1
|
Chanthra N, Uosaki H. Maturity of Pluripotent Stem Cell-Derived Cardiomyocytes and Future Perspectives for Regenerative Medicine. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Constantinou C, Miranda AMA, Chaves P, Bellahcene M, Massaia A, Cheng K, Samari S, Rothery SM, Chandler AM, Schwarz RP, Harding SE, Punjabi P, Schneider MD, Noseda M. Human pluripotent stem cell-derived cardiomyocytes as a target platform for paracrine protection by cardiac mesenchymal stromal cells. Sci Rep 2020; 10:13016. [PMID: 32747668 PMCID: PMC7400574 DOI: 10.1038/s41598-020-69495-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic heart disease remains the foremost cause of death globally, with survivors at risk for subsequent heart failure. Paradoxically, cell therapies to offset cardiomyocyte loss after ischemic injury improve long-term cardiac function despite a lack of durable engraftment. An evolving consensus, inferred preponderantly from non-human models, is that transplanted cells benefit the heart via early paracrine signals. Here, we tested the impact of paracrine signals on human cardiomyocytes, using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) as the target of mouse and human cardiac mesenchymal stromal cells (cMSC) with progenitor-like features. In co-culture and conditioned medium studies, cMSCs markedly inhibited human cardiomyocyte death. Little or no protection was conferred by mouse tail tip or human skin fibroblasts. Consistent with the results of transcriptomic profiling, functional analyses showed that the cMSC secretome suppressed apoptosis and preserved cardiac mitochondrial transmembrane potential. Protection was independent of exosomes under the conditions tested. In mice, injecting cMSC-conditioned media into the infarct border zone reduced apoptotic cardiomyocytes > 70% locally. Thus, hPSC-CMs provide an auspicious, relevant human platform to investigate extracellular signals for cardiac muscle survival, substantiating human cardioprotection by cMSCs, and suggesting the cMSC secretome or its components as potential cell-free therapeutic products.
Collapse
Affiliation(s)
- Chrystalla Constantinou
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Antonio M A Miranda
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
| | - Patricia Chaves
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
| | - Mohamed Bellahcene
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
| | - Andrea Massaia
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
| | - Kevin Cheng
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Sara Samari
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
| | - Stephen M Rothery
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Anita M Chandler
- Kardia Therapeutics, Houston, TX, 77030, USA
- Department of Bioengineering, BioScience Research Collaborative, Rice University, Houston, TX, 77005, USA
| | - Richard P Schwarz
- Kardia Therapeutics, Houston, TX, 77030, USA
- CV Ventures, LLC, Blue Bell, PA, 19422, USA
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
| | - Prakash Punjabi
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK
- Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Michael D Schneider
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK.
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK.
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK.
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
3
|
A Novel Fluorescent Reporter System Identifies Laminin-511/521 as Potent Regulators of Cardiomyocyte Maturation. Sci Rep 2020; 10:4249. [PMID: 32144297 PMCID: PMC7060274 DOI: 10.1038/s41598-020-61163-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/21/2020] [Indexed: 12/31/2022] Open
Abstract
Pluripotent stem cell-derived cardiomyocytes (PSC-CMs) hold great promise for disease modeling and drug discovery. However, PSC-CMs exhibit immature phenotypes in culture, and the lack of maturity limits their broad applications. While physical and functional analyses are generally used to determine the status of cardiomyocyte maturation, they could be time-consuming and often present challenges in comparing maturation-enhancing strategies. Therefore, there is a demand for a method to assess cardiomyocyte maturation rapidly and reproducibly. In this study, we found that Myomesin-2 (Myom2), encoding M-protein, is upregulated postnatally, and based on this, we targeted TagRFP to the Myom2 locus in mouse embryonic stem cells. Myom2-RFP+ PSC-CMs exhibited more mature phenotypes than RFP- cells in morphology, function and transcriptionally, conductive to sarcomere shortening assays. Using this system, we screened extracellular matrices (ECMs) and identified laminin-511/521 as potent enhancers of cardiomyocyte maturation. Together, we developed and characterized a novel fluorescent reporter system for the assessment of cardiomyocyte maturation and identified potent maturation-enhancing ECMs through this simple and rapid assay. This system is expected to facilitate use of PSC-CMs in a variety of scientific and medical investigations.
Collapse
|
4
|
Hatzistergos KE, Williams AR, Dykxhoorn D, Bellio MA, Yu W, Hare JM. Tumor Suppressors RB1 and CDKN2a Cooperatively Regulate Cell-Cycle Progression and Differentiation During Cardiomyocyte Development and Repair. Circ Res 2019; 124:1184-1197. [PMID: 30744497 DOI: 10.1161/circresaha.118.314063] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Although rare cardiomyogenesis is reported in the adult mammalian heart, whether this results from differentiation or proliferation of cardiomyogenic cells remains controversial. The tumor suppressor genes RB1 (retinoblastoma) and CDKN2a (cyclin-dependent kinase inhibitor 2a) are critical cell-cycle regulators, but their roles in human cardiomyogenesis remains unclear. OBJECTIVE We hypothesized that developmental activation of RB1 and CDKN2a cooperatively cause permanent cell-cycle withdrawal of human cardiac precursors (CPCs) driving terminal differentiation into mature cardiomyocytes, and that dual inactivation of these tumor suppressor genes promotes myocyte cell-cycle reentry. METHODS AND RESULTS Directed differentiation of human pluripotent stem cells (hPSCs) into cardiomyocytes revealed that RB1 and CDKN2a are upregulated at the onset of cardiac precursor specification, simultaneously with GATA4 (GATA-binding protein 4) homeobox genes PBX1 (pre-B-cell leukemia transcription factor 1) and MEIS1 (myeloid ecotropic viral integration site 1 homolog), and remain so until terminal cardiomyocyte differentiation. In both GATA4+ hPSC cardiac precursors and postmitotic hPSC-cardiomyocytes, RB1 is hyperphosphorylated and inactivated. Transient, stage-specific, depletion of RB1 during hPSC differentiation enhances cardiomyogenesis at the cardiac precursors stage, but not in terminally differentiated hPSC-cardiomyocytes, by transiently upregulating GATA4 expression through a cell-cycle regulatory pathway involving CDKN2a. Importantly, cytokinesis in postmitotic hPSC-cardiomyocytes can be induced with transient, dual RB1, and CDKN2a silencing. The relevance of this pathway in vivo was suggested by findings in a porcine model of cardiac cell therapy post-MI, whereby dual RB1 and CDKN2a inactivation in adult GATA4+ cells correlates with the degree of scar size reduction and endogenous cardiomyocyte mitosis, particularly in response to combined transendocardial injection of adult human hMSCs (bone marrow-derived mesenchymal stromal cells) and cKit+ cardiac cells. CONCLUSIONS Together these findings reveal an important and coordinated role for RB1 and CDKN2a in regulating cell-cycle progression and differentiation during human cardiomyogenesis. Moreover, transient, dual inactivation of RB1 and CDKN2a in endogenous adult GATA4+ cells and cardiomyocytes mediates, at least in part, the beneficial effects of cell-based therapy in a post-MI large mammalian model, a finding with potential clinical implications.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Cell Biology (K.E.H.), University of Miami, Miller School of Medicine, FL
| | - Adam R Williams
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Surgery (A.R.W.), University of Miami, Miller School of Medicine, FL
- Department of Surgery, Duke University School of Medicine, Durham, NC (A.R.W.)
| | - Derek Dykxhoorn
- Department of Human Genetics (D.D.), University of Miami, Miller School of Medicine, FL
- John P. Hussman Institute for Human Genomics (D.D.), University of Miami, Miller School of Medicine, FL
| | - Michael A Bellio
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
| | - Wendou Yu
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Pediatrics (W.Y.), University of Miami, Miller School of Medicine, FL
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute (K.E.H., A.R.W., M.A.B., W.Y., J.M.H.), University of Miami, Miller School of Medicine, FL
- Department of Molecular and Cellular Pharmacology (J.M.H.), University of Miami, Miller School of Medicine, FL
- Cardiology Division, Department of Medicine (J.M.H.), University of Miami, Miller School of Medicine, FL
| |
Collapse
|
5
|
Abou-Saleh H, Zouein FA, El-Yazbi A, Sanoudou D, Raynaud C, Rao C, Pintus G, Dehaini H, Eid AH. The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Res Ther 2018; 9:201. [PMID: 30053890 PMCID: PMC6062943 DOI: 10.1186/s13287-018-0947-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of global morbidity and mortality. Heart failure remains a major contributor to this mortality. Despite major therapeutic advances over the past decades, a better understanding of molecular and cellular mechanisms of CVD as well as improved therapeutic strategies for the management or treatment of heart failure are increasingly needed. Loss of myocardium is a major driver of heart failure. An attractive approach that appears to provide promising results in reducing cardiac degeneration is stem cell therapy (SCT). In this review, we describe different types of stem cells, including embryonic and adult stem cells, and we provide a detailed discussion of the properties of induced pluripotent stem cells (iPSCs). We also present and critically discuss the key methods used for converting somatic cells to pluripotent cells and iPSCs to cardiomyocytes (CMs), along with their advantages and limitations. Integrating and non-integrating reprogramming methods as well as characterization of iPSCs and iPSC-derived CMs are discussed. Furthermore, we critically present various methods of differentiating iPSCs to CMs. The value of iPSC-CMs in regenerative medicine as well as myocardial disease modeling and cardiac regeneration are emphasized.
Collapse
Affiliation(s)
- Haissam Abou-Saleh
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, “Attikon” Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Christopher Rao
- Department of Surgery, Queen Elizabeth Hospital, Woolwich, London, UK
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Hassan Dehaini
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Junghans D, Herzog S. Cnn3 regulates neural tube morphogenesis and neuronal stem cell properties. FEBS J 2018; 285:325-338. [PMID: 29151265 DOI: 10.1111/febs.14338] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/25/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Abstract
Calponin 3 (Cnn3) is a member of the Cnn family of actin-binding molecules that is highly expressed in the mammalian brain and has been shown to control dendritic spine morphology, density, and plasticity by regulating actin cytoskeletal reorganization and dynamics. However, little is known about the role of Cnn3 during embryonic development. In this study, we analyzed mutant animals deficient in Cnn3 to gain a better understanding of its role in brain morphogenesis. Embryos lacking Cnn3 exhibited massive malformation of the developing brain including exoencephaly, closure defects at the rostral neural tube, and strong enlargement of brain tissue. In wild-type animals, we found Cnn3 being localized to the apical lining of the neuroepithelium in close vicinity to beta-Catenin and N-cadherin. By performing immunohistochemistry on beta-Catenin and p-Smad, and furthermore taking advantage of Wnt-reporter animals, we provide evidence that the loss of Cnn3 during development can affect signaling pathways crucial for correct morphogenesis of the neural tube. In addition, we used embryonic neurosphere cultures to investigate the role of Cnn3 in embryonic neuronal stem cells (NSC). Here, we observed that Cnn3 deficiency in NSCs increased the number of newly formed neurospheres and increased neurosphere size without perturbing their differentiation potential. Together, our study provides evidence for an important role of Cnn3 during development of the embryonic brain and in regulating NSC function.
Collapse
Affiliation(s)
- Dirk Junghans
- Institute of Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Switzerland
| | - Sebastian Herzog
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| |
Collapse
|
7
|
Perino MG, Yamanaka S, Riordon DR, Tarasova Y, Boheler KR. Ascorbic acid promotes cardiomyogenesis through SMAD1 signaling in differentiating mouse embryonic stem cells. PLoS One 2017; 12:e0188569. [PMID: 29232368 PMCID: PMC5726630 DOI: 10.1371/journal.pone.0188569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 11/09/2017] [Indexed: 12/03/2022] Open
Abstract
Numerous groups have documented that Ascorbic Acid (AA) promotes cardiomyocyte differentiation from both mouse and human ESCs and iPSCs. AA is now considered indispensable for the routine production of hPSC-cardiomyocytes (CMs) using defined media; however, the mechanisms involved with the inductive process are poorly understood. Using a genetically modified mouse embryonic stem cell (mESC) line containing a dsRED transgene driven by the cardiac-restricted portion of the ncx1 promoter, we show that AA promoted differentiation of mESCs to CMs in a dose- and time-dependent manner. Treatment of mPSCs with AA did not modulate total SMAD content; however, the phosphorylated/active forms of SMAD2 and SMAD1/5/8 were significantly elevated. Co-administration of the SMAD2/3 activator Activin A with AA had no significant effect, but the addition of the nodal co-receptor TDGF1 (Cripto) antagonized AA’s cardiomyogenic-promoting ability. AA could also reverse some of the inhibitory effects on cardiomyogenesis of ALK/SMAD2 inhibition by SB431542, a TGFβ pathway inhibitor. Treatment with BMP2 and AA strongly amplified the positive cardiomyogenic effects of SMAD1/5/8 in a dose-dependent manner. AA could not, however, rescue dorsomorphin-mediated inhibition of ALK/SMAD1 activity. Using an inducible model system, we found that SMAD1, but not SMAD2, was essential for AA to promote the formation of TNNT2+-CMs. These data firmly demonstrate that BMP receptor-activated SMADs, preferential to TGFβ receptor-activated SMADs, are necessary to promote AA stimulated cardiomyogenesis. AA-enhanced cardiomyogenesis thus relies on the ability of AA to modulate the ratio of SMAD signaling among the TGFβ-superfamily receptor signaling pathways.
Collapse
Affiliation(s)
- Maria Grazia Perino
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| | - Satoshi Yamanaka
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Daniel R. Riordon
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yelena Tarasova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kenneth R. Boheler
- Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, SAR China
- Division of Cardiology, Johns Hopkins Medical Institute, Baltimore, Maryland, United States of America
| |
Collapse
|
8
|
Uosaki H, Cahan P, Lee DI, Wang S, Miyamoto M, Fernandez L, Kass DA, Kwon C. Transcriptional Landscape of Cardiomyocyte Maturation. Cell Rep 2015; 13:1705-16. [PMID: 26586429 DOI: 10.1016/j.celrep.2015.10.032] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/19/2015] [Accepted: 10/09/2015] [Indexed: 01/06/2023] Open
Abstract
Decades of progress in developmental cardiology has advanced our understanding of the early aspects of heart development, including cardiomyocyte (CM) differentiation. However, control of the CM maturation that is subsequently required to generate adult myocytes remains elusive. Here, we analyzed over 200 microarray datasets from early embryonic to adult hearts and identified a large number of genes whose expression shifts gradually and continuously during maturation. We generated an atlas of integrated gene expression, biological pathways, transcriptional regulators, and gene regulatory networks (GRNs), which show discrete sets of key transcriptional regulators and pathways activated or suppressed during CM maturation. We developed a GRN-based program named MatStat(CM) that indexes CM maturation status. MatStat(CM) reveals that pluripotent-stem-cell-derived CMs mature early in culture but are arrested at the late embryonic stage with aberrant regulation of key transcription factors. Our study provides a foundation for understanding CM maturation.
Collapse
Affiliation(s)
- Hideki Uosaki
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Johns Hopkins Institute for Cell Engineering, Baltimore, MD 21205, USA
| | - Patrick Cahan
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Dong I Lee
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Songnan Wang
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Johns Hopkins Institute for Cell Engineering, Baltimore, MD 21205, USA
| | - Matthew Miyamoto
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Johns Hopkins Institute for Cell Engineering, Baltimore, MD 21205, USA
| | - Laviel Fernandez
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Johns Hopkins Institute for Cell Engineering, Baltimore, MD 21205, USA
| | - David A Kass
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Johns Hopkins Institute for Cell Engineering, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Kropp EM, Bhattacharya S, Waas M, Chuppa SL, Hadjantonakis AK, Boheler KR, Gundry RL. N-glycoprotein surfaceomes of four developmentally distinct mouse cell types. Proteomics Clin Appl 2015; 8:603-9. [PMID: 24920426 DOI: 10.1002/prca.201400021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/06/2014] [Accepted: 06/06/2014] [Indexed: 11/12/2022]
Abstract
PURPOSE Detailed knowledge of cell surface proteins present during early embryonic development remains limited for most cell lineages. Due to the relevance of cell surface proteins in their functional roles controlling cell signaling and their utility as accessible, nongenetic markers for cell identification and sorting, the goal of this study was to provide new information regarding the cell surface proteins present during early mouse embryonic development. EXPERIMENTAL DESIGN Using the cell surface capture technology, the cell surface N-glycoproteomes of three cell lines and one in vitro differentiated cell type representing distinct cell fates and stages in mouse embryogenesis were assessed. RESULTS Altogether, more than 600 cell surface N-glycoproteins were identified represented by >5500 N-glycopeptides. CONCLUSIONS AND CLINICAL RELEVANCE The development of new, informative cell surface markers for the reliable identification and isolation of functionally defined subsets of cells from early developmental stages will advance the use of stem cell technologies for mechanistic developmental studies, including disease modeling and drug discovery.
Collapse
Affiliation(s)
- Erin M Kropp
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Hong EJ, Choi Y, Yang H, Kang HY, Ahn C, Jeung EB. Establishment of a rapid drug screening system based on embryonic stem cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:327-338. [PMID: 25546121 DOI: 10.1016/j.etap.2014.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
Embryonic stem (ES) cells have the capacity for self-renewal and differentiation into three germ layers following formation of embryonic bodies (EB). To investigate toxicity of pharmaceutical compounds, five toxic chemicals, indomethacin, dexamethasone, hydroxyurea, 5-fluorouracil, and cytosine arabinoside were applied in mouse ES cells during formation of EBs. Using microscopic evaluation, the size of EBs was reduced in a dose-dependent manner by treatment with pharmaceutical chemicals. While apoptosis-related proteins, cleaved caspase-3 and PARP, were decreased in compound-exposed EBs, necrosis-related protein (Hmgb1) was present in culture media of EBs, indicating that detection of Hmgb1 can result in activation of necrosis by pharmaceutical compounds. While pharmaceutical compounds impaired the differentiation of mES cells linked with spontaneous apoptotic cell death, it was determined that cytotoxic cell damage is necrosis-dependent in mES cells. In addition, an apoptotic transcript (Noxa mRNA) in toxicant-exposed EBs was decreased in parallel with apoptosis-related proteins. Following impairment of apoptosis, differentiation-related markers including un-differentiation (Sox2), endoderm (Hnf4), mesoderm (Bmp4), and ectoderm (Pax6) also fluctuated by treatment with pharmaceutical compounds. Taken together, the data imply that exposure to pharmaceutical compounds results in increased cell death hindering the spontaneous apoptosis of cells to undergo differentiation. Using both characteristics of ES cells like self-renewal or cellular pluripotency and potentials of ES cells for evaluation in toxicity of various compounds, the current study was conducted for establishment of a novel drug screening system beyond hidden virtues of the well-known chemicals.
Collapse
Affiliation(s)
- Eui-Ju Hong
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea; Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Yeoul Choi
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Hyun Yang
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Hee Young Kang
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Changhwan Ahn
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea.
| |
Collapse
|
11
|
Shenje LT, Andersen P, Halushka MK, Lui C, Fernandez L, Collin GB, Amat-Alarcon N, Meschino W, Cutz E, Chang K, Yonescu R, Batista DAS, Chen Y, Chelko S, Crosson JE, Scheel J, Vricella L, Craig BD, Marosy BA, Mohr DW, Hetrick KN, Romm JM, Scott AF, Valle D, Naggert JK, Kwon C, Doheny KF, Judge DP. Mutations in Alström protein impair terminal differentiation of cardiomyocytes. Nat Commun 2014; 5:3416. [PMID: 24595103 PMCID: PMC3992616 DOI: 10.1038/ncomms4416] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 02/10/2014] [Indexed: 02/08/2023] Open
Abstract
Cardiomyocyte cell division and replication in mammals proceed through embryonic development and abruptly decline soon after birth. The process governing cardiomyocyte cell cycle arrest is poorly understood. Here we carry out whole-exome sequencing in an infant with evidence of persistent postnatal cardiomyocyte replication to determine the genetic risk factors. We identify compound heterozygous ALMS1 mutations in the proband, and confirm their presence in her affected sibling, one copy inherited from each heterozygous parent. Next, we recognize homozygous or compound heterozygous truncating mutations in ALMS1 in four other children with high levels of postnatal cardiomyocyte proliferation. Alms1 mRNA knockdown increases multiple markers of proliferation in cardiomyocytes, the percentage of cardiomyocytes in G2/M phases, and the number of cardiomyocytes by 10% in cultured cells. Homozygous Alms1-mutant mice have increased cardiomyocyte proliferation at 2 weeks postnatal compared with wild-type littermates. We conclude that deficiency of Alström protein impairs postnatal cardiomyocyte cell cycle arrest.
Collapse
Affiliation(s)
- Lincoln T. Shenje
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Marc K. Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Cecillia Lui
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Laviel Fernandez
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | | | - Nuria Amat-Alarcon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Wendy Meschino
- North York General Hospital, Toronto, ON, M2K 1E1 Canada
| | - Ernest Cutz
- Division of Pathology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, M5G 1X8 Canada
| | - Kenneth Chang
- Division of Pathology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, M5G 1X8 Canada
- KK Women’s and Children’s Hospital and Duke-NUS Graduate Medical School, Singapore 229899
| | - Raluca Yonescu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Denise A. S. Batista
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Yan Chen
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Stephen Chelko
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Jane E. Crosson
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Janet Scheel
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Luca Vricella
- Division of Cardiothoracic Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Brian D. Craig
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Beth A. Marosy
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - David W. Mohr
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
- High Throughput Sequencing Facility, Genetic Resources Core Facility, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Kurt N. Hetrick
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Jane M. Romm
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Alan F. Scott
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
- High Throughput Sequencing Facility, Genetic Resources Core Facility, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | | | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Kimberly F. Doheny
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - Daniel P. Judge
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| |
Collapse
|
12
|
Raynaud CM, Ahmad FS, Allouba M, Abou-Saleh H, Lui KO, Yacoub M. Reprogramming for cardiac regeneration. Glob Cardiol Sci Pract 2014; 2014:309-29. [PMID: 25763379 PMCID: PMC4352683 DOI: 10.5339/gcsp.2014.44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/18/2014] [Indexed: 01/10/2023] Open
Abstract
Treatment of cardiovascular diseases remains challenging considering the limited regeneration capacity of the heart muscle. Developments of reprogramming strategies to create in vitro and in vivo cardiomyocytes have been the focus point of a considerable amount of research in the past decades. The choice of cells to employ, the state-of-the-art methods for different reprogramming strategies, and their promises and future challenges before clinical entry, are all discussed here.
Collapse
Affiliation(s)
| | | | - Mona Allouba
- Aswan Heart Center, Magdi Yacoub Foundation, Aswan, Egypt
| | - Haissam Abou-Saleh
- Qatar Cardiovascular Research Center, Qatar Foundation-Education City, Doha, Qatar
| | - Kathy O Lui
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
| | | |
Collapse
|
13
|
Grajales L, García J, Geenen DL. Induction of cardiac myogenic lineage development differs between mesenchymal and satellite cells and is accelerated by bone morphogenetic protein-4. J Mol Cell Cardiol 2012; 53:382-91. [PMID: 22709559 PMCID: PMC3426454 DOI: 10.1016/j.yjmcc.2012.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 05/29/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
Our aim was to further elucidate the cardiac lineage development of bone marrow-derived mesenchymal stem cells (MSC) and to identify cells which had the potential for cardiac myogenic differentiation when compared to skeletal muscle satellite (Sk-sat) myogenesis. Unlike Sk-sat, MSC expressed the early cardiac markers Nkx2.5 and GATA4. Their expression was significantly increased by culturing MSC with Bone Morphogenetic Protein 4 (BMP4). Enhanced cardiac myogenic lineage differentiation and loss of stem cell characteristics induced by BMP4 were further confirmed by flow cytometry of cells stained for Nkx2.5 and Sca-1 expression. MSC also expressed skeletal genes (MyoG, ssTnI, Sk-Act) early in culture but their expression was suppressed when BMP4 was added from day 0 to day 6 (p<0.05). BMP4 treated MSC also exhibited a 6-fold increase in cTnI expression by day 12 in culture. The average MSC action potential time duration at 90% (APD90) was 32.3±4ms, with some cells exhibiting action potentials closer to Sk-sat APD90 of 13.7±0.9ms. After treatment with BMP4, MSC significantly increased their APD90 to 54.4±7.6ms, shifting from the shorter skeletal-like signature, towards a longer action potential duration more characteristic of a cardiomyocyte signature. Our results show that MSC and Sk-sat exhibit similarities in myogenic lineage development early in culture but that BMP4 clearly enhances cardiac myogenic development, suppresses skeletal myogenesis, and leads to loss of "stemness" in MSC. These findings provide novel information regarding the use of BMP4 to accelerate cardiac myogenic development in harvested MSC and further support the use of MSC in cardiac regenerative therapy.
Collapse
Affiliation(s)
- Liliana Grajales
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | |
Collapse
|
14
|
Zhan M, Riordon DR, Yan B, Tarasova YS, Bruweleit S, Tarasov KV, Li RA, Wersto RP, Boheler KR. The B-MYB transcriptional network guides cell cycle progression and fate decisions to sustain self-renewal and the identity of pluripotent stem cells. PLoS One 2012; 7:e42350. [PMID: 22936984 PMCID: PMC3427317 DOI: 10.1371/journal.pone.0042350] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 07/04/2012] [Indexed: 01/08/2023] Open
Abstract
Embryonic stem cells (ESCs) are pluripotent and have unlimited self-renewal capacity. Although pluripotency and differentiation have been examined extensively, the mechanisms responsible for self-renewal are poorly understood and are believed to involve an unusual cell cycle, epigenetic regulators and pluripotency-promoting transcription factors. Here we show that B-MYB, a cell cycle regulated phosphoprotein and transcription factor critical to the formation of inner cell mass, is central to the transcriptional and co-regulatory networks that sustain normal cell cycle progression and self-renewal properties of ESCs. Phenotypically, B-MYB is robustly expressed in ESCs and induced pluripotent stem cells (iPSCs), and it is present predominantly in a hypo-phosphorylated state. Knockdown of B-MYB results in functional cell cycle abnormalities that involve S, G2 and M phases, and reduced expression of critical cell cycle regulators like ccnb1 and plk1. By conducting gene expression profiling on control and B-MYB deficient cells, ChIP-chip experiments, and integrative computational analyses, we unraveled a highly complex B-MYB-mediated transcriptional network that guides ESC self-renewal. The network encompasses critical regulators of all cell cycle phases and epigenetic regulators, pluripotency transcription factors, and differentiation determinants. B-MYB along with E2F1 and c-MYC preferentially co-regulate cell cycle target genes. B-MYB also co-targets genes regulated by OCT4, SOX2 and NANOG that are significantly associated with stem cell differentiation, embryonic development, and epigenetic control. Moreover, loss of B-MYB leads to a breakdown of the transcriptional hierarchy present in ESCs. These results coupled with functional studies demonstrate that B-MYB not only controls and accelerates cell cycle progression in ESCs it contributes to fate decisions and maintenance of pluripotent stem cell identity.
Collapse
Affiliation(s)
- Ming Zhan
- Bioinformatics Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- The Methodist Hospital Research Institute, Cornell University Weill Cornell Medical College, Houston, Texas, United States of America
| | - Daniel R. Riordon
- Molecular Cardiology and Stem Cell Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Bin Yan
- Bioinformatics Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yelena S. Tarasova
- Molecular Cardiology and Stem Cell Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Sarah Bruweleit
- Molecular Cardiology and Stem Cell Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kirill V. Tarasov
- Molecular Cardiology and Stem Cell Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Ronald A. Li
- Stem Cell and Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Robert P. Wersto
- Flow Cytometry Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kenneth R. Boheler
- Molecular Cardiology and Stem Cell Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- Stem Cell and Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
15
|
Burridge PW, Keller G, Gold JD, Wu JC. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 2012; 10:16-28. [PMID: 22226352 PMCID: PMC3255078 DOI: 10.1016/j.stem.2011.12.013] [Citation(s) in RCA: 498] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide. The limited capability of heart tissue to regenerate has prompted methodological developments for creating de novo cardiomyocytes, both in vitro and in vivo. Beyond uses in cell replacement therapy, patient-specific cardiomyocytes may find applications in drug testing, drug discovery, and disease modeling. Recently, approaches for generating cardiomyocytes have expanded to encompass three major sources of starting cells: human pluripotent stem cells (hPSCs), adult heart-derived cardiac progenitor cells (CPCs), and reprogrammed fibroblasts. We discuss state-of-the-art methods for generating de novo cardiomyocytes from hPSCs and reprogrammed fibroblasts, highlighting potential applications and future challenges.
Collapse
Affiliation(s)
- Paul W. Burridge
- Department of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Gordon Keller
- McEwen Centre for Regenerative Medicine, University Health Network, MaRS Centre, Toronto, Ontario, Canada
| | - Joseph D. Gold
- Neurobiology and Cell Therapies Research, Geron Corporation, Menlo Park, California, USA
| | - Joseph C. Wu
- Department of Medicine, Institute for Stem Cell Biology and Regenerative Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
16
|
Abstract
Western societies are rapidly aging, and cardiovascular diseases are the leading cause of death. In fact, age and cardiovascular diseases are positively correlated, and disease syndromes affecting the heart reach epidemic proportions in the very old. Genetic variations and molecular adaptations are the primary contributors to the onset of cardiovascular disease; however, molecular links between age and heart syndromes are complex and involve much more than the passage of time. Changes in CM (cardiomyocyte) structure and function occur with age and precede anatomical and functional changes in the heart. Concomitant with or preceding some of these cellular changes are alterations in gene expression often linked to signalling cascades that may lead to a loss of CMs or reduced function. An understanding of the intrinsic molecular mechanisms underlying these cascading events has been instrumental in forming our current understanding of how CMs adapt with age. In the present review, we describe the molecular mechanisms underlying CM aging and how these changes may contribute to the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Anna Sheydina
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institutes of Health, Gerontology Research Center, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
17
|
Boheler KR, Joodi RN, Qiao H, Juhasz O, Urick AL, Chuppa SL, Gundry RL, Wersto RP, Zhou R. Embryonic stem cell-derived cardiomyocyte heterogeneity and the isolation of immature and committed cells for cardiac remodeling and regeneration. Stem Cells Int 2011; 2011:214203. [PMID: 21912557 PMCID: PMC3168772 DOI: 10.4061/2011/214203] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 06/14/2011] [Indexed: 11/23/2022] Open
Abstract
Pluripotent stem cells represent one promising source for cell replacement therapy in heart, but differentiating embryonic stem cell-derived cardiomyocytes (ESC-CMs) are highly heterogeneous and show a variety of maturation states. In this study, we employed an ESC clonal line that contains a cardiac-restricted ncx1 promoter-driven puromycin resistance cassette together with a mass culture system to isolate ESC-CMs that display traits characteristic of very immature CMs. The cells display properties of proliferation, CM-restricted markers, reduced mitochondrial mass, and hypoxia-resistance. Following transplantation into rodent hearts, bioluminescence imaging revealed that immature cells, but not more mature CMs, survived for at least one month following injection. These data and comparisons with more mature cells lead us to conclude that immature hypoxia resistant ESC-CMs can be isolated in mass in vitro and, following injection into heart, form grafts that may mediate long-term recovery of global and regional myocardial contractile function following infarction.
Collapse
Affiliation(s)
- Kenneth R Boheler
- Molecular Cardiology and Stem Cell Unit, Laboratory of Cardiovascular Sciences, National Institute of Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Qiao H, Zhang H, Yamanaka S, Patel VV, Petrenko NB, Huang B, Muenz LR, Ferrari VA, Boheler KR, Zhou R. Long-term improvement in postinfarct left ventricular global and regional contractile function is mediated by embryonic stem cell-derived cardiomyocytes. Circ Cardiovasc Imaging 2011; 4:33-41. [PMID: 21059858 PMCID: PMC3057068 DOI: 10.1161/circimaging.110.957431] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 10/25/2010] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pluripotent stem cells represent one promising source for cellular cardiomyoplasty. In this study, we used cardiac magnetic resonance to examine the ability of highly enriched cardiomyocytes (CMs) derived from murine embryonic stem cells (ESC) to form grafts and improve contractile function of infarcted rat hearts. METHODS AND RESULTS Highly enriched ESC-CMs were obtained by inducing cardiac differentiation of ESCs stably expressing a cardiac-restricted puromycin resistance gene. At the time of transplantation, enriched ESC-CMs expressed cardiac-specific markers and markers of developing CMs, but only 6% of them were proliferating. A growth factor-containing vehicle solution or ESC-CMs (5 to 10 million) suspended in the same solution was injected into athymic rat hearts 1 week after myocardial infarction. Initial infarct size was measured by cardiac magnetic resonance 1 day after myocardial infarction. Compared with vehicle treatment, treatment with ESC-CMs improved global systolic function 1 and 2 months after injection and significantly increased contractile function in initially infarcted areas and border zones. Immunohistochemistry confirmed successful engraftment and the persistence of α-actinin-positive ESC-CMs that also expressed α-smooth muscle actin. Connexin-43-positive sites were observed between grafted ESC-CMs but only rarely between grafted and host CMs. No teratomas were observed in any of the animals. CONCLUSIONS Highly enriched and early-stage ESC-CMs were safe, formed stable grafts, and mediated a long-term recovery of global and regional myocardial contractile function after infarction.
Collapse
Affiliation(s)
- Hui Qiao
- Laboratories of Molecular Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA
- Laboratories of Molecular Imaging, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - Hualei Zhang
- Laboratories of Molecular Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA
- Laboratories of Molecular Imaging, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Laboratories of Molecular Imaging, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | | | - Vickas V. Patel
- Laboratories of Molecular Imaging, Department of Medicine (Division of Cardiovascular Medicine), University of Pennsylvania, Philadelphia, PA
- Laboratories of Molecular Imaging, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - Nataliya B. Petrenko
- Laboratories of Molecular Imaging, Department of Medicine (Division of Cardiovascular Medicine), University of Pennsylvania, Philadelphia, PA
- Laboratories of Molecular Imaging, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - Bin Huang
- Laboratories of Molecular Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA
- Laboratories of Molecular Imaging, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | - Larry R. Muenz
- Larry R. Muenz and Associates Biostatistical Consulting, Study Design & Analysis, Gaithersburg, MD
| | - Victor A. Ferrari
- Laboratories of Molecular Imaging, Department of Medicine (Division of Cardiovascular Medicine), University of Pennsylvania, Philadelphia, PA
- Laboratories of Molecular Imaging, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| | | | - Rong Zhou
- Laboratories of Molecular Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA
- Laboratories of Molecular Imaging, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Laboratories of Molecular Imaging, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
19
|
Wan CR, Frohlich EM, Charest JL, Kamm RD. Effect of Surface Patterning and Presence of Collagen I on the Phenotypic Changes of Embryonic Stem Cell Derived Cardiomyocytes. Cell Mol Bioeng 2010. [DOI: 10.1007/s12195-010-0150-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
20
|
Christoforou N, Oskouei BN, Esteso P, Hill CM, Zimmet JM, Bian W, Bursac N, Leong KW, Hare JM, Gearhart JD. Implantation of mouse embryonic stem cell-derived cardiac progenitor cells preserves function of infarcted murine hearts. PLoS One 2010; 5:e11536. [PMID: 20634944 PMCID: PMC2902505 DOI: 10.1371/journal.pone.0011536] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 06/16/2010] [Indexed: 01/16/2023] Open
Abstract
Stem cell transplantation holds great promise for the treatment of myocardial infarction injury. We recently described the embryonic stem cell-derived cardiac progenitor cells (CPCs) capable of differentiating into cardiomyocytes, vascular endothelium, and smooth muscle. In this study, we hypothesized that transplanted CPCs will preserve function of the infarcted heart by participating in both muscle replacement and neovascularization. Differentiated CPCs formed functional electromechanical junctions with cardiomyocytes in vitro and conducted action potentials over cm-scale distances. When transplanted into infarcted mouse hearts, CPCs engrafted long-term in the infarct zone and surrounding myocardium without causing teratomas or arrhythmias. The grafted cells differentiated into cross-striated cardiomyocytes forming gap junctions with the host cells, while also contributing to neovascularization. Serial echocardiography and pressure-volume catheterization demonstrated attenuated ventricular dilatation and preserved left ventricular fractional shortening, systolic and diastolic function. Our results demonstrate that CPCs can engraft, differentiate, and preserve the functional output of the infarcted heart.
Collapse
Affiliation(s)
- Nicolas Christoforou
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bralten LBC, Kloosterhof NK, Gravendeel LAM, Sacchetti A, Duijm EJ, Kros JM, van den Bent MJ, Hoogenraad CC, Sillevis Smitt PAE, French PJ. Integrated genomic profiling identifies candidate genes implicated in glioma-genesis and a novel LEO1-SLC12A1 fusion gene. Genes Chromosomes Cancer 2010; 49:509-17. [PMID: 20196086 DOI: 10.1002/gcc.20760] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We performed genotyping and exon-level expression profiling on 21 glioblastomas (GBMs) and 19 oligodendrogliomas (ODs) to identify genes involved in glioma initiation and/or progression. Low-copy number amplifications (2.5 < n < 7) and high-copy number amplifications (n > 7) were more frequently observed in GBMs; ODs generally have more heterozygous deletions per tumor. Four high-copy amplicons were identified in more than one sample and resulted in overexpression of the known oncogenes EGFR, MDM2, and CDK4. In the fourth amplicon, RBBP5, a member of the RB pathway, may act as a novel oncogene in GBMs. Not all hCNAs contain known genes, which may suggest that other transcriptional and/or regulatory elements are the target for amplification. Regions with most frequent allelic loss, both in ODs and GBMs, resulted in a reduced expression of known tumor suppressor genes. We identified a homozygous deletion spanning the Pragmin gene in one sample, but direct sequencing of all coding exons in 20 other glioma samples failed to detect additional genetic changes. Finally, we screened for fusion genes by identifying aberrant 5'-3' expression of genes that lie over regions of a copy number change. A fusion gene between exon 11 of LEO1 and exon 10 of SLC12A1 was identified. Our data show that integrated genomic profiling can identify genes involved in tumor initiation, and/or progression and can be used as an approach to identify novel fusion genes.
Collapse
|
22
|
Biehl JK, Yamanaka S, Desai TA, Boheler KR, Russell B. Proliferation of mouse embryonic stem cell progeny and the spontaneous contractile activity of cardiomyocytes are affected by microtopography. Dev Dyn 2009; 238:1964-73. [PMID: 19618471 DOI: 10.1002/dvdy.22030] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The niche in which stem cells reside and differentiate is a complex physicochemical microenvironment that regulates cell function. The role played by three-dimensional physical contours was studied on cell progeny derived from mouse embryonic stem cells using microtopographies created on PDMS (poly-dimethyl-siloxane) membranes. While markers of differentiation were not affected, the proliferation of heterogeneous mouse embryonic stem cell-derived progeny was attenuated by 15 microm-, but not 5 microm-high microprojections. This reduction was reversed by Rho kinase and myosin light chain kinase inhibition, which diminishes the tension generating ability of stress fibers. Purified cardiomyocytes derived from embryonic stem cells also showed significant blunting of proliferation and increased beating rates compared with cells grown on flat substrates. Thus, proliferation of stem cell-derived progeny appears to be regulated by microtopography through tension-generation of contractility in the third-dimension. These results emphasize the importance of topographic cues in the modulation of stem cell progeny behavior.
Collapse
Affiliation(s)
- Jesse K Biehl
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60612-7342, USA
| | | | | | | | | |
Collapse
|