian corticotropin releasing factor receptors 1 and 2 in Escherichia coli. PLoS One 2014; 9:e84013. [PMID: 24465390 PMCID: PMC3894963 DOI: 10.1371/journal.pone.0084013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 11/19/2013] [Indexed: 11/19/2022] Open
Abstract
Corticotropin-Releasing Factor Receptors (CRFRs) are class B1 G-protein-coupled receptors, which bind peptides of the corticotropin releasing factor family and are key mediators in the stress response. In order to dissect the receptors' binding specificity and enable structural studies, full-length human CRFR1α and mouse CRFR2β as well as fragments lacking the N-terminal extracellular domain, were overproduced in E. coli. The characteristics of different CRFR2β-PhoA gene fusion products expressed in bacteria were found to be in agreement with the predicted ones in the hepta-helical membrane topology model. Recombinant histidine-tagged CRFR1α and CRFR2β expression levels and bacterial subcellular localization were evaluated by cell fractionation and Western blot analysis. Protein expression parameters were assessed, including the influence of E. coli bacterial hosts, culture media and the impact of either PelB or DsbA signal peptide. In general, the large majority of receptor proteins became inserted in the bacterial membrane. Across all experimental conditions significantly more CRFR2β product was obtained in comparison to CRFR1α. Following a detergent screen analysis, bacterial membranes containing CRFR1α and CRFR2β were best solubilized with the zwitterionic detergent FC-14. Binding of different peptide ligands to CRFR1α and CRFR2β membrane fractions were similar, in part, to the complex pharmacology observed in eukaryotic cells. We suggest that our E. coli expression system producing functional CRFRs will be useful for large-scale expression of these receptors for structural studies.
Collapse
|
13
|
Large scale expression and purification of mouse melanopsin-L in the baculovirus expression system. Protein Expr Purif 2013; 91:134-46. [PMID: 23921072 DOI: 10.1016/j.pep.2013.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/14/2013] [Accepted: 07/17/2013] [Indexed: 11/22/2022]
Abstract
Melanopsin is the mammalian photopigment that primarily mediates non-visual photoregulated physiology. So far, this photopigment is poorly characterized with respect to structure and function. Here, we report large-scale production and purification of the intact long isoform of mouse melanopsin (melanopsin-L) using the baculovirus/insect cell expression system. Exploiting the baculoviral GP67 signal peptide, we obtained expression levels that varied between 10-30pmol/10(6)cells, equivalent to 2-5mg/L. This could be further enhanced using DMSO as a chemical chaperone. LC-MS analysis confirmed that full-length melanopsin-L was expressed and demonstrated that the majority of the expressed protein was N-glycosylated at Asn(30) and Asn(34). Other posttranslational modifications were not yet detected. Purification was achieved exploiting a C-terminal deca-histag, realizing a purification factor of several hundred-fold. The final recovery of purified melanopsin-L averaged 2.5% of the starting material. This was mainly due to low extraction yields, probably since most of the protein was present as the apoprotein. The spectral data we obtained agree with an absorbance maximum in the 460-500nm wavelength region and a significant red-shift upon illumination. This is the first report on expression and purification of full length melanopsin-L at a scale that can easily be further amplified.
Collapse
|
14
|
Transient and stable expression of the neurotensin receptor NTS1: a comparison of the baculovirus-insect cell and the T-REx-293 expression systems. PLoS One 2013; 8:e63679. [PMID: 23696845 PMCID: PMC3656039 DOI: 10.1371/journal.pone.0063679] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/05/2013] [Indexed: 01/06/2023] Open
Abstract
Nowadays, baculovirus-infected insect cells and tetracycline-inducible mammalian cell lines (T-REx-293) are intensively used for G protein-coupled receptor (GPCR) production for crystallography purposes. Here we constructed a suspension T-REx-293 cell line to stably express an engineered neurotensin receptor 1 (NTS1) mutant and we quantitatively compared this cell line with the transient baculovirus-insect cell system throughout a milligram-scale NTS1 expression and purification process. The two systems were comparable with respect to functional NTS1 expression levels and receptor binding affinity for the agonist [3H] neurotensin. However, NTS1 surface display on T-REx-293 cells determined by radio-ligand binding assays was 2.8 fold higher than that on insect cells. This work demonstrates two approaches for preparing milligram quantities of purified NTS1 suitable for structural studies and provides useful input to users in choosing and optimizing an appropriate expression host for other GPCRs.
Collapse
|
15
|
Brookes JC, Horsfield AP, Stoneham AM. The swipe card model of odorant recognition. SENSORS (BASEL, SWITZERLAND) 2012; 12:15709-49. [PMID: 23202229 PMCID: PMC3522982 DOI: 10.3390/s121115709] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/31/2012] [Accepted: 11/02/2012] [Indexed: 01/24/2023]
Abstract
Just how we discriminate between the different odours we encounter is not completely understood yet. While obviously a matter involving biology, the core issue isa matter for physics: what microscopic interactions enable the receptors in our noses-small protein switches—to distinguish scent molecules? We survey what is and is not known about the physical processes that take place when we smell things, highlighting the difficulties in developing a full understanding of the mechanics of odorant recognition. The main current theories, discussed here, fall into two major groups. One class emphasises the scent molecule's shape, and is described informally as a "lock and key" mechanism. But there is another category, which we focus on and which we call "swipe card" theories:the molecular shape must be good enough, but the information that identifies the smell involves other factors. One clearly-defined "swipe card" mechanism that we discuss here is Turin's theory, in which inelastic electron tunnelling is used to discern olfactant vibration frequencies. This theory is explicitly quantal, since it requires the molecular vibrations to take in or give out energy only in discrete quanta. These ideas lead to obvious experimental tests and challenges. We describe the current theory in a form that takes into account molecular shape as well as olfactant vibrations. It emerges that this theory can explain many observations hard to reconcile in other ways. There are still some important gaps in a comprehensive physics-based description of the central steps in odorant recognition. We also discuss how far these ideas carry over to analogous processes involving other small biomolecules, like hormones, steroids and neurotransmitters. We conclude with a discussion of possible quantum behaviours in biology more generally, the case of olfaction being just one example. This paper is presented in honour of Prof. Marshall Stoneham who passed away unexpectedly during its writing.
Collapse
Affiliation(s)
- Jennifer C. Brookes
- Department of Chemistry and Chemical Biology, Harvard University, Oxford Street, Cambridge, MA 02138, USA
| | - Andrew P. Horsfield
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - A. Marshall Stoneham
- London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, UK; E-Mail:
| |
Collapse
|
16
|
Du L, Wu C, Liu Q, Huang L, Wang P. Recent advances in olfactory receptor-based biosensors. Biosens Bioelectron 2012; 42:570-80. [PMID: 23261691 DOI: 10.1016/j.bios.2012.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/20/2012] [Accepted: 09/02/2012] [Indexed: 12/30/2022]
Abstract
The biological olfactory system can recognize and discriminate thousands of volatile organic compounds (VOCs) with extremely high sensitivity and specificity. The most fundamental elements are olfactory receptors (ORs) in the cilia of olfactory sensory neurons (OSNs), which contribute greatly to the high-performance olfactory system. The excellent properties of ORs are generally recognized in the development of biomimetic OR-based biosensors. Over the past two decades, much work has been done in developing OR-based biosensors due to their promising potential in many applications. In this article, we will outline the latest advances of OR-based biosensors. Two current crucial issues in this field will be discussed, namely, the production methods and immobilization techniques of ORs. We will also elaborate on various OR-based biosensors and their latest developments. Finally, current research trends and future challenges in this field will be discussed.
Collapse
Affiliation(s)
- Liping Du
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | | | | | | | | |
Collapse
|
17
|
Abstract
The number of structures of integral membrane proteins from higher eukaryotes is steadily increasing due to a number of innovative protein engineering and crystallization strategies devised over the last few years. However, it is sobering to reflect that these structures represent only a tiny proportion of the total number of membrane proteins encoded by a mammalian genome. In addition, the structures determined to date are of the most tractable membrane proteins, i.e., those that are expressed functionally and to high levels in yeast or in insect cells using the baculovirus expression system. However, some membrane proteins that are expressed inefficiently in these systems can be produced at sufficiently high levels in mammalian cells to allow structure determination. Mammalian expression systems are an under-used resource in structural biology and represent an effective way to produce fully functional membrane proteins for structural studies. This review will discuss examples of vertebrate membrane protein overexpression in mammalian cells using a variety of viral, constitutive or inducible expression systems.
Collapse
Affiliation(s)
- Juni Andréll
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
18
|
Koener B, Focant MC, Bosier B, Maloteaux JM, Hermans E. Increasing the density of the D2L receptor and manipulating the receptor environment are required to evidence the partial agonist properties of aripiprazole. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:60-70. [PMID: 21871520 DOI: 10.1016/j.pnpbp.2011.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/05/2011] [Accepted: 08/10/2011] [Indexed: 11/30/2022]
Abstract
The clinical efficacy of aripiprazole in the treatment of psychosis relies on a partial agonism at D2 receptors. As the expression of this receptor differs physiologically between pre- and post-synaptic sites and is affected by pathological conditions or pharmacological treatments, it appears difficult to predict the clinical response to partial agonists. In addition, the response to this novel antipsychotic was shown to depend on the cell-line and the pathway analyzed, suggesting a functional selective profile at the D2 receptor. This study aims at examining the influence of receptor density and ionic environment on the pharmacological properties of aripiprazole. A cell line was developed in which the expression of the recombinant D2 receptor can be tightly manipulated using doxycycline and sodium butyrate. The potency and efficacy of aripiprazole and other reference D2 receptor ligands were examined in [35S]GTPγS binding assays, in buffers containing either NaCl or N-methyl-D-glucamine (NMDG) which is proposed to enhance G protein coupling. Increasing the density of D2 receptors considerably enhanced the [35S]GTPγS binding induced by dopamine and the full agonist NPA. In maximally induced cells, the agonist properties of the partial agonist (-)-3-PPP was revealed in a buffer containing NaCl, whereas the response to aripiprazole was not evidenced. Substituting NMDG for NaCl promoted the response to dopamine and (-)3-PPP and was proven efficient to reveal the partial agonist profile of aripiprazole. While NMDG substitution for NaCl strongly enhanced receptor-G protein coupling, these ionic manipulations are likely to influence receptor conformations, thereby modulating the activation of signaling pathways. Our data obtained with partial agonists acting at the D2 receptor suggest that these changes in the experimental conditions could contribute to reveal the functional selective profile of GPCR ligands. They also emphasize that the properties of functional selective ligands do not only depend on receptor density but also on the surrounding environment which likely differs between brain structures.
Collapse
Affiliation(s)
- Beryl Koener
- Institute of Neuroscience (Ions), Group of Neuropharmacology, Université Catholique de Louvain, Avenue Mounier 53, bte B1.53.02, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
19
|
Luo Z, Zhang S. Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society. Chem Soc Rev 2012; 41:4736-54. [DOI: 10.1039/c2cs15360b] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Corin K, Pick H, Baaske P, Cook BL, Duhr S, Wienken CJ, Braun D, Vogel H, Zhang S. Insertion of T4-lysozyme (T4L) can be a useful tool for studying olfactory-related GPCRs. MOLECULAR BIOSYSTEMS 2012; 8:1750-9. [DOI: 10.1039/c2mb05495g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Corin K, Baaske P, Geissler S, Wienken CJ, Duhr S, Braun D, Zhang S. Structure and function analyses of the purified GPCR human vomeronasal type 1 receptor 1. Sci Rep 2011; 1:172. [PMID: 22355687 PMCID: PMC3240957 DOI: 10.1038/srep00172] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 10/25/2011] [Indexed: 12/31/2022] Open
Abstract
The vomeronasal system is one of several fine-tuned scent-detecting signaling systems in mammals. However, despite significant efforts, how these receptors detect scent remains an enigma. One reason is the lack of sufficient purified receptors to perform detailed biochemical, biophysical and structural analyses. Here we report the ability to express and purify milligrams of purified, functional human vomeronasal receptor hVN1R1. Circular dichroism showed that purified hVN1R1 had an alpha-helical structure, similar to that of other GPCRs. Microscale thermophoresis showed that hVN1R1 bound its known ligand myrtenal with an EC(50) approximately 1 µM. This expression system can enable structural and functional analyses towards understanding how mammalian scent detection works.
Collapse
Affiliation(s)
- Karolina Corin
- Center for Biomedical Engineering, NE47-379, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge,
MA 02139-4307, USA
| | - Philipp Baaske
- NanoTemper Technologies GmbH, Amalienstrasse
54, 80799 München, Germany
| | - Sandra Geissler
- NanoTemper Technologies GmbH, Amalienstrasse
54, 80799 München, Germany
| | - Christoph J. Wienken
- Systems Biophysics, Functional Nanosystems, Department of Physics,
Ludwig-Maximilians University München, Amalienstrasse 54,
80799 München, Germany
| | - Stefan Duhr
- NanoTemper Technologies GmbH, Amalienstrasse
54, 80799 München, Germany
| | - Dieter Braun
- Systems Biophysics, Functional Nanosystems, Department of Physics,
Ludwig-Maximilians University München, Amalienstrasse 54,
80799 München, Germany
| | - Shuguang Zhang
- Center for Biomedical Engineering, NE47-379, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge,
MA 02139-4307, USA
| |
Collapse
|
22
|
Corin K, Baaske P, Ravel DB, Song J, Brown E, Wang X, Wienken CJ, Jerabek-Willemsen M, Duhr S, Luo Y, Braun D, Zhang S. Designer lipid-like peptides: a class of detergents for studying functional olfactory receptors using commercial cell-free systems. PLoS One 2011; 6:e25067. [PMID: 22132066 PMCID: PMC3223156 DOI: 10.1371/journal.pone.0025067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 08/26/2011] [Indexed: 01/18/2023] Open
Abstract
A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins.
Collapse
Affiliation(s)
- Karolina Corin
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | | | - Deepali B. Ravel
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Junyao Song
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Emily Brown
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Xiaoqiang Wang
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, China
| | - Christoph J. Wienken
- Systems Biophysics, Functional Nanosystems, Ludwig-Maximilians University Munich, München, Germany
| | - Moran Jerabek-Willemsen
- Systems Biophysics, Functional Nanosystems, Ludwig-Maximilians University Munich, München, Germany
| | - Stefan Duhr
- NanoTemper Technologies GmbH, München, Germany
| | - Yuan Luo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, United States of America
| | - Dieter Braun
- Systems Biophysics, Functional Nanosystems, Ludwig-Maximilians University Munich, München, Germany
| | - Shuguang Zhang
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
23
|
Corin K, Baaske P, Ravel DB, Song J, Brown E, Wang X, Geissler S, Wienken CJ, Jerabek-Willemsen M, Duhr S, Braun D, Zhang S. A robust and rapid method of producing soluble, stable, and functional G-protein coupled receptors. PLoS One 2011; 6:e23036. [PMID: 22039398 PMCID: PMC3201940 DOI: 10.1371/journal.pone.0023036] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 07/04/2011] [Indexed: 11/20/2022] Open
Abstract
Membrane proteins, particularly G-protein coupled receptors (GPCRs), are notoriously difficult to express. Using commercial E. coli cell-free systems with the detergent Brij-35, we could rapidly produce milligram quantities of 13 unique GPCRs. Immunoaffinity purification yielded receptors at >90% purity. Secondary structure analysis using circular dichroism indicated that the purified receptors were properly folded. Microscale thermophoresis, a novel label-free and surface-free detection technique that uses thermal gradients, showed that these receptors bound their ligands. The secondary structure and ligand-binding results from cell-free produced proteins were comparable to those expressed and purified from HEK293 cells. Our study demonstrates that cell-free protein production using commercially available kits and optimal detergents is a robust technology that can be used to produce sufficient GPCRs for biochemical, structural, and functional analyses. This robust and simple method may further stimulate others to study the structure and function of membrane proteins.
Collapse
Affiliation(s)
- Karolina Corin
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | | | - Deepali B. Ravel
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Junyao Song
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Emily Brown
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Xiaoqiang Wang
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | | | - Christoph J. Wienken
- Systems Biophysics, Functional Nanosystems, Ludwig-Maximilians University München, München, Germany
| | | | - Stefan Duhr
- NanoTemper Technologies GmbH, München, Germany
| | - Dieter Braun
- Systems Biophysics, Functional Nanosystems, Ludwig-Maximilians University München, München, Germany
| | - Shuguang Zhang
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
24
|
Wang X, Corin K, Rich C, Zhang S. Study of two G-protein coupled receptor variants of human trace amine-associated receptor 5. Sci Rep 2011; 1:102. [PMID: 22355620 PMCID: PMC3216587 DOI: 10.1038/srep00102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/18/2011] [Indexed: 01/01/2023] Open
Abstract
Here we report the study of two bioengineered variants of human trace amine-associated receptor 5 (hTAAR5) that were expressed in stable tetracycline-inducible HEK293S cell lines. A systematic detergent screen showed that fos-choline-14 was the optimal detergent to solubilize and subsequently purify the receptors. Milligram quantities of both hTAAR5 variants were purified to near homogeneity using immunoaffinity chromatography followed by gel filtration. Circular dichroism showed that the purified receptors had helical secondary structures, indicating that they were properly folded. The purified receptors are not only suitable for functional analyses, but also for subsequent crystallization trials. To our knowledge, this is the first mammalian TAAR that has been heterologously expressed and purified. Our study will likely stimulate in the development of therapeutic drug targets for TAAR-associated diseases, as well as fabrication of TAAR-based sensing devices.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Center for Biomedical Engineering NE47-379, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266555, China
| | - Karolina Corin
- Center for Biomedical Engineering NE47-379, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
| | - Cyrus Rich
- Center for Biomedical Engineering NE47-379, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
| | - Shuguang Zhang
- Center for Biomedical Engineering NE47-379, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
| |
Collapse
|
25
|
Wang X, Zhang S. Production of a bioengineered G-protein coupled receptor of human formyl peptide receptor 3. PLoS One 2011; 6:e23076. [PMID: 21853070 PMCID: PMC3154916 DOI: 10.1371/journal.pone.0023076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 07/05/2011] [Indexed: 01/07/2023] Open
Abstract
G-protein coupled receptors (GPCRs) participate in a wide range of vital regulations of our physiological actions. They are also of pharmaceutical importance and have become many therapeutic targets for a number of disorders and diseases. Purified GPCR-based approaches including structural study and novel biophysical and biochemical function analyses are increasingly being used in GPCR-directed drug discovery. Before these approaches become routine, however, several hurdles need to be overcome; they include overexpression, solubilization, and purification of large quantities of functional and stable receptors on a regular basis. Here we report milligram production of a human formyl peptide receptor 3 (FPR3). FPR3 comprises a functionally distinct GPCR subfamily that is involved in leukocyte chemotaxis and activation. The bioengineered FPR3 was overexpressed in stable tetracycline-inducible mammalian cell lines (HEK293S). After a systematic detergent screening, fos-choline-14 (FC-14) was selected for subsequent solubilization and purification processes. A two-step purification method, immunoaffinity using anti-rho-tag monoclonal antibody 1D4 and gel filtration, was used to purify the receptors to near homogeneity. Immunofluorescence analysis showed that expressed FPR3 was predominantly displayed on cellular membrane. Secondary structural analysis using circular dichroism showed that the purified FPR3 receptor was correctly folded with >50% α-helix, which is similar to other known GPCR secondary structures. Our method can readily produce milligram quantities of human FPR3, which would facilitate in developing human FPR as therapeutic drug targets.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, China
| | - Shuguang Zhang
- Laboratory for Molecular Fabrication, Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
26
|
Wang X, Corin K, Baaske P, Wienken CJ, Jerabek-Willemsen M, Duhr S, Braun D, Zhang S. Peptide surfactants for cell-free production of functional G protein-coupled receptors. Proc Natl Acad Sci U S A 2011; 108:9049-54. [PMID: 21562213 PMCID: PMC3107261 DOI: 10.1073/pnas.1018185108] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two major bottlenecks in elucidating the structure and function of membrane proteins are the difficulty of producing large quantities of functional receptors, and stabilizing them for a sufficient period of time. Selecting the right surfactant is thus crucial. Here we report using peptide surfactants in commercial Escherichia coli cell-free systems to rapidly produce milligram quantities of soluble G protein-coupled receptors (GPCRs). These include the human formyl peptide receptor, human trace amine-associated receptor, and two olfactory receptors. The GPCRs expressed in the presence of the peptide surfactants were soluble and had α-helical secondary structures, suggesting that they were properly folded. Microscale thermophoresis measurements showed that one olfactory receptor expressed using peptide surfactants bound its known ligand heptanal (molecular weight 114.18). These short and simple peptide surfactants may be able to facilitate the rapid production of GPCRs, or even other membrane proteins, for structure and function studies.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Center for Biomedical Engineering NE47-379, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266555, People’s Republic of China
| | - Karolina Corin
- Center for Biomedical Engineering NE47-379, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307
| | - Philipp Baaske
- NanoTemper Technologies GmbH, Amalienstrasse 54, 80799 Munich, Germany; and
| | - Christoph J. Wienken
- Systems Biophysics, Functional Nanosystems, Department of Physics, Ludwig-Maximilians University Munich, Amalienstrasse 54, 80799 Munich, Germany
| | - Moran Jerabek-Willemsen
- Systems Biophysics, Functional Nanosystems, Department of Physics, Ludwig-Maximilians University Munich, Amalienstrasse 54, 80799 Munich, Germany
| | - Stefan Duhr
- NanoTemper Technologies GmbH, Amalienstrasse 54, 80799 Munich, Germany; and
| | - Dieter Braun
- Systems Biophysics, Functional Nanosystems, Department of Physics, Ludwig-Maximilians University Munich, Amalienstrasse 54, 80799 Munich, Germany
| | - Shuguang Zhang
- Center for Biomedical Engineering NE47-379, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307
| |
Collapse
|
27
|
Wade F, Espagne A, Persuy MA, Vidic J, Monnerie R, Merola F, Pajot-Augy E, Sanz G. Relationship between homo-oligomerization of a mammalian olfactory receptor and its activation state demonstrated by bioluminescence resonance energy transfer. J Biol Chem 2011; 286:15252-9. [PMID: 21454689 DOI: 10.1074/jbc.m110.184580] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G-protein-coupled receptor homo-oligomerization has been increasingly reported. However, little is known regarding the relationship between activation of the receptor and its association/conformational states. The mammalian olfactory receptors (ORs) belong to the G protein-coupled receptor superfamily. In this study, the homo-oligomerization status of the human OR1740 receptor and its involvement in receptor activation upon odorant ligand binding were addressed by co-immunoprecipitation and bioluminescence resonance energy transfer approaches using crude membranes or membranes from different cellular compartments. For the first time, our data clearly show that mammalian ORs constitutively self-associate into homodimers at the plasma membrane level. This study also demonstrates that ligand binding mediates a conformational change and promotes an inactive state of the OR dimers at high ligand concentrations. These findings support and validate our previously proposed model of OR activation/inactivation based on the tripartite odorant-binding protein-odorant-OR partnership.
Collapse
Affiliation(s)
- Fallou Wade
- UR1197 Neurobiologie de l'Olfaction et Modélisation en Imagerie, Institut National de la Recherche Agronomique, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Schucht R, Lydford S, Andzinski L, Zauers J, Cooper J, Hauser H, Wirth D, May T. Rapid establishment of G-protein-coupled receptor-expressing cell lines by site-specific integration. ACTA ACUST UNITED AC 2011; 16:323-31. [PMID: 21335600 DOI: 10.1177/1087057110396371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The establishment of mammalian cell lines reliably expressing G-protein-coupled receptors (GPCRs) can be a tedious and often time-consuming process. A strategy has been developed to allow the rapid production of such cell lines. The first step of this approach was the generation of a specialized master cell line, characterized by optimized stable expression of a membrane-bound reporter protein. In the second step, this reporter gene was exchanged for that of the GPCR of interest by a DNA recombinase "cut-and-paste" engineering step. It has been demonstrated that the resulting GPCR cell lines inherit the advantages of the master cell line, expressing the GPCR in a homogeneous and stable manner. The case studies presented demonstrate the functionality of the established GPCR cell lines, and most important, because of the highly efficient integration event, these recombinant GPCR-expressing cell lines were generated within a timeframe of 2 to 4 weeks. The advantages of this cut-and-paste approach versus other strategies such as Flp-In or Jump-In are compared.
Collapse
Affiliation(s)
- Roland Schucht
- Department of Gene Regulation and Differentiation, HZI-Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Leck KJ, Zhang S, Hauser CAE. Study of bioengineered zebra fish olfactory receptor 131-2: receptor purification and secondary structure analysis. PLoS One 2010; 5:e15027. [PMID: 21124770 PMCID: PMC2993934 DOI: 10.1371/journal.pone.0015027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 10/05/2010] [Indexed: 11/23/2022] Open
Abstract
How fishes are able to detect trace molecules in large bodies of water is not understood. It is plausible that they use olfactory receptors to detect water-soluble compounds. How the zebra fish Danio Rerio, an organism with only 98 functional olfactory receptors, is able to selectively detect and recognize numerous compounds in water remains a puzzling phenomenon. We are interested in studying the biochemical and molecular mechanisms of olfaction in fish. Here, we report on the study of a bioengineered zebra fish olfactory receptor OR131-2, affinity-purified from a HEK293S tetracycline-inducible system. This receptor was expressed and translocated to the cell plasma membrane as revealed by confocal microscopy. Circular dichroism spectroscopy showed that the purified zebra fish receptor folded into an α-helical structure, as observed for other G-protein coupled receptors (GPCRs). Our study shows that it is possible to produce viable quantities of the zebra fish olfactory receptor. This will not only enable detailed structural and functional analyses, but also aid in the design of biosensor devices in order to detect water-soluble metabolites or its intermediates, which are associated with human health.
Collapse
Affiliation(s)
- Kwong-Joo Leck
- Membrane Protein Nanobiotechnology Laboratory, Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | - Shuguang Zhang
- Membrane Protein Nanobiotechnology Laboratory, Institute of Bioengineering and Nanotechnology, Singapore, Singapore
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Charlotte A. E. Hauser
- Membrane Protein Nanobiotechnology Laboratory, Institute of Bioengineering and Nanotechnology, Singapore, Singapore
- * E-mail:
| |
Collapse
|
30
|
Tsitoura P, Andronopoulou E, Tsikou D, Agalou A, Papakonstantinou MP, Kotzia GA, Labropoulou V, Swevers L, Georgoussi Z, Iatrou K. Expression and membrane topology of Anopheles gambiae odorant receptors in lepidopteran insect cells. PLoS One 2010; 5:e15428. [PMID: 21082026 PMCID: PMC2972716 DOI: 10.1371/journal.pone.0015428] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 09/21/2010] [Indexed: 12/21/2022] Open
Abstract
A lepidopteran insect cell-based expression system has been employed to express three Anopheles gambiae odorant receptors (ORs), OR1 and OR2, which respond to components of human sweat, and OR7, the ortholog of Drosophila's OR83b, the heteromerization partner of all functional ORs in that system. With the aid of epitope tagging and specific antibodies, efficient expression of all ORs was demonstrated and intrinsic properties of the proteins were revealed. Moreover, analysis of the orientation of OR1 and OR2 on the cellular plasma membrane through the use of a novel ‘topology screen’ assay and FACS analysis demonstrates that, as was recently reported for the ORs in Drosophila melanogaster, mosquito ORs also have a topology different than their mammalian counterparts with their N-terminal ends located in the cytoplasm and their C-terminal ends facing outside the cell. These results set the stage for the production of mosquito ORs in quantities that should permit their detailed biochemical and structural characterization and the exploration of their functional properties.
Collapse
Affiliation(s)
- Panagiota Tsitoura
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Evi Andronopoulou
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Daniela Tsikou
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Adamantia Agalou
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Maria P. Papakonstantinou
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Georgia A. Kotzia
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Vassiliki Labropoulou
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Kostas Iatrou
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology, National Centre for Scientific Research “Demokritos”, Athens, Greece
- * E-mail:
| |
Collapse
|
31
|
Recent advances in the production of proteins in insect and mammalian cells for structural biology. J Struct Biol 2010; 172:55-65. [PMID: 20153433 DOI: 10.1016/j.jsb.2010.02.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/04/2010] [Accepted: 02/07/2010] [Indexed: 11/22/2022]
Abstract
The production of proteins in sufficient quantity and of appropriate quality is an essential pre-requisite for structural studies. Escherichia coli remains the dominant expression system in structural biology with nearly 90% of the structures in the Protein Data Bank (PDB) derived from proteins produced in this bacterial host. However, many mammalian and eukaryotic viral proteins require post-translation modification for proper folding and/or are part of large multimeric complexes. Therefore expression in higher eukaryotic cell lines from both invertebrate and vertebrate is required to produce these proteins. Although these systems are generally more time-consuming and expensive to use than bacteria, there have been improvements in technology that have streamlined the processes involved. For example, the use of multi-host vectors, i.e., containing promoters for not only E. coli but also mammalian and baculovirus expression in insect cells, enables target genes to be evaluated in both bacterial and higher eukaryotic hosts from a single vector. Culturing cells in micro-plate format allows screening of large numbers of vectors in parallel and is amenable to automation. The development of large-scale transient expression in mammalian cells offers a way of rapidly producing proteins with relatively high throughput. Strategies for selenomethionine-labelling (important for obtaining phase information in crystallography) and controlling glycosylation (important for reducing the chemical heterogeneity of glycoproteins) have also been reported for higher eukaryotic cell expression systems.
Collapse
|
32
|
Vernier G, Wang J, Jennings LD, Sun J, Fischer A, Song L, Collier RJ. Solubilization and characterization of the anthrax toxin pore in detergent micelles. Protein Sci 2009; 18:1882-95. [PMID: 19609933 DOI: 10.1002/pro.199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proteolytically activated Protective Antigen (PA) moiety of anthrax toxin self-associates to form a heptameric ring-shaped oligomer (the prepore). Acidic pH within the endosome converts the prepore to a pore that serves as a passageway for the toxin's enzymatic moieties to cross the endosomal membrane. Prepore is stable in solution under mildly basic conditions, and lowering the pH promotes a conformational transition to an insoluble pore-like state. N-tetradecylphosphocholine (FOS14) was the only detergent among 110 tested that prevented aggregation without dissociating the multimer into its constituent subunits. FOS14 maintained the heptamers as monodisperse, insertion-competent 440-kDa particles, which formed channels in planar phospholipid bilayers with the same unitary conductance and ability to translocate a model substrate protein as channels formed in the absence of detergent. Electron paramagnetic resonance analysis detected pore-like conformational changes within PA on solubilization with FOS14, and electron micrograph images of FOS14-solubilized pore showed an extended, mushroom-shaped structure. Circular dichroïsm measurements revealed an increase in alpha helix and a decrease in beta structure in pore formation. Spectral changes caused by a deletion mutation support the hypothesis that the 2beta2-2beta3 loop transforms into the transmembrane segment of the beta-barrel stem of the pore. Changes caused by selected point mutations indicate that the transition to alpha structure is dependent on residues of the luminal 2beta11-2beta12 loop that are known to affect pore formation. Stabilizing the PA pore in solution with FOS14 may facilitate further structural analysis and a more detailed understanding of the folding pathway by which the pore is formed.
Collapse
Affiliation(s)
- Gregory Vernier
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Cai L, Li Y, Liu F, Zhang W, Huo B, Zheng W, Ding R, Guo J, Zhao Q, Dou K. The influence of ADAR1’s regulation on lymphocyte cell function during rejection. Mol Biol Rep 2009; 37:2703-9. [DOI: 10.1007/s11033-009-9804-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 09/02/2009] [Indexed: 12/14/2022]
|
34
|
Large-scale production and study of a synthetic G protein-coupled receptor: human olfactory receptor 17-4. Proc Natl Acad Sci U S A 2009; 106:11925-30. [PMID: 19581598 DOI: 10.1073/pnas.0811089106] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although understanding of the olfactory system has progressed at the level of downstream receptor signaling and the wiring of olfactory neurons, the system remains poorly understood at the molecular level of the receptors and their interaction with and recognition of odorant ligands. The structure and functional mechanisms of these receptors still remain a tantalizing enigma, because numerous previous attempts at the large-scale production of functional olfactory receptors (ORs) have not been successful to date. To investigate the elusive biochemistry and molecular mechanisms of olfaction, we have developed a mammalian expression system for the large-scale production and purification of a functional OR protein in milligram quantities. Here, we report the study of human OR17-4 (hOR17-4) purified from a HEK293S tetracycline-inducible system. Scale-up of production yield was achieved through suspension culture in a bioreactor, which enabled the preparation of >10 mg of monomeric hOR17-4 receptor after immunoaffinity and size exclusion chromatography, with expression yields reaching 3 mg/L of culture medium. Several key post-translational modifications were identified using MS, and CD spectroscopy showed the receptor to be approximately 50% alpha-helix, similar to other recently determined G protein-coupled receptor structures. Detergent-solubilized hOR17-4 specifically bound its known activating odorants lilial and floralozone in vitro, as measured by surface plasmon resonance. The hOR17-4 also recognized specific odorants in heterologous cells as determined by calcium ion mobilization. Our system is feasible for the production of large quantities of OR necessary for structural and functional analyses and research into OR biosensor devices.
Collapse
|
35
|
Ren H, Yu D, Ge B, Cook B, Xu Z, Zhang S. High-level production, solubilization and purification of synthetic human GPCR chemokine receptors CCR5, CCR3, CXCR4 and CX3CR1. PLoS One 2009; 4:e4509. [PMID: 19223978 PMCID: PMC2637981 DOI: 10.1371/journal.pone.0004509] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Accepted: 11/21/2008] [Indexed: 11/19/2022] Open
Abstract
Chemokine receptors belong to a class of integral membrane G-protein coupled receptors (GPCRs) and are responsible for transmitting signals from the extracellular environment. However, the structural changes in the receptor, connecting ligand binding to G-protein activation, remain elusive for most GPCRs due to the difficulty to produce them for structural and functional studies. We here report high-level production in E.coli of 4 human GPCRs, namely chemokine receptors (hCRs) CCR5, CCR3, CXCR4 and CX3CR1 that are directly involved in HIV-1 infection, asthma and cancer metastasis. The synthetic genes of CCR5, CCR3, CXCR4 and CX3CR1 were synthesized using a two-step assembly/amplification PCR method and inserted into two different kinds of expression systems. After systematic screening of growth conditions and host strains, TB medium was selected for expression of pEXP-hCRs. The low copy number pBAD-DEST49 plasmid, with a moderately strong promoter tightly regulated by L-arabinose, proved helpful for reducing toxicity of expressed membrane proteins. The synthetic Trx-hCR fusion genes in the pBAD-DEST49 vector were expressed at high levels in the Top10 strain. After a systematic screen of 96 detergents, the zwitterionic detergents of the Fos-choline series (FC9-FC16) emerged as the most effective for isolation of the hCRs. The FC14 was selected both for solubilization from bacterial lysates and for stabilization of the Trx-hCRs during purification. Thus, the FC-14 solubilized Trx-hCRs could be purified using size exclusion chromatography as monomers and dimers with the correct apparent MW and their alpha-helical content determined by circular dichroism. The identity of two of the expressed hCRs (CCR3 and CCR5) was confirmed using immunoblots using specific monoclonal antibodies. After optimization of expression systems and detergent-mediated purification procedures, we achieved large-scale, high-level production of 4 human GPCR chemokine receptor in a two-step purification, yielding milligram quantities of CCR5, CCR3, CXCR4 and CX3CR1 for biochemical, biophysical and structural analysis.
Collapse
MESH Headings
- CX3C Chemokine Receptor 1
- Cloning, Molecular/methods
- Escherichia coli/genetics
- Humans
- Nucleic Acid Amplification Techniques
- Polymerase Chain Reaction
- Receptors, CCR3/biosynthesis
- Receptors, CCR3/genetics
- Receptors, CCR3/isolation & purification
- Receptors, CCR5/biosynthesis
- Receptors, CCR5/genetics
- Receptors, CCR5/isolation & purification
- Receptors, CXCR4/biosynthesis
- Receptors, CXCR4/genetics
- Receptors, CXCR4/isolation & purification
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/genetics
- Receptors, Chemokine/isolation & purification
- Receptors, G-Protein-Coupled
Collapse
Affiliation(s)
- Hui Ren
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Daoyong Yu
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Bioengineering and Biotechnology, China University of Petroleum, Qingdao, Shandong, People's Republic of China
| | - Baosheng Ge
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Bioengineering and Biotechnology, China University of Petroleum, Qingdao, Shandong, People's Republic of China
| | - Brian Cook
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Zhinan Xu
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Shuguang Zhang
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|