1
|
Ilani P, Nyarko PB, Camara A, Amenga-Etego LN, Aniweh Y. PfRH5 vaccine; from the bench to the vial. NPJ Vaccines 2025; 10:82. [PMID: 40274841 PMCID: PMC12022022 DOI: 10.1038/s41541-025-01137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
The search for potent malaria vaccine candidate has seen several twists and turns. Here, we provide a perspective on the current state of PfRH5-based malaria vaccine development, the progress, existing challenges, and future research directions. We discuss the clinical trials in endemic regions, immune correlates of protection, prospects of integrating PfRH5 into multi-antigen vaccine strategies and considerations on the onward development/deployment of PfRH5 vaccine from the laboratory to endemic communities.
Collapse
Affiliation(s)
- Philip Ilani
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Prince B Nyarko
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Laboratory of Pathogens and Host Immunity (LPHI), CNRS, University of Montpellier, Montpellier, France
- ISGlobal, Hospital Clinic - Universitat de Barcelona, Barcelona, Spain
| | - Abdouramane Camara
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Lucas N Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
2
|
Willyard C. The next frontier for malaria vaccination. Nature 2023; 618:S20-S22. [PMID: 37380678 DOI: 10.1038/d41586-023-02048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
|
3
|
Cova MM, Lamarque MH, Lebrun M. How Apicomplexa Parasites Secrete and Build Their Invasion Machinery. Annu Rev Microbiol 2022; 76:619-640. [PMID: 35671531 DOI: 10.1146/annurev-micro-041320-021425] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apicomplexa are obligatory intracellular parasites that sense and actively invade host cells. Invasion is a conserved process that relies on the timely and spatially controlled exocytosis of unique specialized secretory organelles termed micronemes and rhoptries. Microneme exocytosis starts first and likely controls the intricate mechanism of rhoptry secretion. To assemble the invasion machinery, micronemal proteins-associated with the surface of the parasite-interact and form complexes with rhoptry proteins, which in turn are targeted into the host cell. This review covers the molecular advances regarding microneme and rhoptry exocytosis and focuses on how the proteins discharged from these two compartments work in synergy to drive a successful invasion event. Particular emphasis is given to the structure and molecular components of the rhoptry secretion apparatus, and to the current conceptual framework of rhoptry exocytosis that may constitute an unconventional eukaryotic secretory machinery closely related to the one described in ciliates. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marta Mendonça Cova
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Mauld H Lamarque
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| |
Collapse
|
4
|
Goerdeler F, Seeberger PH, Moscovitz O. Unveiling the Sugary Secrets of Plasmodium Parasites. Front Microbiol 2021; 12:712538. [PMID: 34335547 PMCID: PMC8322443 DOI: 10.3389/fmicb.2021.712538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022] Open
Abstract
Plasmodium parasites cause malaria disease, one of the leading global health burdens for humanity, infecting hundreds of millions of people each year. Different glycans on the parasite and the host cell surface play significant roles in both malaria pathogenesis and host defense mechanisms. So far, only small, truncated N- and O-glycans have been identified in Plasmodium species. In contrast, complex glycosylphosphatidylinositol (GPI) glycolipids are highly abundant on the parasite’s cell membrane and are essential for its survival. Moreover, the parasites express lectins that bind and exploit the host cell surface glycans for different aspects of the parasite life cycle, such as adherence, invasion, and evasion of the host immune system. In parallel, the host cell glycocalyx and lectin expression serve as the first line of defense against Plasmodium parasites and directly dictate susceptibility to Plasmodium infection. This review provides an overview of the glycobiology involved in Plasmodium-host interactions and its contribution to malaria pathogenesis. Recent findings are presented and evaluated in the context of potential therapeutic exploitation.
Collapse
Affiliation(s)
- Felix Goerdeler
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Oren Moscovitz
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
5
|
Acquisition and decay of IgM and IgG responses to merozoite antigens after Plasmodium falciparum malaria in Ghanaian children. PLoS One 2020; 15:e0243943. [PMID: 33332459 PMCID: PMC7746192 DOI: 10.1371/journal.pone.0243943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
Developing a vaccine against Plasmodium falciparum malaria has been challenging, primarily due to high levels of antigen polymorphism and a complex parasite lifecycle. Immunization with the P. falciparum merozoite antigens PfMSRP5, PfSERA9, PfRAMA, PfCyRPA and PfRH5 has been shown to give rise to growth inhibitory and synergistic antisera. Therefore, these five merozoite proteins are considered to be promising candidates for a second-generation multivalent malaria vaccine. Nevertheless, little is known about IgG and IgM responses to these antigens in populations that are naturally exposed to P. falciparum. In this study, serum samples from clinically immune adults and malaria exposed children from Ghana were studied to compare levels of IgG and IgM specific for PfMSRP5, PfSERA9, PfRAMA, PfCyRPA and PfRH5. All five antigens were found to be specifically recognized by both IgM and IgG in serum from clinically immune adults and from children with malaria. Longitudinal analysis of the latter group showed an early, transient IgM response that was followed by IgG, which peaked 14 days after the initial diagnosis. IgG levels and parasitemia did not correlate, whereas parasitemia was weakly positively correlated with IgM levels. These findings show that IgG and IgM specific for merozoite antigens PfMSRP5, PfSERA9, PfRAMA, PfCyRPA and PfRH5 are high in children during P. falciparum malaria, but that the IgM induction and decline occurs earlier in infection than that of IgG.
Collapse
|
6
|
Ghoshal S, Chowdhury P, Ray S, Mitra M, Kanjilal SD, Sen S, Dasgupta AK, Sengupta S. Population genetic and biophysical evidences reveal that purifying selection shapes the genetic landscape of Plasmodium falciparum RH ligands in Chhattisgarh and West Bengal, India. Malar J 2020; 19:367. [PMID: 33054833 PMCID: PMC7557104 DOI: 10.1186/s12936-020-03433-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022] Open
Abstract
Background Reticulocyte binding protein-like homologs (RHs) are currently being evaluated as anti-erythrocytic stage vaccine targets against Plasmodium falciparum malaria. Present study explores the possible evolutionary drivers shaping the genetic organization of Pfrhs in Indian parasite population. It simultaneously evaluates a putative gain-of-function variant of PfRH5, a keystone member of PfRH family. Methods Receptor binding regions of Pfrh1, Pfrh2a/b, Pfrh4 and whole Pfrh5 were amplified using blood samples of P. falciparum malaria patients from Chhattisgarh and West Bengal and sequenced. Assembled sequences were analysed using MEGA7 and DnaSPv6. Binding affinities of recombinant PfRH5 proteins with basigin (BSG) were compared using in silico (CHARMM and AUTODOCK) and in vitro (Circular dichroism, fluorescence spectroscopy and isothermal titration calorimetry) methods. Results Pfrh1 (0.5), Pfrh2a/b (0.875), Pfrh4 (0.667) and Pfrh5 (0.778) sequence changes corresponded to low frequency (< 0.05) variants which resulted in an overall negative Tajima’s D. Since mismatch distribution of none of the Pfrh loci corroborated with the model of demographic expansion, a possible role of natural selection formulating Pfrh sequence diversity was investigated. Among the 5 members, Pfrh5 displayed very high dN/dS (5.7) ratio. Nevertheless, the model of selective sweep due to presence of any advantageous substitutions could not be invoked as polymorphic nonsynonymous sites (17/18) for Pfrh5 exceeded significantly over the divergent (62/86) ones (p = 0.0436). The majority of extant PfRH5 sequences (52/83) differed from the reference Pf3D7 allele by a single amino acid mismatch (C203Y). This non-conservative alteration was predicted to lower the total interaction energy of that PfRH5variant with BSG, compared to PfRH53D7. Biophysical evidences validated the proposition that PfRH5variant formed a more stable complex with BSG. Thermodynamic association constant for interaction of BSG with PfRH5variant was also found to be higher (Kavariant = 3.63E6 ± 2.02E6 M−1 and Ka3D7 = 1.31E6 ± 1.21E6 M−1). Conclusions Together, the study indicates that the genetic architecture of Pfrhs is principally shaped by purifying selection. The most abundant and ubiquitous PfRH5 variant harbouring 203Y, exhibits a greater affinity for BSG compared to PfRH53D7 possessing 203C allele. The study underscores the importance of selecting the functional allele that best represents circulating strains in natural parasite populations as vaccine targets.
Collapse
Affiliation(s)
- Sharmistha Ghoshal
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, West Bengal, India
| | - Pramita Chowdhury
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, West Bengal, India
| | - Sanhita Ray
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, West Bengal, India
| | - Mitashree Mitra
- School of Studies in Anthropology. Pt, Ravishankar Shukla University, Raipur, 492010, Chhattisgarh, India
| | - Sumana Datta Kanjilal
- Department of Pediatric Medicine, Institute of Post Graduate Medical Education & Research, Kolkata, West Bengal, India
| | - Srikanta Sen
- Mitra Tower, Lake Town, Block-A, Kolkata, 700 089, India
| | - Anjan Kr Dasgupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, West Bengal, India
| | - Sanghamitra Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, West Bengal, India.
| |
Collapse
|
7
|
Hotspots in Plasmodium and RBC Receptor-Ligand Interactions: Key Pieces for Inhibiting Malarial Parasite Invasion. Int J Mol Sci 2020; 21:ijms21134729. [PMID: 32630804 PMCID: PMC7370042 DOI: 10.3390/ijms21134729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 11/17/2022] Open
Abstract
Protein-protein interactions (IPP) play an essential role in practically all biological processes, including those related to microorganism invasion of their host cells. It has been found that a broad repertoire of receptor-ligand interactions takes place in the binding interphase with host cells in malaria, these being vital interactions for successful parasite invasion. Several trials have been conducted for elucidating the molecular interface of interactions between some Plasmodium falciparum and Plasmodium vivax antigens with receptors on erythrocytes and/or reticulocytes. Structural information concerning these complexes is available; however, deeper analysis is required for correlating structural, functional (binding, invasion, and inhibition), and polymorphism data for elucidating new interaction hotspots to which malaria control methods can be directed. This review describes and discusses recent structural and functional details regarding three relevant interactions during erythrocyte invasion: Duffy-binding protein 1 (DBP1)–Duffy antigen receptor for chemokines (DARC); reticulocyte-binding protein homolog 5 (PfRh5)-basigin, and erythrocyte binding antigen 175 (EBA175)-glycophorin A (GPA).
Collapse
|
8
|
Gunalan K, Gao X, Yap SSL, Lai SK, Ravasio A, Ganesan S, Li HY, Preiser PR. A processing product of the Plasmodium falciparum reticulocyte binding protein RH1 shows a close association with AMA1 during junction formation. Cell Microbiol 2020; 22:e13232. [PMID: 32452132 DOI: 10.1111/cmi.13232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum responsible for the most virulent form of malaria invades human erythrocytes through multiple ligand-receptor interactions. The P. falciparum reticulocyte binding protein homologues (PfRHs) are expressed at the apical end of merozoites and form interactions with distinct erythrocyte surface receptors that are important for invasion. Here using a range of monoclonal antibodies (mAbs) against different regions of PfRH1 we have investigated the role of PfRH processing during merozoite invasion. We show that PfRH1 gets differentially processed during merozoite maturation and invasion and provide evidence that the different PfRH1 processing products have distinct functions during invasion. Using in-situ Proximity Ligation and FRET assays that allow probing of interactions at the nanometre level we show that a subset of PfRH1 products form close association with micronemal proteins Apical Membrane Antigen 1 (AMA1) in the moving junction suggesting a critical role in facilitating junction formation and active invasion. Our data provides evidence that time dependent processing of PfRH proteins is a mechanism by which the parasite is able to regulate distinct functional activities of these large processes. The identification of a specific close association with AMA1 in the junction now may also provide new avenues to target these interactions to prevent merozoite invasion.
Collapse
Affiliation(s)
- Karthigayan Gunalan
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Xiaohong Gao
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sally Shu Lin Yap
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Soak Kuan Lai
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Andrea Ravasio
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Institute of Biological and Medical Engineering of the Pontifical Catholic University of Chile, Chile
| | - Sundar Ganesan
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hoi Yeung Li
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Peter R Preiser
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
9
|
Ragotte RJ, Higgins MK, Draper SJ. The RH5-CyRPA-Ripr Complex as a Malaria Vaccine Target. Trends Parasitol 2020; 36:545-559. [PMID: 32359873 PMCID: PMC7246332 DOI: 10.1016/j.pt.2020.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 11/04/2022]
Abstract
Despite ongoing efforts, a highly effective vaccine against Plasmodium falciparum remains elusive. Vaccines targeting the pre-erythrocytic stages of the P. falciparum life cycle are the most advanced to date, affording moderate levels of efficacy in field trials. However, the discovery that the members of the merozoite PfRH5-PfCyRPA-PfRipr (RCR) complex are capable of inducing strain-transcendent neutralizing antibodies has renewed enthusiasm for the possibility of preventing disease by targeting the parasite during the blood stage of infection. With Phase I/II clinical trials now underway using first-generation vaccines against PfRH5, and more on the horizon for PfCyRPA and PfRipr, this review explores the rationale and future potential of the RCR complex as a P. falciparum vaccine target.
Collapse
Affiliation(s)
- Robert J Ragotte
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
10
|
Leitner WW, Haraway M, Pierson T, Bergmann-Leitner ES. Role of Opsonophagocytosis in Immune Protection against Malaria. Vaccines (Basel) 2020; 8:E264. [PMID: 32486320 PMCID: PMC7350021 DOI: 10.3390/vaccines8020264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
The quest for immune correlates of protection continues to slow vaccine development. To date, only vaccine-induced antibodies have been confirmed as direct immune correlates of protection against a plethora of pathogens. Vaccine immunologists, however, have learned through extensive characterizations of humoral responses that the quantitative assessment of antibody responses alone often fails to correlate with protective immunity or vaccine efficacy. Despite these limitations, the simple measurement of post-vaccination antibody titers remains the most widely used approaches for vaccine evaluation. Developing and performing functional assays to assess the biological activity of pathogen-specific responses continues to gain momentum; integrating serological assessments with functional data will ultimately result in the identification of mechanisms that contribute to protective immunity and will guide vaccine development. One of these functional readouts is phagocytosis of antigenic material tagged by immune molecules such as antibodies and/or complement components. This review summarizes our current understanding of how phagocytosis contributes to immune defense against pathogens, the pathways involved, and defense mechanisms that pathogens have evolved to deal with the threat of phagocytic removal and destruction of pathogens.
Collapse
Affiliation(s)
- Wolfgang W. Leitner
- Basic Immunology Branch, Division of Allergy, Immunology, and Transplantation/National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA;
| | - Megan Haraway
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.H.); (T.P.)
| | - Tony Pierson
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.H.); (T.P.)
| | - Elke S. Bergmann-Leitner
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.H.); (T.P.)
| |
Collapse
|
11
|
Nagaoka H, Kanoi BN, Ntege EH, Aoki M, Fukushima A, Tsuboi T, Takashima E. Antibodies against a short region of PfRipr inhibit Plasmodium falciparum merozoite invasion and PfRipr interaction with Rh5 and SEMA7A. Sci Rep 2020; 10:6573. [PMID: 32313230 PMCID: PMC7171142 DOI: 10.1038/s41598-020-63611-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 03/30/2020] [Indexed: 12/29/2022] Open
Abstract
Plasmodium falciparum merozoite invasion into erythrocytes is an essential step of the blood-stage cycle, survival of parasites, and malaria pathogenesis. P. falciparum merozoite Rh5 interacting protein (PfRipr) forms a complex with Rh5 and CyRPA in sequential molecular events leading to erythrocyte invasion. Recently we described PfRipr as a conserved protein that induces strain-transcending growth inhibitory antibodies in in vitro assays. However, being a large and complex protein of 1086 amino acids (aa) with 87 cysteine residues, PfRipr is difficult to express in conventional expression systems towards vaccine development. In this study we sought to identify the most potent region of PfRipr that could be developed to overcome difficulties related to protein expression, as well as to elucidate the invasion inhibitory mechanism of anti-PfRipr antibodies. Using the wheat germ cell-free system, Ecto- PfRipr and truncates of approximately 200 aa were expressed as soluble proteins. We demonstrate that antibodies against PfRipr truncate 5 (PfRipr_5: C720-D934), a region within the PfRipr C-terminal EGF-like domains, potently inhibit merozoite invasion. Furthermore, the antibodies strongly block PfRipr/Rh5 interaction, as well as that between PfRipr and its erythrocyte-surface receptor, SEMA7A. Taken together, PfRipr_5 is a potential candidate for further development as a blood-stage malaria vaccine.
Collapse
Affiliation(s)
- Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Japan
| | - Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Japan
| | - Edward H Ntege
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Japan.,Department of Plastic and Reconstructive Surgery, University of the Ryukyus, School of Medicine and Hospital, Okinawa, Japan
| | - Masamitsu Aoki
- Sumitomo Dainippon Pharma Co., Ltd, 3-1-98, Kasugadenaka, Konohanaku, Osaka, 554-0022, Japan
| | - Akihisa Fukushima
- Sumitomo Dainippon Pharma Co., Ltd, 3-1-98, Kasugadenaka, Konohanaku, Osaka, 554-0022, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Japan.
| |
Collapse
|
12
|
Li M, Ao Y, Guo J, Nie Z, Liu Q, Yu L, Luo X, Zhan X, Zhao Y, Wang S, An X, He L, Zhao J. Surface Antigen 1 Is a Crucial Secreted Protein That Mediates Babesia microti Invasion Into Host Cells. Front Microbiol 2020; 10:3046. [PMID: 32010102 PMCID: PMC6974462 DOI: 10.3389/fmicb.2019.03046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022] Open
Abstract
Babesia microti, a tick-borne intraerythrocytic zoonotic protozoan, causes most of human babesiosis in the world, and patients usually experience intermittent fever, fatigue, and chills, followed by a combination of additional symptoms and even death in severe cases. Unfortunately, there is no curable drug or effective vaccine available, and the mechanism of related virulence factors in invasion to host cells during the merozoite stage is unclear. Here, we evaluated a secreted protein annotated as B. microti surface antigen 1 (BmSA1) and identified from in vitro culture supernatant by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). BmSA1 fragment was expressed in Escherichia coli to prepare polyclonal antiserum. Western blot analysis revealed the existence of BmSA1 in the lysate of the parasites and the hemolysate of infected red blood cells (iRBCs). Laser confocal microscopy confirmed BmSA1 as a secreted protein with diffuse distribution around the parasites in red blood cells (RBCs). The adhesion capacity of BmSA1 against the host RBCs was tested by RBC binding assays using the recombinant BmSA1 protein (rBmSA1), which was shown to specifically bind to host RBCs. Further in vitro antiserum-neutralization test demonstrated that the growth of parasites could be significantly inhibited by the anti-BmSA1 antiserum. These results indicate that BmSA1 is a crucial factor for B. microti invasion into host RBCs with an important role in host-parasite interactions during the merozoite stage and has the potential use as a vaccine candidate due to its high secretion amount.
Collapse
Affiliation(s)
- Muxiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yangsiqi Ao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaying Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zheng Nie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Long Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoying Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueyan Zhan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yangnan Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaomeng An
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Sherling ES, Perrin AJ, Knuepfer E, Russell MRG, Collinson LM, Miller LH, Blackman MJ. The Plasmodium falciparum rhoptry bulb protein RAMA plays an essential role in rhoptry neck morphogenesis and host red blood cell invasion. PLoS Pathog 2019; 15:e1008049. [PMID: 31491036 PMCID: PMC6750612 DOI: 10.1371/journal.ppat.1008049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/18/2019] [Accepted: 08/27/2019] [Indexed: 01/08/2023] Open
Abstract
The malaria parasite Plasmodium falciparum invades, replicates within and destroys red blood cells in an asexual blood stage life cycle that is responsible for clinical disease and crucial for parasite propagation. Invasive malaria merozoites possess a characteristic apical complex of secretory organelles that are discharged in a tightly controlled and highly regulated order during merozoite egress and host cell invasion. The most prominent of these organelles, the rhoptries, are twinned, club-shaped structures with a body or bulb region that tapers to a narrow neck as it meets the apical prominence of the merozoite. Different protein populations localise to the rhoptry bulb and neck, but the function of many of these proteins and how they are spatially segregated within the rhoptries is unknown. Using conditional disruption of the gene encoding the only known glycolipid-anchored malarial rhoptry bulb protein, rhoptry-associated membrane antigen (RAMA), we demonstrate that RAMA is indispensable for blood stage parasite survival. Contrary to previous suggestions, RAMA is not required for trafficking of all rhoptry bulb proteins. Instead, RAMA-null parasites display selective mislocalisation of a subset of rhoptry bulb and neck proteins (RONs) and produce dysmorphic rhoptries that lack a distinct neck region. The mutant parasites undergo normal intracellular development and egress but display a fatal defect in invasion and do not induce echinocytosis in target red blood cells. Our results indicate that distinct pathways regulate biogenesis of the two main rhoptry sub-compartments in the malaria parasite. Despite improved control measures over recent decades, malaria is still a considerable health burden across much of the globe. The disease is caused by a single-celled parasite that invades and replicates within host cells. During invasion, the parasite discharges a set of flask-shaped secretory organelles called rhoptries, the contents of which are crucial for invasion as well as for modifications to the host cell that are important for parasite survival. Rhoptry discharge occurs through fusion of the relatively elongated rhoptry neck to the apical surface of the parasite. Different proteins reside within the bulbous rhoptry body and the neck regions, but how these proteins are selectively sent to their correct sub-compartments within the rhoptries and how the rhoptries are formed, is poorly understood. Here we show that a malaria parasite rhoptry bulb protein called rhoptry-associated membrane antigen (RAMA) plays an essential role in rhoptry neck formation and correct trafficking of certain rhoptry neck and bulb proteins. Parasites deficient in RAMA produce malformed rhoptries and–probably as a result—cannot invade host red blood cells. Our work sheds new light on how rhoptries are formed and reveals insights into the mechanism by which the correct sorting of proteins to distinct regions of the rhoptry is regulated.
Collapse
Affiliation(s)
- Emma S. Sherling
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Abigail J. Perrin
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Matthew R. G. Russell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Lucy M. Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Diédhiou CK, Moussa RA, Bei AK, Daniels R, Papa Mze N, Ndiaye D, Faye N, Wirth D, Amambua-Ngwa A, Mboup S, Ahouidi AD. Temporal changes in Plasmodium falciparum reticulocyte binding protein homolog 2b (PfRh2b) in Senegal and The Gambia. Malar J 2019; 18:239. [PMID: 31311552 PMCID: PMC6636118 DOI: 10.1186/s12936-019-2868-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Plasmodium falciparum reticulocyte binding protein homolog 2b (PfRh2b) is an important P. falciparum merozoite ligand that mediates invasion of erythrocytes by interacting with a chymotrypsin-sensitive "receptor Z". A large deletion polymorphism is found in the c-terminal ectodomain of this protein in many countries around the world, resulting in a truncated, but expressed protein. The varying frequencies by region suggest that there could be region specific immune selection at this locus. Therefore, this study was designed to determine temporal changes in the PfRh2b deletion polymorphism in infected individuals from Thiès (Senegal) and Western Gambia (The Gambia). It was also sought to determine the selective pressures acting at this locus and whether prevalence of the deletion in isolates genotyped by a 24-SNP molecular barcode is linked to background genotype or whether there might be independent selection acting at this locus. METHODS Infected blood samples were sourced from archives of previous studies conducted between 2007 and 2013 at SLAP clinic in Thiès and from 1984 to 2013 in Western Gambia by MRC Unit at LSHTM, The Gambia. A total of 1380 samples were screened for the dimorphic alleles of the PfRh2b using semi-nested Polymerase Chain Reaction PCR. Samples from Thiès were previously barcoded. RESULTS In Thiès, a consistent trend of decreasing prevalence of the PfRh2b deletion over time was observed: from 66.54% in 2007 and to 38.1% in 2013. In contrast, in Western Gambia, the frequency of the deletion fluctuated over time; it increased between 1984 and 2005 from (58.04%) to (69.33%) and decreased to 47.47% in 2007. Between 2007 and 2012, the prevalence of this deletion increased significantly from 47.47 to 83.02% and finally declined significantly to 57.94% in 2013. Association between the presence of this deletion and age was found in Thiès, however, not in Western Gambia. For the majority of isolates, the PfRh2b alleles could be tracked with specific 24-SNP barcoded genotype, indicating a lack of independent selection at this locus. CONCLUSION PfRh2b deletion was found in the two countries with varying prevalence during the study period. However, these temporal and spatial variations could be an obstacle to the implementation of this protein as a potential vaccine candidate.
Collapse
Affiliation(s)
- Cyrille K Diédhiou
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal.,Laboratory of Bacteriology and Virology, Hospital Aristide Le Dantec, 7325, Dakar, Senegal
| | - Rahama A Moussa
- Laboratory of Bacteriology and Virology, Hospital Aristide Le Dantec, 7325, Dakar, Senegal
| | - Amy K Bei
- Laboratory of Bacteriology and Virology, Hospital Aristide Le Dantec, 7325, Dakar, Senegal.,Department of Immunology & Infectious Diseases, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA.,Laboratory of Parasitology Mycology, Aristide Le Dantec Hospital, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, 5005, Dakar, Senegal
| | - Rachel Daniels
- Department of Immunology & Infectious Diseases, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Nasserdine Papa Mze
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal.,Laboratory of Bacteriology and Virology, Hospital Aristide Le Dantec, 7325, Dakar, Senegal
| | - Daouda Ndiaye
- Laboratory of Parasitology Mycology, Aristide Le Dantec Hospital, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, 5005, Dakar, Senegal
| | - Ngor Faye
- Faculty of Sciences and Technologies, University Cheikh Anta Diop, Dakar, PO Box 5005, Dakar, Senegal
| | - Dyann Wirth
- Department of Immunology & Infectious Diseases, Harvard TH Chan School of Public Health, 665 Huntington Avenue, Boston, MA, USA
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit, The Gambia at LSHTM, Fajara, Banjul, The Gambia
| | - Souleymane Mboup
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Ambroise D Ahouidi
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal. .,Laboratory of Bacteriology and Virology, Hospital Aristide Le Dantec, 7325, Dakar, Senegal.
| |
Collapse
|
15
|
Knuepfer E, Wright KE, Kumar Prajapati S, Rawlinson TA, Mohring F, Koch M, Lyth OR, Howell SA, Villasis E, Snijders AP, Moon RW, Draper SJ, Rosanas-Urgell A, Higgins MK, Baum J, Holder AA. Divergent roles for the RH5 complex components, CyRPA and RIPR in human-infective malaria parasites. PLoS Pathog 2019; 15:e1007809. [PMID: 31185066 PMCID: PMC6588255 DOI: 10.1371/journal.ppat.1007809] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 06/21/2019] [Accepted: 05/01/2019] [Indexed: 12/26/2022] Open
Abstract
Malaria is caused by Plasmodium parasites, which invade and replicate in erythrocytes. For Plasmodium falciparum, the major cause of severe malaria in humans, a heterotrimeric complex comprised of the secreted parasite proteins, PfCyRPA, PfRIPR and PfRH5 is essential for erythrocyte invasion, mediated by the interaction between PfRH5 and erythrocyte receptor basigin (BSG). However, whilst CyRPA and RIPR are present in most Plasmodium species, RH5 is found only in the small Laverania subgenus. Existence of a complex analogous to PfRH5-PfCyRPA-PfRIPR targeting BSG, and involvement of CyRPA and RIPR in invasion, however, has not been addressed in non-Laverania parasites. Here, we establish that unlike P. falciparum, P. knowlesi and P. vivax do not universally require BSG as a host cell invasion receptor. Although we show that both PkCyRPA and PkRIPR are essential for successful invasion of erythrocytes by P. knowlesi parasites in vitro, neither protein forms a complex with each other or with an RH5-like molecule. Instead, PkRIPR is part of a different trimeric protein complex whereas PkCyRPA appears to function without other parasite binding partners. It therefore appears that in the absence of RH5, outside of the Laverania subgenus, RIPR and CyRPA have different, independent functions crucial for parasite survival. Malaria is one of the most devastating infectious diseases, causing significant human suffering and death. It is caused by parasites of the genus Plasmodium proliferating in the bloodstream. Understanding the mechanism of erythrocyte invasion is key for developing novel intervention strategies. P. falciparum, the cause of the most severe form of malaria, requires the interaction of a trimeric protein complex RH5-CyRPA-RIPR with the host receptor BSG for successful invasion. We show here that the BSG receptor is not essential for invasion by two other major causes of human malaria, P. vivax and P. knowlesi. Furthermore, we analyzed the role of CyRPA and RIPR in the absence of an RH5-like molecule in P. knowlesi and show that these molecules do not associate to form a protein complex unlike in the presence of RH5 in P. falciparum. PkRIPR is part of a different protein complex. Despite this difference CyRPA and RIPR still have essential functions during host cell invasion in other important human malaria-causing parasites.
Collapse
Affiliation(s)
- Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
- * E-mail: (EK); (KEW); (JB); (AAH)
| | - Katherine E. Wright
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail: (EK); (KEW); (JB); (AAH)
| | | | | | - Franziska Mohring
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Marion Koch
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Oliver R. Lyth
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Steven A. Howell
- Proteomics Science and Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Elizabeth Villasis
- Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ambrosius P. Snijders
- Proteomics Science and Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Robert W. Moon
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Matthew K. Higgins
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail: (EK); (KEW); (JB); (AAH)
| | - Anthony A. Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, United Kingdom
- * E-mail: (EK); (KEW); (JB); (AAH)
| |
Collapse
|
16
|
Illingworth JJ, Alanine DG, Brown R, Marshall JM, Bartlett HE, Silk SE, Labbé GM, Quinkert D, Cho JS, Wendler JP, Pattinson DJ, Barfod L, Douglas AD, Shea MW, Wright KE, de Cassan SC, Higgins MK, Draper SJ. Functional Comparison of Blood-Stage Plasmodium falciparum Malaria Vaccine Candidate Antigens. Front Immunol 2019; 10:1254. [PMID: 31214195 PMCID: PMC6558156 DOI: 10.3389/fimmu.2019.01254] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/17/2019] [Indexed: 12/22/2022] Open
Abstract
The malaria genome encodes over 5,000 proteins and many of these have also been proposed to be potential vaccine candidates, although few of these have been tested clinically. RH5 is one of the leading blood-stage Plasmodium falciparum malaria vaccine antigens and Phase I/II clinical trials of vaccines containing this antigen are currently underway. Its likely mechanism of action is to elicit antibodies that can neutralize merozoites by blocking their invasion of red blood cells (RBC). However, many other antigens could also elicit neutralizing antibodies against the merozoite, and most of these have never been compared directly to RH5. The objective of this study was to compare a range of blood-stage antigens to RH5, to identify any antigens that outperform or synergize with anti-RH5 antibodies. We selected 55 gene products, covering 15 candidate antigens that have been described in the literature and 40 genes selected on the basis of bioinformatics functional prediction. We were able to make 20 protein-in-adjuvant vaccines from the original selection. Of these, S-antigen and CyRPA robustly elicited antibodies with neutralizing properties. Anti-CyRPA IgG generally showed additive GIA with anti-RH5 IgG, although high levels of anti-CyRPA-specific rabbit polyclonal IgG were required to achieve 50% GIA. Our data suggest that further vaccine antigen screening efforts are required to identify a second merozoite target with similar antibody-susceptibility to RH5.
Collapse
Affiliation(s)
| | | | - Rebecca Brown
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Sarah E Silk
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Doris Quinkert
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jee Sun Cho
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jason P Wendler
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Lea Barfod
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Michael W Shea
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Katherine E Wright
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Frimpong A, Kusi KA, Ofori MF, Ndifon W. Novel Strategies for Malaria Vaccine Design. Front Immunol 2018; 9:2769. [PMID: 30555463 PMCID: PMC6281765 DOI: 10.3389/fimmu.2018.02769] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
The quest for a licensed effective vaccine against malaria remains a global priority. Even though classical vaccine design strategies have been successful for some viral and bacterial pathogens, little success has been achieved for Plasmodium falciparum, which causes the deadliest form of malaria due to its diversity and ability to evade host immune responses. Nevertheless, recent advances in vaccinology through high throughput discovery of immune correlates of protection, lymphocyte repertoire sequencing and structural design of immunogens, provide a comprehensive approach to identifying and designing a highly efficacious vaccine for malaria. In this review, we discuss novel vaccine approaches that can be employed in malaria vaccine design.
Collapse
Affiliation(s)
- Augustina Frimpong
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.,African Institute for Mathematical Sciences, Cape Coast, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Michael Fokuo Ofori
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Wilfred Ndifon
- African Institute for Mathematical Sciences, Cape Coast, Ghana.,African Institute for Mathematical Sciences, University of Stellenbosch, Cape Town, South Africa
| |
Collapse
|
18
|
Production, quality control, stability, and potency of cGMP-produced Plasmodium falciparum RH5.1 protein vaccine expressed in Drosophila S2 cells. NPJ Vaccines 2018; 3:32. [PMID: 30131879 PMCID: PMC6098134 DOI: 10.1038/s41541-018-0071-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 11/08/2022] Open
Abstract
Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is a leading asexual blood-stage vaccine candidate for malaria. In preparation for clinical trials, a full-length PfRH5 protein vaccine called “RH5.1” was produced as a soluble product under cGMP using the ExpreS2 platform (based on a Drosophila melanogaster S2 stable cell line system). Following development of a high-producing monoclonal S2 cell line, a master cell bank was produced prior to the cGMP campaign. Culture supernatants were processed using C-tag affinity chromatography followed by size exclusion chromatography and virus-reduction filtration. The overall process yielded >400 mg highly pure RH5.1 protein. QC testing showed the MCB and the RH5.1 product met all specified acceptance criteria including those for sterility, purity, and identity. The RH5.1 vaccine product was stored at −80 °C and is stable for over 18 months. Characterization of the protein following formulation in the adjuvant system AS01B showed that RH5.1 is stable in the timeframe needed for clinical vaccine administration, and that there was no discernible impact on the liposomal formulation of AS01B following addition of RH5.1. Subsequent immunization of mice confirmed the RH5.1/AS01B vaccine was immunogenic and could induce functional growth inhibitory antibodies against blood-stage P. falciparum in vitro. The RH5.1/AS01B was judged suitable for use in humans and has since progressed to phase I/IIa clinical trial. Our data support the future use of the Drosophila S2 cell and C-tag platform technologies to enable cGMP-compliant biomanufacture of other novel and “difficult-to-express” recombinant protein-based vaccines. A vaccine candidate for blood-stage malaria has overcome previous hurdles to enter clinical trials. The protein PfRH5 is an essential blood-stage infection facilitator of malarial parasite Plasmodium falciparum, and a promising target for vaccine strategies. Unfortunately, efforts to produce the protein in an immunogenic, clinically-viable way have been met with difficulty. Here, researchers led by Simon Draper, from the UK’s Jenner Institute, used a fruit fly expression system to produce over 400 mg of high-purity protein. Formulated with an immunity-boosting adjuvant, the vaccine elicited antibodies in mice that proved inhibitory to blood-stage P. falciparum during in vitro assays. The PfRH5 vaccine candidate and its adjuvant have been approved for a clinical trial in the UK, and the authors hope that the expression system used may be beneficial in the expression of other ‘difficult’ proteins.
Collapse
|
19
|
Kinetics of antibody responses to PfRH5-complex antigens in Ghanaian children with Plasmodium falciparum malaria. PLoS One 2018; 13:e0198371. [PMID: 29883485 PMCID: PMC5993283 DOI: 10.1371/journal.pone.0198371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/17/2018] [Indexed: 11/21/2022] Open
Abstract
Plasmodium falciparum PfRH5 protein binds Ripr, CyRPA and Pf113 to form a complex that is essential for merozoite invasion of erythrocytes. The inter-genomic conservation of the PfRH5 complex proteins makes them attractive blood stage vaccine candidates. However, little is known about how antibodies to PfRH5, CyRPA and Pf113 are acquired and maintained in naturally exposed populations, and the role of PfRH5 complex proteins in naturally acquired immunity. To provide such data, we studied 206 Ghanaian children between the ages of 1–12 years, who were symptomatic, asymptomatic or aparasitemic and healthy. Plasma levels of antigen-specific IgG and IgG subclasses were measured by ELISA at several time points during acute disease and convalescence. On the day of admission with acute P. falciparum malaria, the prevalence of antibodies to PfRH5-complex proteins was low compared to other merozoite antigens (EBA175, GLURP-R0 and GLURP-R2). At convalescence, the levels of RH5-complex-specific IgG were reduced, with the decay of PfRH5-specific IgG being slower than the decay of IgG specific for CyRPA and Pf113. No correlation between IgG levels and protection against P. falciparum malaria was observed for any of the PfRH5 complex proteins. From this we conclude that specific IgG was induced against proteins from the PfRH5-complex during acute P. falciparum malaria, but the prevalence was low and the IgG levels decayed rapidly after treatment. These data indicate that the levels of IgG specific for PfRH5-complex proteins in natural infections in Ghanaian children were markers of recent exposure only.
Collapse
|
20
|
Human Cyclophilin B forms part of a multi-protein complex during erythrocyte invasion by Plasmodium falciparum. Nat Commun 2017; 8:1548. [PMID: 29146974 PMCID: PMC5691159 DOI: 10.1038/s41467-017-01638-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022] Open
Abstract
Invasion of human erythrocytes by Plasmodium falciparum merozoites involves multiple interactions between host receptors and their merozoite ligands. Here we report human Cyclophilin B as a receptor for PfRhopH3 during merozoite invasion. Localization and binding studies show that Cyclophilin B is present on the erythrocytes and binds strongly to merozoites. We demonstrate that PfRhopH3 binds to the RBCs and their treatment with Cyclosporin A prevents merozoite invasion. We also show a multi-protein complex involving Cyclophilin B and Basigin, as well as PfRhopH3 and PfRh5 that aids the invasion. Furthermore, we report identification of a de novo peptide CDP3 that binds Cyclophilin B and blocks invasion by up to 80%. Collectively, our data provide evidence of compounded interactions between host receptors and merozoite surface proteins and paves the way for developing peptide and small-molecules that inhibit the protein−protein interactions, individually or in toto, leading to abrogation of the invasion process. Invasion of red blood cells by Plasmodium falciparum is a complex process and relies on several receptor-ligand interactions. Here, the authors show that human cyclophilin B binds Plasmodium surface protein PfRhopH3 and that interruption of this interaction reduces invasion by 80%.
Collapse
|
21
|
Payne RO, Silk SE, Elias SC, Miura K, Diouf A, Galaway F, de Graaf H, Brendish NJ, Poulton ID, Griffiths OJ, Edwards NJ, Jin J, Labbé GM, Alanine DG, Siani L, Di Marco S, Roberts R, Green N, Berrie E, Ishizuka AS, Nielsen CM, Bardelli M, Partey FD, Ofori MF, Barfod L, Wambua J, Murungi LM, Osier FH, Biswas S, McCarthy JS, Minassian AM, Ashfield R, Viebig NK, Nugent FL, Douglas AD, Vekemans J, Wright GJ, Faust SN, Hill AV, Long CA, Lawrie AM, Draper SJ. Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions. JCI Insight 2017; 2:96381. [PMID: 29093263 PMCID: PMC5752323 DOI: 10.1172/jci.insight.96381] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/05/2017] [Indexed: 11/17/2022] Open
Abstract
The development of a highly effective vaccine remains a key strategic goal to aid the control and eventual eradication of Plasmodium falciparum malaria. In recent years, the reticulocyte-binding protein homolog 5 (RH5) has emerged as the most promising blood-stage P. falciparum candidate antigen to date, capable of conferring protection against stringent challenge in Aotus monkeys. We report on the first clinical trial to our knowledge to assess the RH5 antigen - a dose-escalation phase Ia study in 24 healthy, malaria-naive adult volunteers. We utilized established viral vectors, the replication-deficient chimpanzee adenovirus serotype 63 (ChAd63), and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding RH5 from the 3D7 clone of P. falciparum. Vaccines were administered i.m. in a heterologous prime-boost regimen using an 8-week interval and were well tolerated. Vaccine-induced anti-RH5 serum antibodies exhibited cross-strain functional growth inhibition activity (GIA) in vitro, targeted linear and conformational epitopes within RH5, and inhibited key interactions within the RH5 invasion complex. This is the first time to our knowledge that substantial RH5-specific responses have been induced by immunization in humans, with levels greatly exceeding the serum antibody responses observed in African adults following years of natural malaria exposure. These data support the progression of RH5-based vaccines to human efficacy testing.
Collapse
Affiliation(s)
- Ruth O. Payne
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sean C. Elias
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | - Francis Galaway
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Hans de Graaf
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nathan J. Brendish
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ian D. Poulton
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Nick J. Edwards
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jing Jin
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Loredana Siani
- ReiThera SRL (formerly Okairos SRL), Viale Città d’Europa, Rome, Italy
| | - Stefania Di Marco
- ReiThera SRL (formerly Okairos SRL), Viale Città d’Europa, Rome, Italy
| | - Rachel Roberts
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Nicky Green
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, United Kingdom
| | - Eleanor Berrie
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, United Kingdom
| | | | | | - Martino Bardelli
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Frederica D. Partey
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Michael F. Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Lea Barfod
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Juliana Wambua
- KEMRI Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Linda M. Murungi
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- KEMRI Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Faith H. Osier
- KEMRI Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - James S. McCarthy
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Rebecca Ashfield
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Nicola K. Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Fay L. Nugent
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Saul N. Faust
- NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Adrian V.S. Hill
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, USA
| | - Alison M. Lawrie
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Aniweh Y, Gao X, Hao P, Meng W, Lai SK, Gunalan K, Chu TT, Sinha A, Lescar J, Chandramohanadas R, Li HY, Sze SK, Preiser PR. P. falciparum RH5-Basigin interaction induces changes in the cytoskeleton of the host RBC. Cell Microbiol 2017; 19. [PMID: 28409866 DOI: 10.1111/cmi.12747] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 11/26/2022]
Abstract
The successful invasion of Plasmodium is an essential step in their life cycle. The parasite reticulocyte-binding protein homologues (RHs) and erythrocyte-binding like proteins are two families involved in the invasion leading to merozoite-red blood cell (RBC) junction formation. Ca2+ signaling has been shown to play a critical role in the invasion. RHs have been linked to Ca2+ signaling, which triggers the erythrocyte-binding like proteins release ahead of junction formation, consistent with RHs performing an initial sensing function in identifying suitable RBCs. RH5, the only essential RHs, is a highly promising vaccine candidate. RH5-basigin interaction is essential for merozoite invasion and also important in determining host tropism. Here, we show that RH5 has a distinct function from the other RHs. We show that RH5-Basigin interaction on its own triggers a Ca2+ signal in the RBC resulting in changes in RBC cytoskeletal proteins phosphorylation and overall alterations in RBC cytoskeleton architecture. Antibodies targeting RH5 that block the signal prevent invasion before junction formation consistent with the Ca2+ signal in the RBC leading to rearrangement of the cytoskeleton required for invasion. This work provides the first time a functional context for the essential role of RH5 and will now open up new avenues to target merozoite invasion.
Collapse
Affiliation(s)
- Yaw Aniweh
- Division of Molecular Genetics and Cell biology, Nanyang Technological University, Singapore
| | - Xiaohong Gao
- Division of Molecular Genetics and Cell biology, Nanyang Technological University, Singapore
| | - Piliang Hao
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Wei Meng
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Soak Kuan Lai
- Division of Molecular Genetics and Cell biology, Nanyang Technological University, Singapore
| | - Karthigayan Gunalan
- Division of Molecular Genetics and Cell biology, Nanyang Technological University, Singapore
| | - Trang T Chu
- Pillar of Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore
| | - Ameya Sinha
- Division of Molecular Genetics and Cell biology, Nanyang Technological University, Singapore.,Pillar of Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore
| | - Julien Lescar
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Rajesh Chandramohanadas
- Pillar of Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore
| | - Hoi Yeung Li
- Division of Molecular Genetics and Cell biology, Nanyang Technological University, Singapore
| | - Siu Kwan Sze
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Peter R Preiser
- Division of Molecular Genetics and Cell biology, Nanyang Technological University, Singapore
| |
Collapse
|
23
|
Applying Unconventional Secretion in Ustilago maydis for the Export of Functional Nanobodies. Int J Mol Sci 2017; 18:ijms18050937. [PMID: 28468279 PMCID: PMC5454850 DOI: 10.3390/ijms18050937] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 12/25/2022] Open
Abstract
Exploiting secretory pathways for production of heterologous proteins is highly advantageous with respect to efficient downstream processing. In eukaryotic systems the vast majority of heterologous proteins for biotechnological application is exported via the canonical endoplasmic reticulum–Golgi pathway. In the endomembrane system target proteins are often glycosylated and may thus be modified with foreign glycan patterns. This can be destructive for their activity or cause immune reactions against therapeutic proteins. Hence, using unconventional secretion for protein expression is an attractive alternative. In the fungal model Ustilago maydis, chitinase Cts1 is secreted via an unconventional pathway connected to cell separation which can be used to co-export heterologous proteins. Here, we apply this mechanism for the production of nanobodies. First, we achieved expression and unconventional secretion of a functional nanobody directed against green fluorescent protein (Gfp). Second, we found that Cts1 binds to chitin and that this feature can be applied to generate a Gfp-trap. Thus, we demonstrated the dual use of Cts1 serving both as export vehicle and as purification tag. Finally, we established and optimized the production of a nanobody against botulinum toxin A and hence describe the first pharmaceutically relevant target exported by Cts1-mediated unconventional secretion.
Collapse
|
24
|
Patarroyo ME, Alba MP, Rojas-Luna R, Bermudez A, Aza-Conde J. Functionally relevant proteins in Plasmodium falciparum host cell invasion. Immunotherapy 2017; 9:131-155. [DOI: 10.2217/imt-2016-0091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A totally effective, antimalarial vaccine must involve sporozoite and merozoite proteins (or their fragments) to ensure complete parasite blocking during critical invasion stages. This Special Report examines proteins involved in critical biological functions for parasite survival and highlights the conserved amino acid sequences of the most important proteins involved in sporozoite invasion of hepatocytes and merozoite invasion of red blood cells. Conserved high activity binding peptides are located in such proteins’ functionally strategic sites, whose functions are related to receptor binding, nutrient and protein transport, enzyme activity and molecule–molecule interactions. They are thus excellent targets for vaccine development as they block proteins binding function involved in invasion and also their biological function.
Collapse
Affiliation(s)
- Manuel E Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
- Universidad Nacional de Colombia, Bogotá DC, Colombia
| | - Martha P Alba
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
- Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
| | - Rocío Rojas-Luna
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
| | - Adriana Bermudez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
- Universidad del Rosario, Bogotá DC, Colombia
| | - Jorge Aza-Conde
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26–20 Bogotá, Colombia
| |
Collapse
|
25
|
Accelerating the clinical development of protein-based vaccines for malaria by efficient purification using a four amino acid C-terminal 'C-tag'. Int J Parasitol 2017; 47:435-446. [PMID: 28153778 PMCID: PMC5482323 DOI: 10.1016/j.ijpara.2016.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 11/20/2022]
Abstract
Fusion of a four amino acid ‘C-tag’ allows purification of a PfRH5 malaria vaccine. Overall process yield of 40–45% and very high product purity (>99%) was achieved. His6-tagged and C-tagged PfRH5 are conformational and bind to basigin. C-tag will facilitate the clinical translation of difficult-to-produce antigens.
Development of bespoke biomanufacturing processes remains a critical bottleneck for translational studies, in particular when modest quantities of a novel product are required for proof-of-concept Phase I/II clinical trials. In these instances the ability to develop a biomanufacturing process quickly and relatively cheaply, without risk to product quality or safety, provides a great advantage by allowing new antigens or concepts in immunogen design to more rapidly enter human testing. These challenges with production and purification are particularly apparent when developing recombinant protein-based vaccines for difficult parasitic diseases, with Plasmodium falciparum malaria being a prime example. To that end, we have previously reported the expression of a novel protein vaccine for malaria using the ExpreS2Drosophila melanogaster Schneider 2 stable cell line system, however, a very low overall process yield (typically <5% recovery of hexa-histidine-tagged protein) meant the initial purification strategy was not suitable for scale-up and clinical biomanufacture of such a vaccine. Here we describe a newly available affinity purification method that was ideally suited to purification of the same protein which encodes the P. falciparum reticulocyte-binding protein homolog 5 – currently the leading antigen for assessment in next generation vaccines aiming to prevent red blood cell invasion by the blood-stage parasite. This purification system makes use of a C-terminal tag known as ‘C-tag’, composed of the four amino acids, glutamic acid – proline – glutamic acid – alanine (E-P-E-A), which is selectively purified on a CaptureSelect™ affinity resin coupled to a camelid single chain antibody, called NbSyn2. The C-terminal fusion of this short C-tag to P. falciparum reticulocyte-binding protein homolog 5 achieved >85% recovery and >70% purity in a single step purification directly from clarified, concentrated Schneider 2 cell supernatant under mild conditions. Biochemical and immunological analysis showed that the C-tagged and hexa-histidine-tagged P. falciparum reticulocyte-binding protein homolog 5 proteins are comparable. The C-tag technology has the potential to form the basis of a current good manufacturing practice-compliant platform, which could greatly improve the speed and ease with which novel protein-based products progress to clinical testing.
Collapse
|
26
|
Hjerrild KA, Jin J, Wright KE, Brown RE, Marshall JM, Labbé GM, Silk SE, Cherry CJ, Clemmensen SB, Jørgensen T, Illingworth JJ, Alanine DGW, Milne KH, Ashfield R, de Jongh WA, Douglas AD, Higgins MK, Draper SJ. Production of full-length soluble Plasmodium falciparum RH5 protein vaccine using a Drosophila melanogaster Schneider 2 stable cell line system. Sci Rep 2016; 6:30357. [PMID: 27457156 PMCID: PMC4960544 DOI: 10.1038/srep30357] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/04/2016] [Indexed: 01/27/2023] Open
Abstract
The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has recently emerged as a leading candidate antigen against the blood-stage human malaria parasite. However it has proved challenging to identify a heterologous expression platform that can produce a soluble protein-based vaccine in a manner compliant with current Good Manufacturing Practice (cGMP). Here we report the production of full-length PfRH5 protein using a cGMP-compliant platform called ExpreS(2), based on a Drosophila melanogaster Schneider 2 (S2) stable cell line system. Five sequence variants of PfRH5 were expressed that differed in terms of mutagenesis strategies to remove potential N-linked glycans. All variants bound the PfRH5 receptor basigin and were recognized by a panel of monoclonal antibodies. Analysis following immunization of rabbits identified quantitative and qualitative differences in terms of the functional IgG antibody response against the P. falciparum parasite. The antibodies induced by one protein variant were shown to be qualitatively similar to responses induced by other vaccine platforms. This work identifies Drosophila S2 cells as a clinically-relevant platform suited for the production of 'difficult-to-make' proteins from Plasmodium parasites, and identifies a PfRH5 sequence variant that can be used for clinical production of a non-glycosylated, soluble full-length protein vaccine immunogen.
Collapse
Affiliation(s)
- Kathryn A Hjerrild
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Jing Jin
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Katherine E Wright
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Rebecca E Brown
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Jennifer M Marshall
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Geneviève M Labbé
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Sarah E Silk
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Catherine J Cherry
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Stine B Clemmensen
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, Agern Allé 1, Hørsholm DK-2970, Denmark
| | - Thomas Jørgensen
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, Agern Allé 1, Hørsholm DK-2970, Denmark
| | - Joseph J Illingworth
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Daniel G W Alanine
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Kathryn H Milne
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Rebecca Ashfield
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Willem A de Jongh
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, Agern Allé 1, Hørsholm DK-2970, Denmark
| | - Alexander D Douglas
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| |
Collapse
|
27
|
Han JH, Lee SK, Wang B, Muh F, Nyunt MH, Na S, Ha KS, Hong SH, Park WS, Sattabongkot J, Tsuboi T, Han ET. Identification of a reticulocyte-specific binding domain of Plasmodium vivax reticulocyte-binding protein 1 that is homologous to the PfRh4 erythrocyte-binding domain. Sci Rep 2016; 6:26993. [PMID: 27244695 PMCID: PMC4886630 DOI: 10.1038/srep26993] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022] Open
Abstract
The Plasmodium vivax reticulocyte-binding protein (RBP) family was identified based on the annotation of adhesive ligands in the P. vivax genome. Reticulocyte-specific interactions with the PvRBPs (PvRBP1 and PvRBP2) were previously reported. Plasmodium falciparum reticulocyte-binding protein homologue 4 (PfRh4, a homologue of PvRBP1) was observed to possess erythrocyte-binding activity via complement receptor 1 on the erythrocyte surface. However, the reticulocyte-binding mechanisms of P. vivax are unclear because of the large molecular mass of PvRBP1 (>326 kDa) and the difficulty associated with in vitro cultivation. In the present study, 34 kDa of PvRBP1a (PlasmoDB ID: PVX_098585) and 32 kDa of PvRBP1b (PVX_098582) were selected from a 30 kDa fragment of PfRh4 for reticulocyte-specific binding activity analysis. Both PvRBP1a and PvRBP1b were found to be localized at the microneme in the mature schizont-stage parasites. Naturally acquired immune responses against PvRBP1a-34 and PvRBP1b-32 were observed lower than PvDBP-RII. The reticulocyte-specific binding activities of PvRBP1a-34 and PvRBP1b-32 were significantly higher than normocyte binding activity and were significantly reduced by chymotrypsin treatment. PvRBP1a and 1b, bind to reticulocytes and that this suggests that these ligands may have an important role in P. vivax merozoite invasion.
Collapse
Affiliation(s)
- Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Bo Wang
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.,Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Fauzi Muh
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Myat Htut Nyunt
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea.,Department of Medical Research, Yangon, Myanmar
| | - Sunghun Na
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
28
|
Ord RL, Rodriguez M, Lobo CA. Malaria invasion ligand RH5 and its prime candidacy in blood-stage malaria vaccine design. Hum Vaccin Immunother 2016; 11:1465-73. [PMID: 25844685 DOI: 10.1080/21645515.2015.1026496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
With drug resistance to available therapeutics continuing to develop against Plasmodium falciparum malaria, the development of an effective vaccine candidate remains a major research goal. Successful interruption of invasion of parasites into erythrocytes during the blood stage of infection will prevent the severe clinical symptoms and complications associated with malaria. Previously studied blood stage antigens have highlighted the hurdles that are inherent to this life-cycle stage, namely that highly immunogenic antigens are also globally diverse, resulting in protection only against the vaccine strain, or that naturally acquired immunity to blood stage antigens do not always correlate with actual protection. The blood stage antigen reticulocyte binding homolog RH5 is essential for parasite viability, has globally limited diversity, and is associated with protection from disease. Here we summarize available information on this invasion ligand and recent findings that highlight its candidacy for inclusion in a blood-stage malaria vaccine.
Collapse
Affiliation(s)
- Rosalynn L Ord
- a Blood-Borne Parasites; Lindsley Kimball Research Institute; New York Blood Center ; New York , NY , USA
| | | | | |
Collapse
|
29
|
Abstract
A safe and effective malaria vaccine is a crucial part of the roadmap to malaria elimination/eradication by the year 2050. Viral-vectored vaccines based on adenoviruses and modified vaccinia virus Ankara (MVA) expressing malaria immunogens are currently being used in heterologous prime-boost regimes in clinical trials for induction of strong antigen-specific T-cell responses and high-titer antibodies. Recombinant MVA is a safe and well-tolerated attenuated vector that has consistently shown significant boosting potential. Advances have been made in large-scale MVA manufacture as high-yield producer cell lines and high-throughput purification processes have recently been developed. This review describes the use of MVA as malaria vaccine vector in both preclinical and clinical studies in the past 5 years.
Collapse
|
30
|
Ewer KJ, Sierra-Davidson K, Salman AM, Illingworth JJ, Draper SJ, Biswas S, Hill AVS. Progress with viral vectored malaria vaccines: A multi-stage approach involving "unnatural immunity". Vaccine 2015; 33:7444-51. [PMID: 26476366 PMCID: PMC4687526 DOI: 10.1016/j.vaccine.2015.09.094] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/17/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022]
Abstract
Viral vectors used in heterologous prime-boost regimens are one of very few vaccination approaches that have yielded significant protection against controlled human malaria infections. Recently, protection induced by chimpanzee adenovirus priming and modified vaccinia Ankara boosting using the ME-TRAP insert has been correlated with the induction of potent CD8(+) T cell responses. This regimen has progressed to field studies where efficacy against infection has now been reported. The same vectors have been used pre-clinically to identify preferred protective antigens for use in vaccines against the pre-erythrocytic, blood-stage and mosquito stages of malaria and this work is reviewed here for the first time. Such antigen screening has led to the prioritization of the PfRH5 blood-stage antigen, which showed efficacy against heterologous strain challenge in non-human primates, and vectors encoding this antigen are in clinical trials. This, along with the high transmission-blocking activity of some sexual-stage antigens, illustrates well the capacity of such vectors to induce high titre protective antibodies in addition to potent T cell responses. All of the protective responses induced by these vectors exceed the levels of the same immune responses induced by natural exposure supporting the view that, for subunit vaccines to achieve even partial efficacy in humans, "unnatural immunity" comprising immune responses of very high magnitude will need to be induced.
Collapse
Affiliation(s)
- Katie J Ewer
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK.
| | - Kailan Sierra-Davidson
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Ahmed M Salman
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
31
|
Draper SJ, Angov E, Horii T, Miller LH, Srinivasan P, Theisen M, Biswas S. Recent advances in recombinant protein-based malaria vaccines. Vaccine 2015; 33:7433-43. [PMID: 26458807 PMCID: PMC4687528 DOI: 10.1016/j.vaccine.2015.09.093] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 09/05/2015] [Accepted: 09/28/2015] [Indexed: 01/03/2023]
Abstract
Protein-based vaccines remain the cornerstone approach for B cell and antibody induction against leading target malaria antigens. Advances in antigen selection, immunogen design and epitope-focusing are advancing the field. New heterologous expression platforms are enabling cGMP production of next-generation protein vaccines. Next-generation antigens, protein-based immunogens and virus-like particle (VLP) delivery platforms are in clinical development. Protein-based vaccines will form part of a highly effective multi-component/multi-stage/multi-antigen subunit formulation against malaria.
Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle–including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed.
Collapse
Affiliation(s)
- Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK.
| | - Evelina Angov
- Walter Reed Army Institute of Research, U. S. Military Malaria Research Program, Malaria Vaccine Branch, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 561-873, Japan
| | - Louis H Miller
- Malaria Cell Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Prakash Srinivasan
- Malaria Cell Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology and Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| |
Collapse
|
32
|
Expression, Purification, and Biological Characterization of Babesia microti Apical Membrane Antigen 1. Infect Immun 2015. [PMID: 26195550 DOI: 10.1128/iai.00168-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The intraerythrocytic apicomplexan Babesia microti, the primary causative agent of human babesiosis, is a major public health concern in the United States and elsewhere. Apicomplexans utilize a multiprotein complex that includes a type I membrane protein called apical membrane antigen 1 (AMA1) to invade host cells. We have isolated the full-length B. microti AMA1 (BmAMA1) gene and determined its nucleotide sequence, as well as the amino acid sequence of the AMA1 protein. This protein contains an N-terminal signal sequence, an extracellular region, a transmembrane region, and a short conserved cytoplasmic tail. It shows the same domain organization as the AMA1 orthologs from piroplasm, coccidian, and haemosporidian apicomplexans but differs from all other currently known piroplasmida, including other Babesia and Theileria species, in lacking two conserved cysteines in highly variable domain III of the extracellular region. Minimal polymorphism was detected in BmAMA1 gene sequences of parasite isolates from six babesiosis patients from Nantucket. Immunofluorescence microscopy studies showed that BmAMA1 is localized on the cell surface and cytoplasm near the apical end of the parasite. Native BmAMA1 from parasite lysate and refolded recombinant BmAMA1 (rBmAMA1) expressed in Escherichia coli reacted with a mouse anti-BmAMA1 antibody using Western blotting. In vitro binding studies showed that both native BmAMA1 and rBmAMA1 bind to human red blood cells (RBCs). This binding is trypsin and chymotrypsin treatment sensitive but neuraminidase independent. Incubation of B. microti parasites in human RBCs with a mouse anti-BmAMA1 antibody inhibited parasite growth by 80% in a 24-h assay. Based on its antigenically conserved nature and potential role in RBC invasion, BmAMA1 should be evaluated as a vaccine candidate.
Collapse
|
33
|
Spiegel H, Boes A, Kastilan R, Kapelski S, Edgue G, Beiss V, Chubodova I, Scheuermayer M, Pradel G, Schillberg S, Reimann A, Fischer R. The stage-specific in vitro efficacy of a malaria antigen cocktail provides valuable insights into the development of effective multi-stage vaccines. Biotechnol J 2015; 10:1651-9. [PMID: 25913888 DOI: 10.1002/biot.201500055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/18/2015] [Accepted: 04/21/2015] [Indexed: 11/06/2022]
Abstract
Multicomponent vaccines targeting different stages of Plasmodium falciparum represent a promising, holistic concept towards better malaria vaccines. Additionally, an effective vaccine candidate should demonstrate cross-strain specificity because many antigens are polymorphic, which can reduce vaccine efficacy. A cocktail of recombinant fusion proteins (VAMAX-Mix) featuring three diversity-covering variants of the blood-stage antigen PfAMA1, each combined with the conserved sexual-stage antigen Pfs25 and one of the pre-erythrocytic-stage antigens PfCSP_TSR or PfCelTOS, or the additional blood-stage antigen PfMSP1_19, was produced in Pichia pastoris and used to immunize rabbits. The immune sera and purified IgG were used to perform various assays determining antigen specific titers and in vitro efficacy against different parasite stages and strains. In functional in vitro assays we observed robust inhibition of blood-stage (up to 90%), and sexual-stage parasites (up to 100%) and biased inhibition of pre-erythrocytic parasites (0-40%). Cross-strain blood-stage efficacy was observed in erythrocyte invasion assays using four different P. falciparum strains. The quantification of antigen-specific IgGs allowed the determination of specific IC50 values. The significant difference in antigen-specific IC50 requirements, the direct correlation between antigen-specific IgG and the relative quantitative representation of antigens within the cocktail, provide valuable implementations for future multi-stage, multi-component vaccine designs.
Collapse
Affiliation(s)
- Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
| | - Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Robin Kastilan
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stephanie Kapelski
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Güven Edgue
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Veronique Beiss
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Ivana Chubodova
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | | | - Gabriele Pradel
- RWTH Aachen University, Institute of Molecular Biotechnology, Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.,RWTH Aachen University, Institute of Molecular Biotechnology, Aachen, Germany
| |
Collapse
|
34
|
Shen Y, Wang J, Liu X, Liang J, Huang Y, Liu Z, Zhao YA, Li Y. Blockade of Plasmodium falciparum erythrocyte invasion: New assessment of anti- Plasmodium falciparum reticulocyte-binding protein homolog 5 antibodies. Exp Ther Med 2015; 9:1357-1362. [PMID: 25780435 PMCID: PMC4353742 DOI: 10.3892/etm.2015.2237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/18/2014] [Indexed: 11/06/2022] Open
Abstract
There is great interest in any new discoveries in malaria vaccine research. Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) shows promise in this area and may be used together with other merozoite antigens as a potential vaccine. In the present study, a bioinformatics prediction approach was applied to a PfRH5 B-cell epitope, and two B-cell epitope distributions were selected. Antibodies against the two PfRH5 distributions were obtained and the growth activity inhibition was measured. No inhibition of the P. falciparum CY strain was found, but the growth of the P. falciparum 3D7 strain was inhibited by all of the antibodies, in contrast to the results of other studies. It was additionally found that certain quantities of protein led to the inhibition of the parasitic invasion. Equally noteworthy was that the survival time of the group immunized with a portion of PfRH5 was significantly longer than that of the group immunized with the full-length protein, following infection by P. berghei ANKA. The present study produced conflicting results in in vitro and in vivo experiments, although the accuracy of the evaluation may be lessened due to the use of a murine malaria model. The findings of the present study may indicate that PfRH5 may not be suitable in malaria vaccine research.
Collapse
Affiliation(s)
- Yan Shen
- Department of Medical Microbiology and Parasitology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jun Wang
- Department of Medical Microbiology and Parasitology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xuewu Liu
- Department of Medical Microbiology and Parasitology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jiao Liang
- Department of Medical Microbiology and Parasitology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yuxiao Huang
- Department of Medical Microbiology and Parasitology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhongxiang Liu
- Department of Medical Microbiology and Parasitology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Y A Zhao
- Department of Medical Microbiology and Parasitology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yinghui Li
- Department of Medical Microbiology and Parasitology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
35
|
Wright KE, Hjerrild KA, Bartlett J, Douglas AD, Jin J, Brown RE, Illingworth JJ, Ashfield R, Clemmensen SB, de Jongh WA, Draper SJ, Higgins MK. Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies. Nature 2014; 515:427-30. [PMID: 25132548 PMCID: PMC4240730 DOI: 10.1038/nature13715] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/28/2014] [Indexed: 12/12/2022]
Abstract
Invasion of host erythrocytes is essential to the life cycle of Plasmodium parasites and development of the pathology of malaria. The stages of erythrocyte invasion, including initial contact, apical reorientation, junction formation, and active invagination, are directed by coordinated release of specialized apical organelles and their parasite protein contents. Among these proteins, and central to invasion by all species, are two parasite protein families, the reticulocyte-binding protein homologue (RH) and erythrocyte-binding like proteins, which mediate host-parasite interactions. RH5 from Plasmodium falciparum (PfRH5) is the only member of either family demonstrated to be necessary for erythrocyte invasion in all tested strains, through its interaction with the erythrocyte surface protein basigin (also known as CD147 and EMMPRIN). Antibodies targeting PfRH5 or basigin efficiently block parasite invasion in vitro, making PfRH5 an excellent vaccine candidate. Here we present crystal structures of PfRH5 in complex with basigin and two distinct inhibitory antibodies. PfRH5 adopts a novel fold in which two three-helical bundles come together in a kite-like architecture, presenting binding sites for basigin and inhibitory antibodies at one tip. This provides the first structural insight into erythrocyte binding by the Plasmodium RH protein family and identifies novel inhibitory epitopes to guide design of a new generation of vaccines against the blood-stage parasite.
Collapse
Affiliation(s)
- Katherine E Wright
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Kathryn A Hjerrild
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Jonathan Bartlett
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Alexander D Douglas
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Jing Jin
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Rebecca E Brown
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Joseph J Illingworth
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Rebecca Ashfield
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Stine B Clemmensen
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, Agern Allé 1, DK-2970 Horsholm, Denmark
| | - Willem A de Jongh
- ExpreS2ion Biotechnologies, SCION-DTU Science Park, Agern Allé 1, DK-2970 Horsholm, Denmark
| | - Simon J Draper
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
36
|
Triggers of key calcium signals during erythrocyte invasion by Plasmodium falciparum. Nat Commun 2014; 4:2862. [PMID: 24280897 PMCID: PMC3868333 DOI: 10.1038/ncomms3862] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 11/04/2013] [Indexed: 01/28/2023] Open
Abstract
Invasion of erythrocytes by Plasmodium falciparum merozoites is a complex multi-step process mediated by specific interactions between host receptors and parasite ligands. Reticulocyte-binding protein homologues (RHs) and erythrocyte-binding-like (EBL) proteins are discharged from specialized organelles and used in early steps of invasion. Here we show that monoclonal antibodies against PfRH1 (an RH) block merozoite invasion by specifically inhibiting calcium signalling in the parasite, whereas invasion-inhibiting monoclonal antibodies targeting EBA175 (an EBL protein) have no effect on signalling. We further show that inhibition of this calcium signalling prevents EBA175 discharge and thereby formation of the junction between parasite and host cell. Our results indicate that PfRH1 has an initial sensing as well as signal transduction role that leads to the subsequent release of EBA175. They also provide new insights on how RH-host cell interactions lead to essential downstream signalling events in the parasite, suggesting new targets for malaria intervention.
Collapse
|
37
|
Ord RL, Caldeira JC, Rodriguez M, Noe A, Chackerian B, Peabody DS, Gutierrez G, Lobo CA. A malaria vaccine candidate based on an epitope of the Plasmodium falciparum RH5 protein. Malar J 2014; 13:326. [PMID: 25135070 PMCID: PMC4152569 DOI: 10.1186/1475-2875-13-326] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/08/2014] [Indexed: 12/12/2022] Open
Abstract
Background The Plasmodium falciparum protein RH5 is an adhesin molecule essential for parasite invasion of erythrocytes. Recent studies show that anti-PfRH5 sera have potent invasion-inhibiting activities, supporting the idea that the PfRH5 antigen could form the basis of a vaccine. Therefore, epitopes recognized by neutralizing anti-PfRH5 antibodies could themselves be effective vaccine immunogens if presented in a sufficiently immunogenic fashion. However, the exact regions within PfRH5 that are targets of this invasion-inhibitory activity have yet to be identified. Methods A battery of anti-RH5 monoclonal antibodies (mAbs) were produced and screened for their potency by inhibition of invasion assays in vitro. Using an anti-RH5 mAb that completely inhibited invasion as the selecting mAb, affinity-selection using random sequence peptide libraries displayed on virus-like particles of bacteriophage MS2 (MS2 VLPs) was performed. VLPs were sequenced to identify the specific peptide epitopes they encoded and used to raise specific antisera that was in turn tested for inhibition of invasion. Results Three anti-RH5 monoclonals (0.1 mg/mL) were able to inhibit invasion in vitro by >95%. Affinity-selection with one of these mAbs yielded a VLP which yielded a peptide whose sequence is identical to a portion of PfRH5 itself. The VLP displaying the peptide binds strongly to the antibody, and in immunized animals elicits an anti-PfRH5 antibody response. The resulting antisera against the specific VLP inhibit parasite invasion of erythrocytes more than 90% in vitro. Conclusions Here, data is presented from an anti-PfRH5 mAb that completely inhibits erythrocyte invasion by parasites in vitro, one of the few anti-malarial monoclonal antibodies reported to date that completely inhibits invasion with such potency, adding to other studies that highlight the potential of PfRH5 as a vaccine antigen. The specific neutralization sensitive epitope within RH5 has been identified, and antibodies against this epitope also elicit high anti-invasion activity, suggesting this epitope could form the basis of an effective vaccine against malaria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cheryl A Lobo
- Department of Blood-Borne Parasites, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
38
|
Hester J, Chan ER, Menard D, Mercereau-Puijalon O, Barnwell J, Zimmerman PA, Serre D. De novo assembly of a field isolate genome reveals novel Plasmodium vivax erythrocyte invasion genes. PLoS Negl Trop Dis 2013; 7:e2569. [PMID: 24340114 PMCID: PMC3854868 DOI: 10.1371/journal.pntd.0002569] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/21/2013] [Indexed: 01/26/2023] Open
Abstract
Recent sequencing of Plasmodium vivax field isolates and monkey-adapted strains enabled characterization of SNPs throughout the genome. These analyses relied on mapping short reads onto the P. vivax reference genome that was generated using DNA from the monkey-adapted strain Salvador I. Any genomic locus deleted in this strain would be lacking in the reference genome sequence and missed in previous analyses. Here, we report de novo assembly of a P. vivax field isolate genome. Out of 2,857 assembled contigs, we identify 362 contigs, each containing more than 5 kb of contiguous DNA sequences absent from the reference genome sequence. These novel P. vivax DNA sequences account for 3.8 million nucleotides and contain 792 predicted genes. Most of these contigs contain members of multigene families and likely originate from telomeric regions. Interestingly, we identify two contigs containing predicted protein coding genes similar to known Plasmodium red blood cell invasion proteins. One gene encodes the reticulocyte-binding protein gene orthologous to P. cynomolgi RBP2e and P. knowlesi NBPXb. The second gene harbors all the hallmarks of a Plasmodium erythrocyte-binding protein, including conserved Duffy-binding like and C-terminus cysteine-rich domains. Phylogenetic analysis shows that this novel gene clusters separately from all known Plasmodium Duffy-binding protein genes. Additional analyses showing that this gene is present in most P. vivax genomes and transcribed in blood-stage parasites suggest that P. vivax red blood cell invasion mechanisms may be more complex than currently understood. The strategy employed here complements previous genomic analyses and takes full advantage of next-generation sequencing data to provide a comprehensive characterization of genetic variations in this important malaria parasite. Further analyses of the novel protein coding genes discovered through de novo assembly have the potential to identify genes that influence key aspects of P. vivax biology, including alternative mechanisms of human erythrocyte invasion. Plasmodium vivax is responsible for most malaria cases outside Africa, but is poorly understood, as the parasite is difficult to study in vitro. Genome sequencing studies offer a novel and exciting opportunity to better understand this parasite but, so far, have directly mapped reads onto the reference genome sequence generated from a single P. vivax strain. Here, we use sequence data generated from a field isolate to reconstruct long DNA sequences without relying on the reference genome. Our analyses reveal many P. vivax DNA sequences that are absent from the reference genome and contain 792 predicted genes. One of these novel genes encodes a predicted protein similar to known Plasmodium proteins involved in red blood cell invasion. This new gene is present in all P. vivax strains sequenced so far, except for the strain used to generate the reference genome, and is transcribed in blood-stage parasites. Overall, our analyses show that the catalogue of P. vivax genes was incomplete and that potentially important genes have been missed. We notably identified one putative invasion gene that seems functional and could dramatically change our understanding of the mechanisms determining red blood cell invasion by this important malaria parasite.
Collapse
Affiliation(s)
- James Hester
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Ernest R. Chan
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Didier Menard
- Unité d'Epidémiologie Moléculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | - John Barnwell
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (PAZ); (DS)
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
- * E-mail: (PAZ); (DS)
| |
Collapse
|
39
|
Douglas AD, Williams AR, Knuepfer E, Illingworth JJ, Furze JM, Crosnier C, Choudhary P, Bustamante LY, Zakutansky SE, Awuah DK, Alanine DGW, Theron M, Worth A, Shimkets R, Rayner JC, Holder AA, Wright GJ, Draper SJ. Neutralization of Plasmodium falciparum merozoites by antibodies against PfRH5. THE JOURNAL OF IMMUNOLOGY 2013; 192:245-58. [PMID: 24293631 DOI: 10.4049/jimmunol.1302045] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is intense interest in induction and characterization of strain-transcending neutralizing Ab against antigenically variable human pathogens. We have recently identified the human malaria parasite Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) as a target of broadly neutralizing Abs, but there is little information regarding the functional mechanism(s) of Ab-mediated neutralization. In this study, we report that vaccine-induced polyclonal anti-PfRH5 Abs inhibit the tight attachment of merozoites to erythrocytes and are capable of blocking the interaction of PfRH5 with its receptor basigin. Furthermore, by developing anti-PfRH5 mAbs, we provide evidence of the following: 1) the ability to block the PfRH5-basigin interaction in vitro is predictive of functional activity, but absence of blockade does not predict absence of functional activity; 2) neutralizing mAbs bind spatially related epitopes on the folded protein, involving at least two defined regions of the PfRH5 primary sequence; 3) a brief exposure window of PfRH5 is likely to necessitate rapid binding of Ab to neutralize parasites; and 4) intact bivalent IgG contributes to but is not necessary for parasite neutralization. These data provide important insight into the mechanisms of broadly neutralizing anti-malaria Abs and further encourage anti-PfRH5-based malaria prevention efforts.
Collapse
|
40
|
Bacterially expressed full-length recombinant Plasmodium falciparum RH5 protein binds erythrocytes and elicits potent strain-transcending parasite-neutralizing antibodies. Infect Immun 2013; 82:152-64. [PMID: 24126527 DOI: 10.1128/iai.00970-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Plasmodium falciparum reticulocyte binding-like homologous protein 5 (PfRH5) is an essential merozoite ligand that binds with its erythrocyte receptor, basigin. PfRH5 is an attractive malaria vaccine candidate, as it is expressed by a wide number of P. falciparum strains, cannot be genetically disrupted, and exhibits limited sequence polymorphisms. Viral vector-induced PfRH5 antibodies potently inhibited erythrocyte invasion. However, it has been a challenge to generate full-length recombinant PfRH5 in a bacterial-cell-based expression system. In this study, we have produced full-length recombinant PfRH5 in Escherichia coli that exhibits specific erythrocyte binding similar to that of the native PfRH5 parasite protein and also, importantly, elicits potent invasion-inhibitory antibodies against a number of P. falciparum strains. Antibasigin antibodies blocked the erythrocyte binding of both native and recombinant PfRH5, further confirming that they bind with basigin. We have thus successfully produced full-length PfRH5 as a functionally active erythrocyte binding recombinant protein with a conformational integrity that mimics that of the native parasite protein and elicits potent strain-transcending parasite-neutralizing antibodies. P. falciparum has the capability to develop immune escape mechanisms, and thus, blood-stage malaria vaccines that target multiple antigens or pathways may prove to be highly efficacious. In this regard, antibody combinations targeting PfRH5 and other key merozoite antigens produced potent additive inhibition against multiple worldwide P. falciparum strains. PfRH5 was immunogenic when immunized with other antigens, eliciting potent invasion-inhibitory antibody responses with no immune interference. Our results strongly support the development of PfRH5 as a component of a combination blood-stage malaria vaccine.
Collapse
|
41
|
Hans N, Singh S, Pandey AK, Reddy KS, Gaur D, Chauhan VS. Identification and characterization of a novel Plasmodium falciparum adhesin involved in erythrocyte invasion. PLoS One 2013; 8:e74790. [PMID: 24058628 PMCID: PMC3772933 DOI: 10.1371/journal.pone.0074790] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/05/2013] [Indexed: 11/18/2022] Open
Abstract
Malaria remains a major health problem worldwide. All clinical symptoms of malaria are attributed to the asexual blood stages of the parasite life cycle. Proteins resident in apical organelles and present on the surface of P. falciparum merozoites are considered promising candidates for the development of blood stage malaria vaccines. In the present study, we have identified and characterized a microneme associated antigen, PfMA [PlasmoDB Gene ID: PF3D7_0316000, PFC0700c]. The gene was selected by applying a set of screening criteria such as transcriptional upregulation at late schizogony, inter-species conservation and the presence of signal sequence or transmembrane domains. The gene sequence of PfMA was found to be conserved amongst various Plasmodium species. We experimentally demonstrated that the transcript for PfMA was expressed only in the late blood stages of parasite consistent with a putative role in erythrocyte invasion. PfMA was localized by immunofluorescence and immuno-electron microscopy to be in the micronemes, an apical organelle of merozoites. The functional role of the PfMA protein in erythrocyte invasion was identified as a parasite adhesin involved in direct attachment with the target erythrocyte. PfMA was demonstrated to bind erythrocytes in a sialic acid independent, chymotrypsin and trypsin resistant manner and its antibodies inhibited P. falciparum erythrocyte invasion. Invasion of erythrocytes is a complex multistep process that involves a number of redundant ligand-receptor interactions many of which still remain unknown and even uncharacterized. Our work has identified and characterized a novel P. falciparum adhesin involved in erythrocyte invasion.
Collapse
Affiliation(s)
- Nidhi Hans
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shailja Singh
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Alok K. Pandey
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - K. Sony Reddy
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Deepak Gaur
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Virander S. Chauhan
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- * E-mail:
| |
Collapse
|
42
|
Patel SD, Ahouidi AD, Bei AK, Dieye TN, Mboup S, Harrison SC, Duraisingh MT. Plasmodium falciparum merozoite surface antigen, PfRH5, elicits detectable levels of invasion-inhibiting antibodies in humans. J Infect Dis 2013; 208:1679-87. [PMID: 23904294 DOI: 10.1093/infdis/jit385] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum is an intracellular protozoan parasite that infects erythrocytes and hepatocytes. The blood stage of its life cycle causes substantial morbidity and mortality associated with millions of infections each year, motivating an intensive search for potential components of a multi-subunit vaccine. In this study, we present data showing that antibodies from natural infections can recognize a recombinant form of the relatively conserved merozoite surface antigen, PfRH5. Furthermore, we performed invasion inhibition assays on clinical isolates and laboratory strains of P. falciparum in the presence of affinity purified antibodies to RH5 and show that these antibodies can inhibit invasion in vitro.
Collapse
|
43
|
Richards JS, Arumugam TU, Reiling L, Healer J, Hodder AN, Fowkes FJI, Cross N, Langer C, Takeo S, Uboldi AD, Thompson JK, Gilson PR, Coppel RL, Siba PM, King CL, Torii M, Chitnis CE, Narum DL, Mueller I, Crabb BS, Cowman AF, Tsuboi T, Beeson JG. Identification and prioritization of merozoite antigens as targets of protective human immunity to Plasmodium falciparum malaria for vaccine and biomarker development. THE JOURNAL OF IMMUNOLOGY 2013; 191:795-809. [PMID: 23776179 DOI: 10.4049/jimmunol.1300778] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of effective malaria vaccines and immune biomarkers of malaria is a high priority for malaria control and elimination. Ags expressed by merozoites of Plasmodium falciparum are likely to be important targets of human immunity and are promising vaccine candidates, but very few Ags have been studied. We developed an approach to assess Ab responses to a comprehensive repertoire of merozoite proteins and investigate whether they are targets of protective Abs. We expressed 91 recombinant proteins, located on the merozoite surface or within invasion organelles, and screened them for quality and reactivity to human Abs. Subsequently, Abs to 46 proteins were studied in a longitudinal cohort of 206 Papua New Guinean children to define Ab acquisition and associations with protective immunity. Ab responses were higher among older children and those with active parasitemia. High-level Ab responses to rhoptry and microneme proteins that function in erythrocyte invasion were identified as being most strongly associated with protective immunity compared with other Ags. Additionally, Abs to new or understudied Ags were more strongly associated with protection than were Abs to current vaccine candidates that have progressed to phase 1 or 2 vaccine trials. Combinations of Ab responses were identified that were more strongly associated with protective immunity than responses to their single-Ag components. This study identifies Ags that are likely to be key targets of protective human immunity and facilitates the prioritization of Ags for further evaluation as vaccine candidates and/or for use as biomarkers of immunity in malaria surveillance and control.
Collapse
Affiliation(s)
- Jack S Richards
- Department of Immunology, Burnet Institute, Melbourne 3001, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Draper SJ, Cottingham MG, Gilbert SC. Utilizing poxviral vectored vaccines for antibody induction-progress and prospects. Vaccine 2013; 31:4223-30. [PMID: 23746455 PMCID: PMC7131268 DOI: 10.1016/j.vaccine.2013.05.091] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/22/2013] [Indexed: 02/06/2023]
Abstract
Poxviral vectors are now regarded as robust tools for B cell and antibody induction. Antibody responses can be induced against the vector as well as a transgene. Increasing application is seen in heterologous prime–boost immunization regimes. Effective veterinary poxviral vaccine products are now licensed. Promising results of antibody induction are being reported in human clinical trials.
Over the last decade, poxviral vectors emerged as a mainstay approach for the induction of T cell-mediated immunity by vaccination, and their suitability for human use has led to widespread clinical testing of candidate vectors against infectious intracellular pathogens and cancer. In contrast, poxviruses have been widely perceived in the vaccine field as a poor choice of vector for the induction of humoral immunity. However, a growing body of data, from both animal models and recent clinical trials, now suggests that these vectors can be successfully utilized to prime and boost B cells and effective antibody responses. Significant progress has been made in the context of heterologous prime–boost immunization regimes, whereby poxviruses are able to boost responses primed by other vectors, leading to the induction of high-titre antigen-specific antibody responses. In other cases, poxviral vectors have been shown to stimulate humoral immunity against both themselves and encoded transgenes, in particular viral surface proteins such as influenza haemagglutinin. In the veterinary field, recombinant poxviral vectors have made a significant impact with numerous vectors licensed for use against a variety of animal viruses. On-going studies continue to explore the potential of poxviral vectors to modulate qualitative aspects of the humoral response, as well as their amenability to adjuvantation seeking to improve quantitative antibody immunogenicity. Nevertheless, the underlying mechanisms of B cell induction by recombinant poxviruses remain poorly defined, and further work is necessary to help guide the rational optimization of future poxviral vaccine candidates aiming to induce antibodies.
Collapse
Affiliation(s)
- Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK.
| | | | | |
Collapse
|
45
|
Bartholdson SJ, Crosnier C, Bustamante LY, Rayner JC, Wright GJ. Identifying novel Plasmodium falciparum erythrocyte invasion receptors using systematic extracellular protein interaction screens. Cell Microbiol 2013; 15:1304-12. [PMID: 23617720 PMCID: PMC3798119 DOI: 10.1111/cmi.12151] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/11/2013] [Accepted: 04/22/2013] [Indexed: 12/22/2022]
Abstract
The invasion of host erythrocytes by the parasite Plasmodium falciparum initiates the blood stage of infection responsible for the symptoms of malaria. Invasion involves extracellular protein interactions between host erythrocyte receptors and ligands on the merozoite, the invasive form of the parasite. Despite significant research effort, many merozoite surface ligands have no known erythrocyte binding partner, most likely due to the intractable biochemical nature of membrane-tethered receptor proteins and their interactions. The few receptor–ligand pairs that have been described have largely relied on sourcing erythrocytes from patients with rare blood groups, a serendipitous approach that is unsatisfactory for systematically identifying novel receptors. We have recently developed a scalable assay called AVEXIS (for AVidity-based EXtracellular Interaction Screen), designed to circumvent the technical difficulties associated with the identification of extracellular protein interactions, and applied it to identify erythrocyte receptors for orphan P. falciparum merozoite ligands. Using this approach, we have recently identified Basigin (CD147) and Semaphorin-7A (CD108) as receptors for RH5 and MTRAP respectively. In this essay, we review techniques used to identify Plasmodium receptors and discuss how they could beapplied in the future to identify novel receptors both for Plasmodium parasites but also other pathogens.
Collapse
Affiliation(s)
- S Josefin Bartholdson
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | | | | | | |
Collapse
|
46
|
Bora H, Tyagi RK, Sharma YD. Defining the erythrocyte binding domains of Plasmodium vivax tryptophan rich antigen 33.5. PLoS One 2013; 8:e62829. [PMID: 23638151 PMCID: PMC3636203 DOI: 10.1371/journal.pone.0062829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
Tryptophan-rich antigens play important role in host-parasite interaction. One of the Plasmodium vivax tryptophan-rich antigens called PvTRAg33.5 had earlier been shown to be predominantly of alpha helical in nature with multidomain structure, induced immune responses in humans, binds to host erythrocytes, and its sequence is highly conserved in the parasite population. In the present study, we divided this protein into three different parts i.e. N-terminal (amino acid position 24–106), middle (amino acid position 107–192), and C-terminal region (amino acid position 185–275) and determined the erythrocyte binding activity of these fragments. This binding activity was retained by the middle and C-terminal fragments covering 107 to 275 amino acid region of the PvTRAg33.5 protein. Eight non-overlapping peptides covering this 107 to 275 amino acid region were then synthesized and tested for their erythrocyte binding activity to further define the binding domains. Only two peptides, peptide P4 (at 171–191 amino acid position) and peptide P8 (at 255–275 amino acid position), were found to contain the erythrocyte binding activity. Competition assay revealed that each peptide recognizes its own erythrocyte receptor. These two peptides were found to be located on two parallel helices at one end of the protein in the modelled structure and could be exposed on its surface to form a suitable site for protein-protein interaction. Natural antibodies present in the sera of the P. vivax exposed individuals or the polyclonal rabbit antibodies against this protein were able to inhibit the erythrocyte binding activity of PvTRAg33.5, its fragments, and these two synthetic peptides P4 and P8. Further studies on receptor-ligand interaction might lead to the development of the therapeutic reagent.
Collapse
Affiliation(s)
- Hema Bora
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Rupesh Kumar Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Yagya Dutta Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
- * E-mail:
| |
Collapse
|
47
|
Counihan NA, Kalanon M, Coppel RL, de Koning-Ward TF. Plasmodium rhoptry proteins: why order is important. Trends Parasitol 2013; 29:228-36. [PMID: 23570755 DOI: 10.1016/j.pt.2013.03.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 11/26/2022]
Abstract
Apicomplexan parasites, including the Plasmodium species that cause malaria, contain three unusual apical secretory organelles (micronemes, rhoptries, and dense granules) that are required for the infection of new host cells. Because of their specialized nature, the majority of proteins secreted from these organelles are unique to Apicomplexans and are consequently poorly characterized. Although rhoptry proteins of Plasmodium have been implicated in events central to invasion, there is growing evidence to suggest that proteins originating from this organelle play key roles downstream of parasite entry into the host cell. Here we discuss recent work that has advanced our knowledge of rhoptry protein trafficking and function, and highlight areas of research that require further investigation.
Collapse
|
48
|
Mueller I, Galinski MR, Tsuboi T, Arevalo-Herrera M, Collins WE, King CL. Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. ADVANCES IN PARASITOLOGY 2013; 81:77-131. [PMID: 23384622 DOI: 10.1016/b978-0-12-407826-0.00003-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Population studies show that individuals acquire immunity to Plasmodium vivax more quickly than Plasmodium falciparum irrespective of overall transmission intensity, resulting in the peak burden of P. vivax malaria in younger age groups. Similarly, actively induced P. vivax infections in malaria therapy patients resulted in faster and generally more strain-transcending acquisition of immunity than P. falciparum infections. The mechanisms behind the more rapid acquisition of immunity to P. vivax are poorly understood. Natural acquired immune responses to P. vivax target both pre-erythrocytic and blood-stage antigens and include humoral and cellular components. To date, only a few studies have investigated the association of these immune responses with protection, with most studies focussing on a few merozoite antigens (such as the Pv Duffy binding protein (PvDBP), the Pv reticulocyte binding proteins (PvRBPs), or the Pv merozoite surface proteins (PvMSP1, 3 & 9)) or the circumsporozoite protein (PvCSP). Naturally acquired transmission-blocking (TB) immunity (TBI) was also found in several populations. Although limited, these data support the premise that developing a multi-stage P. vivax vaccine may be feasible and is worth pursuing.
Collapse
Affiliation(s)
- Ivo Mueller
- Walter + Eliza Hall Institute, Infection & Immunity Division, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
49
|
Conant KL, Kaleeba JAR. Dangerous liaisons: molecular basis for a syndemic relationship between Kaposi's sarcoma and P. falciparum malaria. Front Microbiol 2013; 4:35. [PMID: 23487416 PMCID: PMC3594938 DOI: 10.3389/fmicb.2013.00035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/07/2013] [Indexed: 11/13/2022] Open
Abstract
The most severe manifestations of malaria (caused by Plasmodium falciparum) occur as a direct result of parasitemia following invasion of erythrocytes by post-liver blood-stage merozoites, and during subsequent cyto-adherence of infected erythrocytes to the vascular endothelium. However, the disproportionate epidemiologic clustering of severe malaria with aggressive forms of endemic diseases such as Kaposi's sarcoma (KS), a neoplasm that is etiologically linked to infection with KS-associated herpesvirus (KSHV), underscores the significance of previously unexplored co-pathogenetic interactions that have the potential to modify the overall disease burden in co-infected individuals. Based on recent studies of the mechanisms that P. falciparum and KSHV have evolved to interact with their mutual human host, several new perspectives are emerging that highlight a surprising convergence of biological themes potentially underlying their associated co-morbidities. Against this background, ongoing studies are rapidly constructing a fascinating new paradigm in which the major host receptors that control parasite invasion (Basigin/CD147) and cyto-adherence (CD36) are, surprisingly, also important targets for exploitation by KSHV. In this article, we consider the major pathobiological implications of the co-option of Basigin/CD147 and CD36 signaling pathways by both P. falciparum and KSHV, not only as essential host factors for parasite persistence but also as important mediators of the pro-angiogenic phenotype within the virus-infected endothelial microenvironment. Consequently, the triangulation of interactions between P. falciparum, KSHV, and their mutual human host articulates a syndemic relationship that points to a conceptual framework for prevalence of aggressive forms of KS in malaria-endemic areas, with implications for the possibility of dual-use therapies against these debilitating infections in resource-limited parts of the world.
Collapse
Affiliation(s)
| | - Johnan A. R. Kaleeba
- Department of Microbiology and Immunology, Uniformed Services University of the Health SciencesBethesda, MD, USA
| |
Collapse
|
50
|
Arévalo-Pinzón G, Curtidor H, Muñoz M, Suarez D, Patarroyo MA, Patarroyo ME. Rh1 high activity binding peptides inhibit high percentages of Plasmodium falciparum FVO strain invasion. Vaccine 2013; 31:1830-7. [PMID: 23398931 DOI: 10.1016/j.vaccine.2013.01.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/12/2013] [Accepted: 01/25/2013] [Indexed: 11/30/2022]
Abstract
Identifying the minimal functional regions of the proteins which the malaria parasite uses when invading its host cells constitutes the first and most important approach in an effective design for a chemically synthesised, multi-antigen, multi-stage, subunit-based vaccine. This work has been aimed at identifying the PfRh1 protein binding regions (residues 1-2580) belonging to the reticulocyte binding-like (RBL or P. falciparum Rh [PfRh]) family implicated in the parasite's alternative target cell invasion routes. Eighteen peptide regions (called high activity binding peptides - HABPs) binding to red blood cells (RBC) were identified in peptides mapped in a highly robust, specific and sensitive receptor-ligand assay. These HABPs were saturable in the experimental conditions assayed here and most had an alpha helix structure. Polymorphism studies revealed that only six of the eighteen HABPs identified had changes at amino acid level amongst the seven P. falciparum strains evaluated. Most HABPs' specific binding became altered when RBC were treated with neuraminidase, chymotrypsin and trypsin, suggesting differing sensitivity for RBC membrane receptors. After ascertaining that the Rh1 gene was transcribed and expressed in late-stage schizonts of the FCB-2 strain, invasion inhibition assays were carried out. When most of these HABPs were assayed in P. falciparum in vitro culture they were able to inhibit high percentages of FVO strain invasion compared to low inhibition percentages observed with the FCB-2 strain. This data shows small Rh1 regions' participation during invasion and suggests that these units should be included in further immunological and structural studies.
Collapse
|