1
|
Sogawa C, Shimada K, Nakano K. The Possibility of Plasma Membrane Transporters as Drug Targets in Oral Cancers. Int J Mol Sci 2025; 26:4310. [PMID: 40362545 PMCID: PMC12072478 DOI: 10.3390/ijms26094310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Plasma membrane transporters are increasingly recognized as potential drug targets for oral cancer, particularly oral squamous cell carcinoma (OSCC). These transporters play crucial roles in cancer cell metabolism, drug resistance, and the tumor microenvironment, making them attractive targets for therapeutic intervention. Among the two main families of plasma membrane transporters, ATP-binding cassette (ABC) transporters have long been known to be involved in drug efflux and contribute to chemoresistance in cancer cells. On the other hand, solute carriers (SLCs) are also a family of transporters that facilitate the transport of various substrates, including nutrients and drugs, and have recently been shown to contribute to cancer chemosensitivity, metabolism, and proliferation. SLC transporters have been identified as potential cancer biomarkers and therapeutic targets, and their expression profiles suggest that they could be utilized in precision oncology approaches. We summarize previous reports on the expression and role of ABC and SLC transporters in oral cancer and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Chiharu Sogawa
- Department of Food and Health Sciences, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Department of Clinical Engineering Faculty of Life Sciences, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
| | - Katsumitsu Shimada
- Department of Clinical Phathophysiology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri 399-0781, Japan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama-city, Okayama 700-8558, Japan
| |
Collapse
|
2
|
Sałagacka-Kubiak A, Zawada D, Saed L, Kordek R, Jeleń A, Balcerczak E. ABCG2 Gene and ABCG2 Protein Expression in Colorectal Cancer-In Silico and Wet Analysis. Int J Mol Sci 2023; 24:10539. [PMID: 37445716 DOI: 10.3390/ijms241310539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
ABCG2 (ATP-binding cassette superfamily G member 2) is a cell membrane pump encoded by the ABCG2 gene. ABCG2 can protect cells against compounds initiating and/or intensifying neoplasia and is considered a marker of stem cells responsible for cancer growth, drug resistance and recurrence. Expression of the ABCG2 gene or its protein has been shown to be a negative prognostic factor in various malignancies. However, its prognostic significance in colorectal cancer remains unclear. Using publicly available data, ABCG2 was shown to be underexpressed in colon and rectum adenocarcinomas, with lower expression compared to both the adjacent nonmalignant lung tissues and non-tumour lung tissues of healthy individuals. This downregulation could result from the methylation level of some sites of the ABCG2 gene. This was connected with microsatellite instability, weight and age among patients with colon adenocarcinoma, and with tumour localization, population type and age of patients for rectum adenocarcinoma. No association was found between ABCG2 expression level and survival of colorectal cancer patients. In wet analysis of colorectal cancer samples, neither ABCG2 gene expression, analysed by RT-PCR, nor ABCG2 protein level, assessed by immunohistochemistry, was associated with any clinicopathological factors or overall survival. An ABCG2-centered protein-protein interaction network build by STRING showed proteins were found to be involved in leukotriene, organic anion and xenobiotic transport, endodermal cell fate specification, and histone methylation and ubiquitination. Hence, ABCG2 underexpression could be an indicator of the activity of certain signalling pathways or protein interactors essential for colorectal carcinogenesis.
Collapse
Affiliation(s)
- Aleksandra Sałagacka-Kubiak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| | - Dawid Zawada
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| | - Lias Saed
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| | - Radzisław Kordek
- Department of Pathology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Agnieszka Jeleń
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| | - Ewa Balcerczak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| |
Collapse
|
3
|
Yu S, Qiao X, Yang Y, Gu X, Sun W, Liu X, Zhang D, Wang L, Song L. An ATP-binding cassette transporter G2 (CgABCG2) regulates the haemocyte proliferation by modulating the G1/S phase transition of cell cycle in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108441. [PMID: 36403705 DOI: 10.1016/j.fsi.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
ATP-binding cassette transporter G2 (ABCG2) is a half-transporter of the G subfamily in ATP-binding cassette transporters (ABC transporter), which is involved in the regulation of multidrug-resistant, cell cycle, and cell proliferation. In the present study, a homologue of ABCG2 (named as CgABCG2) with the conserved AAA domain and ABC2 membrane domain was identified from the Pacific oyster Crassostrea gigas. The open reading frame (ORF) of CgABCG2 was of 1956 bp encoding a predicted polypeptide of 652 amino acids, which shared 56.7%-65.7% sequence similarities with previously identified ABCG2s from other animals. The mRNA transcripts of CgABCG2 were detected in all the tested tissues with higher expression levels in gonad and haemocytes (19.31-fold and 11.23-fold of that in adductor muscle respectively, p < 0.05). CgABCG2 was mainly distributed on the cell membrane of the haemocytes with a partial distribution in the cytoplasm and nucleus. After Vibrio splendidus stimulation, the mRNA expression level of CgABCG2 in haemocytes was significantly up-regulated at 3 h and 6 h, which was 5.22-fold and 8.60-fold (p < 0.05) of that in control, respectively. After the expression of CgABCG2 was interfered by RNAi, the number of cells with EdU positive signals was reduced in both haemocytes and the potential hematopoietic sites. And the mRNA expression level of CgPCNA, CgGATA3, CgRunx, CgSCL and CgC-kit decreased significantly (p < 0.05), which were about 0.66-, 0.37-, 0.32-, 0.50-, and 0.50-fold of that in the negative control group, respectively. While the mRNA expression level of CgCDK2 increased significantly (1.84-fold to that in control, p < 0.05) and that of stem cell-related factor CgSOX2 did not change significantly in the si-CgABCG2 oysters. Moreover, the cell cycle of haemocytes was detected by flow cytometry, which was arrested at G0/G1 phase in the si-CgABCG2 oysters. All the results collectively suggested that CgABCG2 might involve the proliferation of haemocytes by regulating the expression of haematopoiesis related transcription factors and the G1/S phase transition of the cell cycle in oyster C. gigas.
Collapse
Affiliation(s)
- Simiao Yu
- School of Life Science, Liaoning Normal University, Dalian, 116029, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Ying Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoyu Gu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Wending Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Dan Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
4
|
Yegorov YE, Vishnyakova KS, Pan X, Egorov AE, Popov KV, Tevonyan LL, Chashchina GV, Kaluzhny DN. Mechanisms of Phototoxic Effects of Cationic Porphyrins on Human Cells In Vitro. Molecules 2023; 28:molecules28031090. [PMID: 36770766 PMCID: PMC9921399 DOI: 10.3390/molecules28031090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The toxic effects of four cationic porphyrins on various human cells were studied in vitro. It was found that, under dark conditions, porphyrins are almost nontoxic, while, under the action of light, the toxic effect was observed starting from nanomolar concentrations. At a concentration of 100 nM, porphyrins caused inhibition of metabolism in the MTT test in normal and cancer cells. Furthermore, low concentrations of porphyrins inhibited colony formation. The toxic effect was nonlinear; with increasing concentrations of various porphyrins, up to about 1 μM, the effect reached a plateau. In addition to the MTT test, this was repeated in experiments examining cell permeability to trypan blue, as well as survival after 24 h. The first visible manifestation of the toxic action of porphyrins is blebbing and swelling of cells. Against the background of this process, permeability to porphyrins and trypan blue appears. Subsequently, most cells (even mitotic cells) freeze in this swollen state for a long time (24 and even 48 h), remaining attached. Cellular morphology is mostly preserved. Thus, it is clear that the cells undergo mainly necrotic death. The hypothesis proposed is that the concentration dependence of membrane damage indicates a limited number of porphyrin targets on the membrane. These targets may be any ion channels, which should be considered in photodynamic therapy.
Collapse
Affiliation(s)
- Yegor E. Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (Y.E.Y.); (D.N.K.)
| | - Khava S. Vishnyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Xiaowen Pan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, Russian Academy of Sciences, 141701 Dolgoprudny, Russia
| | - Anton E. Egorov
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, 4 Kosygin Street, 119334 Moscow, Russia
| | - Konstantin V. Popov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I.Kulakov, 4 Oparina Street, 117997 Moscow, Russia
| | - Liana L. Tevonyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, Russian Academy of Sciences, 141701 Dolgoprudny, Russia
| | - Galina V. Chashchina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry N. Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (Y.E.Y.); (D.N.K.)
| |
Collapse
|
5
|
Benkerroum N, Ismail A. Human Breast Milk Contamination with Aflatoxins, Impact on Children's Health, and Possible Control Means: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16792. [PMID: 36554670 PMCID: PMC9779431 DOI: 10.3390/ijerph192416792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Aflatoxins are natural toxicants produced mainly by species of the Aspergillus genus, which contaminate virtually all feeds and foods. Apart from their deleterious health effects on humans and animals, they can be secreted unmodified or carried over into the milk of lactating females, thereby posing health risks to suckling babies. Aflatoxin M1 (AFM1) is the major and most toxic aflatoxin type after aflatoxin B1 (AFB1). It contaminates human breast milk upon direct ingestion from dairy products or by carry-over from the parent molecule (AFB1), which is hydroxylated in the liver and possibly in the mammary glands by cytochrome oxidase enzymes and then excreted into breast milk as AFM1 during lactation via the mammary alveolar epithelial cells. This puts suckling infants and children fed on this milk at a high risk, especially that their detoxifying activities are still weak at this age essentially due to immature liver as the main organ responsible for the detoxification of xenobiotics. The occurrence of AFM1 at toxic levels in human breast milk and associated health conditions in nursing children is well documented, with developing countries being the most affected. Different studies have demonstrated that contamination of human breast milk with AFM1 represents a real public health issue, which should be promptly and properly addressed to reduce its incidence. To this end, different actions have been suggested, including a wider and proper implementation of regulatory measures, not only for breast milk but also for foods and feeds as the upstream sources for breast milk contamination with AFM1. The promotion of awareness of lactating mothers through the organization of training sessions and mass media disclosures before and after parturition is of a paramount importance for the success of any action. This is especially relevant that there are no possible control measures to ensure compliance of lactating mothers to specific regulatory measures, which can yet be appropriate for the expansion of breast milk banks in industrialized countries and emergence of breast milk sellers. This review attempted to revisit the public health issues raised by mother milk contamination with AFM1, which remains undermined despite the numerous relevant publications highlighting the needs to tackle its incidence as a protective measure for the children physical and mental health.
Collapse
Affiliation(s)
- Noreddine Benkerroum
- Expertise Aliments Santé, Food Health Consultancy, 7450 Dollier Str., Montréal, QC H1S 2J6, Canada
| | - Amir Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan
| |
Collapse
|
6
|
Wada M. Role of ABC Transporters in Cancer Development and Malignant Alteration. YAKUGAKU ZASSHI 2022; 142:1201-1225. [DOI: 10.1248/yakushi.22-00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Kukal S, Guin D, Rawat C, Bora S, Mishra MK, Sharma P, Paul PR, Kanojia N, Grewal GK, Kukreti S, Saso L, Kukreti R. Multidrug efflux transporter ABCG2: expression and regulation. Cell Mol Life Sci 2021; 78:6887-6939. [PMID: 34586444 PMCID: PMC11072723 DOI: 10.1007/s00018-021-03901-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022]
Abstract
The adenosine triphosphate (ATP)-binding cassette efflux transporter G2 (ABCG2) was originally discovered in a multidrug-resistant breast cancer cell line. Studies in the past have expanded the understanding of its role in physiology, disease pathology and drug resistance. With a widely distributed expression across different cell types, ABCG2 plays a central role in ATP-dependent efflux of a vast range of endogenous and exogenous molecules, thereby maintaining cellular homeostasis and providing tissue protection against xenobiotic insults. However, ABCG2 expression is subjected to alterations under various pathophysiological conditions such as inflammation, infection, tissue injury, disease pathology and in response to xenobiotics and endobiotics. These changes may interfere with the bioavailability of therapeutic substrate drugs conferring drug resistance and in certain cases worsen the pathophysiological state aggravating its severity. Considering the crucial role of ABCG2 in normal physiology, therapeutic interventions directly targeting the transporter function may produce serious side effects. Therefore, modulation of transporter regulation instead of inhibiting the transporter itself will allow subtle changes in ABCG2 activity. This requires a thorough comprehension of diverse factors and complex signaling pathways (Kinases, Wnt/β-catenin, Sonic hedgehog) operating at multiple regulatory levels dictating ABCG2 expression and activity. This review features a background on the physiological role of transporter, factors that modulate ABCG2 levels and highlights various signaling pathways, molecular mechanisms and genetic polymorphisms in ABCG2 regulation. This understanding will aid in identifying potential molecular targets for therapeutic interventions to overcome ABCG2-mediated multidrug resistance (MDR) and to manage ABCG2-related pathophysiology.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivangi Bora
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Priya Sharma
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
| | - Priyanka Rani Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gurpreet Kaur Grewal
- Department of Biotechnology, Kanya Maha Vidyalaya, Jalandhar, Punjab, 144004, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, 110007, India
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
A Novel 89Zr-labeled DDS Device Utilizing Human IgG Variant (scFv): "Lactosome" Nanoparticle-Based Theranostics for PET Imaging and Targeted Therapy. Life (Basel) 2021; 11:life11020158. [PMID: 33670777 PMCID: PMC7923095 DOI: 10.3390/life11020158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
“Theranostics,” a new concept of medical advances featuring a fusion of therapeutic and diagnostic systems, provides promising prospects in personalized medicine, especially cancer. The theranostics system comprises a novel 89Zr-labeled drug delivery system (DDS), derived from the novel biodegradable polymeric micelle, “Lactosome” nanoparticles conjugated with specific shortened IgG variant, and aims to successfully deliver therapeutically effective molecules, such as the apoptosis-inducing small interfering RNA (siRNA) intracellularly while offering simultaneous tumor visualization via PET imaging. A 27 kDa-human single chain variable fragment (scFv) of IgG to establish clinically applicable PET imaging and theranostics in cancer medicine was fabricated to target mesothelin (MSLN), a 40 kDa-differentiation-related cell surface glycoprotein antigen, which is frequently and highly expressed by malignant tumors. This system coupled with the cell penetrating peptide (CPP)-modified and photosensitizer (e.g., 5, 10, 15, 20-tetrakis (4-aminophenyl) porphyrin (TPP))-loaded Lactosome particles for photochemical internalized (PCI) driven intracellular siRNA delivery and the combination of 5-aminolevulinic acid (ALA) photodynamic therapy (PDT) offers a promising nano-theranostic-based cancer therapy via its targeted apoptosis-inducing feature. This review focuses on the combined advances in nanotechnology and material sciences utilizing the “89Zr-labeled CPP and TPP-loaded Lactosome particles” and future directions based on important milestones and recent developments in this platform.
Collapse
|
9
|
Lim MSH, Nishiyama Y, Ohtsuki T, Watanabe K, Kobuchi H, Kobayashi K, Matsuura E. Lactosome-Conjugated siRNA Nanoparticles for Photo-Enhanced Gene Silencing in Cancer Cells. J Pharm Sci 2021; 110:1788-1798. [PMID: 33529684 DOI: 10.1016/j.xphs.2021.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
The A3B-type Lactosome comprised of poly(sarcosine)3-block-poly(l-lactic acid), a biocompatible and biodegradable polymeric nanomicelle, was reported to accumulate in tumors in vivo via the enhanced permeability and retention (EPR) effect. Recently, the cellular uptake of Lactosome particles was enhanced through the incorporation of a cell-penetrating peptide (CPP), L7EB1. However, the ability of Lactosome as a drug delivery carrier has not been established. Herein, we have developed a method to conjugate the A3B-type Lactosome with ATP-binding cassette transporter G2 (ABCG2) siRNA for inducing in vitro apoptosis in the cancer cell lines PANC-1 and NCI-H226. The L7EB1 peptide facilitates the cellular uptake efficiency of Lactosome but does not deliver siRNA into cytosol. To establish the photoinduced cytosolic dispersion of siRNA, a photosensitizer loaded L7EB1-Lactosome was prepared, and the photosensitizer 5,10,15,20-tetra-kis(pentafluorophenyl)porphyrin (TPFPP) showed superiority in photoinduced cytosolic dispersion. We exploited the combined effects of enhanced cellular uptake by L7EB1 and photoinduced endosomal escape by TPFPP to efficiently deliver ABCG2 siRNA into the cytosol for gene silencing. Moreover, the silencing of ABCG2, a protoporphyrin IX (PpIX) transporter, also mediated photoinduced cell death via 5-aminolevulinic acid (ALA)-mediated PpIX accumulated photodynamic therapy (PDT). The synergistic capability of the L7EB1/TPFPP/siRNA-Lactosome complex enabled both gene silencing and PDT.
Collapse
Affiliation(s)
- Melissa Siaw Han Lim
- Department of Cell Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yuki Nishiyama
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Takashi Ohtsuki
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan.
| | - Kazunori Watanabe
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Hirotsugu Kobuchi
- Department of Cell Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kazuko Kobayashi
- Department of Cell Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Eiji Matsuura
- Department of Cell Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Neutron Therapy Research Centre, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Collaborative Research Centre for OMIC, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
10
|
Ito H, Kurokawa H, Matsui H. Mitochondrial reactive oxygen species and heme, non-heme iron metabolism. Arch Biochem Biophys 2020; 700:108695. [PMID: 33232715 DOI: 10.1016/j.abb.2020.108695] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are one of the most important organelles for eukaryotes, including humans, to produce energy. In the energy-producing process, mitochondria constantly generate reactive oxygen species as a by-product of electrons leaking out from the electron transport chain react with oxygen. The active oxygen, in turn, plays pivotal roles in mediating several signalings, including those that are implicated in the development of some diseases such as neurodegenerative disease, cardiovascular disease, and carcinogenesis. This signaling, derived from mitochondrial reactive oxygen species, also affects intracellular iron homeostasis by regulating the expression of transporters. Heme iron is incorporated into cells through HCP1, and non-heme iron is transported by DMT1 in absorptive cells. Intracellular iron is exported by ferroportin and bound with transferrin. In most types of cell including erythrocyte, transferrin-bound iron is incorporated through transferrin-transferrin receptor system. We previously reported that the expression of HCP1 and DMT1 was upregulated in cancer cells and that overexpression of manganese superoxide dismutase, which is a mitochondrial-specific superoxide dismutase, downregulated the expression. These findings indicate that mitochondrial reactive oxygen species is associated with iron-related oxidative reactions. Recently, a mitochondria-specific iron transporter, mitoferrin, was identified, and the relationships among mitochondria, iron transportation, and diseases have been increasingly clarified.
Collapse
Affiliation(s)
- Hiromu Ito
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hiromi Kurokawa
- Algae Biomass research and development, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hirofumi Matsui
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan; Algae Biomass research and development, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
11
|
You D, Richardson JR, Aleksunes LM. Epigenetic Regulation of Multidrug Resistance Protein 1 and Breast Cancer Resistance Protein Transporters by Histone Deacetylase Inhibition. Drug Metab Dispos 2020; 48:459-480. [PMID: 32193359 PMCID: PMC7250367 DOI: 10.1124/dmd.119.089953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Multidrug resistance protein 1 (MDR1, ABCB1, P-glycoprotein) and breast cancer resistance protein (BCRP, ABCG2) are key efflux transporters that mediate the extrusion of drugs and toxicants in cancer cells and healthy tissues, including the liver, kidneys, and the brain. Altering the expression and activity of MDR1 and BCRP influences the disposition, pharmacodynamics, and toxicity of chemicals, including a number of commonly prescribed medications. Histone acetylation is an epigenetic modification that can regulate gene expression by changing the accessibility of the genome to transcriptional regulators and transcriptional machinery. Recently, studies have suggested that pharmacological inhibition of histone deacetylases (HDACs) modulates the expression and function of MDR1 and BCRP transporters as a result of enhanced histone acetylation. This review addresses the ability of HDAC inhibitors to modulate the expression and the function of MDR1 and BCRP transporters and explores the molecular mechanisms by which HDAC inhibition regulates these transporters. While the majority of studies have focused on histone regulation of MDR1 and BCRP in drug-resistant and drug-sensitive cancer cells, emerging data point to similar responses in nonmalignant cells and tissues. Elucidating epigenetic mechanisms regulating MDR1 and BCRP is important to expand our understanding of the basic biology of these two key transporters and subsequent consequences on chemoresistance as well as tissue exposure and responses to drugs and toxicants. SIGNIFICANCE STATEMENT: Histone deacetylase inhibitors alter the expression of key efflux transporters multidrug resistance protein 1 and breast cancer resistance protein in healthy and malignant cells.
Collapse
Affiliation(s)
- Dahea You
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey (D.Y.); Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida (J.R.R.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (J.R.R., L.M.A.); and Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey (L.M.A.)
| | - Jason R Richardson
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey (D.Y.); Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida (J.R.R.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (J.R.R., L.M.A.); and Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey (L.M.A.)
| | - Lauren M Aleksunes
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey (D.Y.); Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida (J.R.R.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (J.R.R., L.M.A.); and Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey (L.M.A.)
| |
Collapse
|
12
|
Fu L, Wang R, Yin L, Shang X, Zhang R, Zhang P. A meta-analysis of ABCG2 gene polymorphism and non-small cell lung cancer outcomes. Genet Mol Biol 2020; 42:e20180234. [PMID: 32159608 PMCID: PMC7266279 DOI: 10.1590/1678-4685-gmb-2018-0234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/05/2018] [Indexed: 01/11/2023] Open
Abstract
We aimed to analyze the correlation between ABCG2 gene
polymorphisms of 34 GG/(GA + AA) loci, 421 CC/(AC + AA) loci, and non-small cell
lung cancer (NSCLC) therapeutic effects via meta-analysis. With key words, the
databases PubMed and EMBASE were searched for clinical studies on ABCG2
polymorphism and NSCLC. RR and 95% CIs were
used to compute combined effects, followed by heterogeneity testing. Publication
bias was examined using the funnel plot method. Review Manager 5.3 software was
used for the meta-analysis. Ten studies were included. No evidence of
heterogeneity exists in these studies. The results indicate that two polymorphic
loci of ABCG2 gene (34 G>A, and 421 C>A) had no
relationship with the curative effect of chemotherapy for NSCLC, except ABCG2
34G>A, which had a significant relationship with the skin toxicity
complication. There was no significant relationship between these polymorphisms
and complications (skin toxicity, diarrhea, interstitial pneumonia, liver
dysfunction, and neutropenia). Begg’s test and Egger’s test indicated that there
was no obvious publication bias. The meta-analysis indicated that there was no
significant correlation between ABCG2 gene polymorphism and
NSCLC outcomes.
Collapse
Affiliation(s)
- Lei Fu
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,Joint Logistics College, National Defence University of PLA, Beijing, China
| | - Rong Wang
- National Research Institute for Family Planning, Beijing, China
| | - Ling Yin
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xiaopu Shang
- Beijing Jiaotong University, Beijing, School of Economics and Management, China
| | - Runtong Zhang
- Beijing Jiaotong University, Beijing, School of Economics and Management, China
| | - Pengjun Zhang
- Peking University Cancer Hospital and Institute, Department of Interventional Therapy, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education of China), Beijing, China
| |
Collapse
|
13
|
Mares L, Vilchis F, Chávez B, Ramos L. Expression and regulation of ABCG2/BCRP1 by sex steroids in the Harderian gland of the Syrian hamster (Mesocricetus auratus). C R Biol 2019; 342:279-289. [PMID: 31780416 DOI: 10.1016/j.crvi.2019.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 01/16/2023]
Abstract
The ATP-Binding Cassette, subfamily G, member 2 (ABCG2) transporter is associated with the regulation of protoporphyrin IX transport and of other intermediates in heme biosynthesis. Because the hamster Harderian gland (HG) exhibits high concentrations of porphyrins and sexual dimorphism, we analyzed the hamster ABCG2. Cloned cDNA [2098-base pairs (bp)] contains an open-reading frame (ORF) of 1971-bp that encodes a 656 amino-acid protein with a molecular weight of 72844.56Da. The hamster ABCG2 sequence is conserved phylogenetically and shares a high percentage of identity with mouse (89%), rat (88%), and human (84%) transporters. Within its structure, a Walker A (G-X-X-G-X-G-K-S), a C signature motif characteristic of ABC transporters, and six putative transmembrane domains (TMDs) were identified. ABCG2 mRNA was detected in all hamster tissues, with higher amounts found in HG, brain, cerebellum, kidney, gut, ovary, and testis. Harderian ABCG2 expression exhibits a sexually dimorphic pattern where females display higher mRNA levels than males. Different patterns of transcriptional profiles of ABCG2 during the estrous cycle and after gonadectomy in both sexes were also observed. The differential expression between male and female HGs suggests that ABCG2 is under the regulation of gonadal steroids. The ABCG2 transporter is likely involved in the endogenous regulation of porphyrins in hamster HGs.
Collapse
Affiliation(s)
- Lizette Mares
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Felipe Vilchis
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Bertha Chávez
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - Luis Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico.
| |
Collapse
|
14
|
Namikawa T, Fujisawa K, Munekage E, Iwabu J, Uemura S, Tsujii S, Maeda H, Kitagawa H, Fukuhara H, Inoue K, Sato T, Kobayashi M, Hanazaki K. Clinical application of photodynamic medicine technology using light-emitting fluorescence imaging based on a specialized luminous source. Med Mol Morphol 2018; 51:187-193. [PMID: 29619546 DOI: 10.1007/s00795-018-0190-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/02/2018] [Indexed: 02/08/2023]
Abstract
The natural amino acid 5-aminolevulinic acid (ALA) is a protoporphyrin IX (PpIX) precursor and a new-generation photosensitive substance that accumulates specifically in cancer cells. When indocyanine green (ICG) is irradiated with near-infrared (NIR) light, it shifts to a higher energy state and emits infrared light with a longer wavelength than the irradiated NIR light. Photodynamic diagnosis (PDD) using ALA and ICG-based NIR fluorescence imaging has emerged as a new diagnostic technique. Specifically, in laparoscopic examinations for serosa-invading advanced gastric cancer, peritoneal metastases could be detected by ALA-PDD, but not by conventional visible-light imaging. The HyperEye Medical System (HEMS) can visualize ICG fluorescence as color images simultaneously projected with visible light in real time. This ICG fluorescence method is widely applicable, including for intraoperative identification of sentinel lymph nodes, visualization of blood vessels in organ resection, and blood flow evaluation during surgery. Fluorescence navigation by ALA-PDD and NIR using ICG imaging provides good visualization and detection of the target lesions that is not possible with the naked eye. We propose that this technique should be used in fundamental research on the relationship among cellular dynamics, metabolic enzymes, and tumor tissues, and to evaluate clinical efficacy and safety in multicenter cooperative clinical trials.
Collapse
Affiliation(s)
- Tsutomu Namikawa
- Department of Surgery, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan.
- Center for Photodynamic Medicine, Kochi Medical School Hospital, Kochi, Japan.
| | - Kazune Fujisawa
- Department of Surgery, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Eri Munekage
- Department of Surgery, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Jun Iwabu
- Department of Surgery, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Sunao Uemura
- Department of Surgery, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Shigehiro Tsujii
- Department of Surgery, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Hiromichi Maeda
- Cancer Treatment Center, Kochi Medical School Hospital, Kochi, Japan
| | - Hiroyuki Kitagawa
- Department of Surgery, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Hideo Fukuhara
- Center for Photodynamic Medicine, Kochi Medical School Hospital, Kochi, Japan
- Department of Urology, Kochi Medical School, Kochi, Japan
| | - Keiji Inoue
- Center for Photodynamic Medicine, Kochi Medical School Hospital, Kochi, Japan
- Department of Urology, Kochi Medical School, Kochi, Japan
| | - Takayuki Sato
- Center for Photodynamic Medicine, Kochi Medical School Hospital, Kochi, Japan
- Department of Cardiovascular Control, Kochi Medical School, Kochi, Japan
| | - Michiya Kobayashi
- Cancer Treatment Center, Kochi Medical School Hospital, Kochi, Japan
- Department of Human Health and Medical Sciences, Kochi Medical School, Kochi, Japan
| | - Kazuhiro Hanazaki
- Department of Surgery, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan
- Center for Photodynamic Medicine, Kochi Medical School Hospital, Kochi, Japan
| |
Collapse
|
15
|
Rosen MB, Jeffay SC, Nichols HP, Hoopes MR, Hunter ES. ATP Binding Cassette Sub-family Member 2 (ABCG2) and Xenobiotic Exposure During Early Mouse Embryonic Stem Cell Differentiation. Birth Defects Res 2018; 110:35-47. [PMID: 28990372 PMCID: PMC9831278 DOI: 10.1002/bdr2.1114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND ATP binding cassette sub-family member 2 (ABCG2) is a well-defined efflux transporter found in a variety of tissues. The role of ABCG2 during early embryonic development, however, is not established. Previous work which compared data from the ToxCast screening program with that from in-house studies suggested an association exists between exposure to xenobiotics that regulate Abcg2 transcription and differentiation of mouse embryonic stem cells (mESC), a relationship potentially related to redox homeostasis. METHODS mESC were grown for up to 9 days. Pharmacological inhibitors were used to assess transporter function with and without xenobiotic exposure. Proliferation and differentiation were evaluated using RedDot1 and quantiative reverse transcriptase-polymerase chain reaction, respectively. ABCG2 activity was assessed using a Pheophorbide a-based fluorescent assay. Protein expression was measured by capillary-based immunoassay. RESULTS ABCG2 activity increased in differentiating mESC. Treatment with K0143, an inhibitor of ABCG2, had no effect on proliferation or differentiation. As expected, mitoxantrone and topotecan, two chemotherapeutics, displayed increased toxicity in the presence of K0143. Exposure to K0143 in combination with chemicals predicted by ToxCast to regulate ABCG2 expression did not alter xenobiotic-induced toxicity. Moreover, inhibition of ABCG2 did not shift the toxicity of either tert-Butyl hydroperoxide or paraquat, two oxidative stressors. CONCLUSION As previously reported, ABCG2 serves a protective role in mESC. The role of ABCG2 in regulating redox status, however, was unclear. The hypothesis that ABCG2 plays a fundamental role during mESC differentiation or that regulation of the receptor by xenobiotics may be associated with altered mESC differentiation could not be supported. Birth Defects Research, 110:35-47, 2018. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Mitchell B Rosen
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division, Research Triangle Park, North Carolina
| | - Susan C Jeffay
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division, Research Triangle Park, North Carolina
| | - Harriette P Nichols
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division, Research Triangle Park, North Carolina
| | - Maria R Hoopes
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division, Research Triangle Park, North Carolina
| | - E Sidney Hunter
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division, Research Triangle Park, North Carolina
| |
Collapse
|
16
|
Yun JH, Kim KA, Yoo G, Kim SY, Shin JM, Kim JH, Jung SH, Kim J, Nho CW. Phenethyl isothiocyanate suppresses cancer stem cell properties in vitro and in a xenograft model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 30:42-49. [PMID: 28545668 DOI: 10.1016/j.phymed.2017.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/31/2016] [Accepted: 01/29/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are a subset of cells within the bulk of a tumor that have the ability to self-renew and differentiate, and are thus associated with cancer invasion, metastasis, and recurrence. Phenethyl isothiocyanate (PEITC) is a natural compound found in cruciferous vegetables such as broccoli and is used as a cancer chemopreventive agent; however, its effects on CSCs are little known. PURPOSE To evaluate the effect of PEITC on CSCs in this study by examining CSC properties. METHODS NCCIT human embryonic carcinoma cells were treated with PEITC, and the expression of pluripotency factors Oct4, Sox-2, and Nanog were evaluated by luciferase assay and western blot. Effect of PEITC on self-renewal capacity and clonogenicity were assessed with the sphere formation, soft agar assay, and clonogenic assay in an epithelial cell adhesion molecule (EpCAM)-expressing CSC model derived from HCT116 colon cancer cells using a cell sorting system. The effect of PEITC was also investigated in a mouse xenograft model obtained by injecting nude mice with EpCAM-expressing cells. RESULTS We found that PEITC treatment suppressed expression of the all three pluripotency factors in the NCCIT cells, in which pluripotency factors are highly expressed. Moreover, PEITC suppressed the self-renewal capacity and clonogenicity in the EpCAM-expressing CSC model. EpCAM was used as a specific CSC marker in this study. Importantly, PEITC markedly suppressed both tumor growth and expression of three pluripotency factors in a mouse xenograft model. CONCLUSION These results demonstrate that PEITC might be able to slow down or prevent cancer recurrence by suppressing CSC stemness.
Collapse
Affiliation(s)
- Ji Ho Yun
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea; Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea; Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Kyung-A Kim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea; Department of Biological Chemistry, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Gyhye Yoo
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea; Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea
| | - Sun Young Kim
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea
| | - Ji Min Shin
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea; Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea; Department of Biological Chemistry, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jung Hoon Kim
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Sang Hoon Jung
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea
| | - Jungho Kim
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Chu Won Nho
- Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea.
| |
Collapse
|
17
|
Rady M, Mostageer M, Rohde J, Zaghloul A, Knüchel-Clarke R, Saad S, Attia D, Mahran L, Spahn-Langguth H. Therapy-relevant aberrant expression of MRP3 and BCRP mRNA in TCC-/SCC-bladder cancer tissue of untreated patients. Oncol Rep 2017; 38:551-560. [DOI: 10.3892/or.2017.5695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 04/03/2017] [Indexed: 11/06/2022] Open
|
18
|
Schimanski A, Ebbert L, Sabel MC, Finocchiaro G, Lamszus K, Ewelt C, Etminan N, Fischer JC, Sorg RV. Human glioblastoma stem-like cells accumulate protoporphyrin IX when subjected to exogenous 5-aminolaevulinic acid, rendering them sensitive to photodynamic treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:203-10. [DOI: 10.1016/j.jphotobiol.2016.08.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/25/2016] [Indexed: 01/01/2023]
|
19
|
Wee B, Pietras A, Ozawa T, Bazzoli E, Podlaha O, Antczak C, Westermark B, Nelander S, Uhrbom L, Forsberg-Nilsson K, Djaballah H, Michor F, Holland EC. ABCG2 regulates self-renewal and stem cell marker expression but not tumorigenicity or radiation resistance of glioma cells. Sci Rep 2016; 6:25956. [PMID: 27456282 PMCID: PMC4960591 DOI: 10.1038/srep25956] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/20/2016] [Indexed: 02/08/2023] Open
Abstract
Glioma cells with stem cell traits are thought to be responsible for tumor maintenance and therapeutic failure. Such cells can be enriched based on their inherent drug efflux capability mediated by the ABC transporter ABCG2 using the side population assay, and their characteristics include increased self-renewal, high stem cell marker expression and high tumorigenic capacity in vivo. Here, we show that ABCG2 can actively drive expression of stem cell markers and self-renewal in glioma cells. Stem cell markers and self-renewal was enriched in cells with high ABCG2 activity, and could be specifically inhibited by pharmacological and genetic ABCG2 inhibition. Importantly, despite regulating these key characteristics of stem-like tumor cells, ABCG2 activity did not affect radiation resistance or tumorigenicity in vivo. ABCG2 effects were Notch-independent and mediated by diverse mechanisms including the transcription factor Mef. Our data demonstrate that characteristics of tumor stem cells are separable, and highlight ABCG2 as a potential driver of glioma stemness.
Collapse
Affiliation(s)
- Boyoung Wee
- Cancer Biology and Genetics Program, New York, NY 10021, USA.,Brain Tumor Center, New York, NY 10021, USA
| | - Alexander Pietras
- Human Biology Division, Solid Tumor and Translational Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Neurosurgery and Alvord Brain Tumor Center, University of Washington, Seattle, WA 98104, USA.,Translational Cancer Research, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden
| | - Tatsuya Ozawa
- Human Biology Division, Solid Tumor and Translational Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Neurosurgery and Alvord Brain Tumor Center, University of Washington, Seattle, WA 98104, USA
| | - Elena Bazzoli
- Centro San Giovanni di Dio - Fatebenefratelli, IRCCS, 25123 Bs, Italy
| | - Ondrej Podlaha
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
| | - Christophe Antczak
- HTS Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Hakim Djaballah
- HTS Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
| | - Eric C Holland
- Human Biology Division, Solid Tumor and Translational Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Neurosurgery and Alvord Brain Tumor Center, University of Washington, Seattle, WA 98104, USA
| |
Collapse
|
20
|
Poleshko AG, Volotovski ID. The role of ABCG2 in maintaining the viability and proliferative activity of bone marrow mesenchymal stem cells in hypoxia. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916020159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
21
|
Sándor S, Jordanidisz T, Schamberger A, Várady G, Erdei Z, Apáti Á, Sarkadi B, Orbán TI. Functional characterization of the ABCG2 5' non-coding exon variants: Stem cell specificity, translation efficiency and the influence of drug selection. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:943-51. [PMID: 27191194 DOI: 10.1016/j.bbagrm.2016.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/26/2016] [Accepted: 05/13/2016] [Indexed: 12/15/2022]
Abstract
ABCG2 is a multidrug transporter with wide substrate specificity, and is believed to protect several cell types from various xenobiotics and endobiotics. This "guardian" function is important in numerous cell types and tissue barriers but becomes disadvantageous by being responsible for the multidrug resistance phenotype in certain tumor cells. ABCG2 regulation at the protein level has already been extensively studied, however, regulation at the mRNA level, especially the functional role of the various 5' untranslated exon variants (5' UTRs) has been elusive. In the present work, we describe a comprehensive characterization of four ABCG2 mRNA variants with different exon 1 sequences, investigate drug inducibility, stem cell specificity, mRNA stability, and translation efficiency. Although certain variants (E1B and E1C) are considered as "constitutive" mRNA isoforms, we show that chemotoxic drugs significantly alter the expression pattern of distinct ABCG2 mRNA isoforms. When examining human embryonic stem cell lines, we provide evidence that variant E1A has an expression pattern coupled to undifferentiated stem cell stage, as its transcript level is regulated parallel to mRNAs of Oct4 and Nanog pluripotency marker genes. When characterizing the four exon 1 variants we found no significant differences in terms of mRNA stabilities and half-lives of the isoforms. In contrast, variant E1U showed markedly lower translation efficiency both at the total protein level or regarding the functional presence in the plasma membrane. Taken together, these results indicate that the different 5' UTR variants play an important role in cell type specific regulation and fine tuning of ABCG2 expression.
Collapse
Affiliation(s)
- Sára Sándor
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Theodora Jordanidisz
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anita Schamberger
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - György Várady
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsuzsa Erdei
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ágota Apáti
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Sarkadi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Department of Biophysics and Radiation Biology, Semmelweis University, MTA-SE Molecular Biophysics Research Group, Budapest, Hungary
| | - Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
22
|
Balaji SA, Udupa N, Chamallamudi MR, Gupta V, Rangarajan A. Role of the Drug Transporter ABCC3 in Breast Cancer Chemoresistance. PLoS One 2016; 11:e0155013. [PMID: 27171227 PMCID: PMC4865144 DOI: 10.1371/journal.pone.0155013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 04/22/2016] [Indexed: 12/22/2022] Open
Abstract
Increased expression of ABC-family of transporters is associated with chemotherapy failure. Although the drug transporters ABCG2, ABCB1 and ABCC1 have been majorly implicated in cancer drug resistance, recent studies have associated ABCC3 with multi drug resistance and poor clinical response. In this study, we have examined the expression of ABCC3 in breast cancers and studied its role in drug resistance and stemness of breast cancer cells in comparison with the more studied ABCC1. We observed that similar to ABCC1, the transcripts levels of ABCC3 was significantly high in breast cancers compared to adjacent normal tissue. Importantly, expression of both transporters was further increased in chemotherapy treated patient samples. Consistent with this, we observed that treatment of breast cancer cell lines with anti-cancer agents increased their mRNA levels of both ABCC1 and ABCC3. Further, similar to knockdown of ABCC1, knockdown of ABCC3 also significantly increased the retention of chemotherapeutic drugs in breast cancer cells and rendered them more chemo-sensitive. Interestingly, ABCC1 and ABCC3 knockdown cells also showed reduction in the expression of stemness genes, while ABCC3 knockdown additionally led to a reduction in the CD44high/CD24low breast cancer stem-like subpopulation. Consistent with this, their ability to form primary tumours was compromised. Importantly, down-modulation of ABCC3 rendered these cells increasingly susceptible to doxorubicin in xenograft mice models in vivo. Thus, our study highlights the importance of ABCC3 transporters in drug resistance to chemotherapy in the context of breast cancer. Further, these results suggest that combinatorial inhibition of these transporters together with standard chemotherapy can reduce therapy-induced resistance in breast cancer.
Collapse
Affiliation(s)
- Sai A. Balaji
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science (IISc), Bangalore, 560012, India
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, India
| | - Nayanabhirama Udupa
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, India
| | | | | | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science (IISc), Bangalore, 560012, India
| |
Collapse
|
23
|
Poleshko AG, Lobanok ES, Mezhevikina LM, Fesenko EE, Volotovski ID. The process of heme synthesis in bone marrow mesenchymal stem cells cultured with fibroblast growth factor bFGF and under hypoxic conditions. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350914060177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Hegedüs C, Hegedüs T, Sarkadi B. The Role of ABC Multidrug Transporters in Resistance to Targeted Anticancer Kinase Inhibitors. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-09801-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Tang Y, Hou J, Li G, Song Z, Li X, Yang C, Liu W, Hu Y, Xu Y. ABCG2 regulates the pattern of self-renewing divisions in cisplatin-resistant non-small cell lung cancer cell lines. Oncol Rep 2014; 32:2168-74. [PMID: 25200103 DOI: 10.3892/or.2014.3470] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/22/2014] [Indexed: 11/06/2022] Open
Abstract
Overexpression of ABCG2 is considered a major mechanism of cancer drug resistance. Recent studies have shown that ABCG2 can regulate the switch between symmetric and asymmetric cell division in adult stem cells; however, the relationship between ABCG2 and cell division in drug-resistant cancer cells remains to be determined. In the present study, we demonstrated that ABCG2 is involved in the cell division of drug-resistant cancer cells. We first established drug-resistant H460 and A549 cell lines by repeated exposure to cisplatin and found that the expression of ABCG2 in these cell lines was significantly increased. As evidenced by PKH-26 staining, these drug-resistant cell lines favored symmetric division, which differed from the asymmetric division of the parental cells. Furthermore, we established stable ABCG2‑overexpressing and stable shRNA-ABCG2‑knockdown cell lines to evaluate the potential role of ABCG2 in cancer cell division. The results showed that overexpression of ABCG2 in A549 parental cells significantly increased the proportion of symmetric division, whereas knockdown of ABCG2 in drug-resistant A549 cells significantly increased the proportion of asymmetric division. Taken together, our findings suggest that ABCG2 is involved in the modulation of cancer drug resistance by regulating the pattern of cell division. The present study provides novel insight into the role of ABCG2 in cancer treatment resistance.
Collapse
Affiliation(s)
- Ying Tang
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jingming Hou
- Department of Orthopedics, Chinese PLA Beijing Army General Hospital, Beijing 100700, P.R. China
| | - Guanghui Li
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zongchang Song
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xiaojing Li
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Cui Yang
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Wenying Liu
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yide Hu
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yu Xu
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
26
|
Basseville A, Robey RW, Bahr JC, Bates SE. Breast Cancer Resistance Protein (BCRP) or ABCG2. DRUG TRANSPORTERS 2014:187-221. [DOI: 10.1002/9781118705308.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Effect of Hypoxia on Porphyrin Metabolism in Bone Marrow Mesenchymal Stem Cells. Bull Exp Biol Med 2014; 157:167-71. [DOI: 10.1007/s10517-014-2516-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Indexed: 12/16/2022]
|
28
|
Li G, Chen S, Duan Z, Qu L, Xu G, Yang N. Comparison of protoporphyrin IX content and related gene expression in the tissues of chickens laying brown-shelled eggs. Poult Sci 2014; 92:3120-4. [PMID: 24235220 DOI: 10.3382/ps.2013-03484] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protoporphyrin IX (PpIX), an immediate precursor of heme, is the main pigment resulting in the brown coloration of eggshell. The brownness and uniformity of the eggshell are important marketing considerations. In this study, 9 chickens laying darker brown shelled eggs and 9 chickens laying lighter brown shelled eggs were selected from 464 individually caged layers in a Rhode Island Red pureline. The PpIX contents were measured with a Microplate Reader at the wavelength of 412 nm and were compared in different tissues of the 2 groups. Although no significant difference in serum, bile, and excreta was found between the 2 groups, PpIX content in the shell gland and eggshell of the darker group was higher than in those of the lighter group, suggesting that PpIX was synthesized in the shell gland. We further determined the expression levels of 8 genes encoding enzymes involved in the heme synthesis and transport in the liver and shell gland at 6 h postoviposition by quantitative PCR. The results showed that expression of aminolevulinic acid synthase-1 (ALAS1) was higher in the liver of hens laying darker brown shelled eggs, whereas in the shell gland the expression levels of ALAS1, coproporphyrinogen oxidase (CPOX), ATP-binding cassette family members ABCB7 and ABCG2, and receptor for feline leukemia virus, subgroup C (FLVCR) were significantly higher in the hens laying darker brown shelled eggs. Our results demonstrated that hens laying darker brown shelled eggs could deposit more PpIX onto the eggshell and the brownness of the eggshell was dependent on the total quantity of PpIX in the eggshell. More heme was synthesized in the liver and shell gland of hens laying darker brown shelled eggs than those of hens laying lighter brown shelled eggs. High expression level of ABCG2 might facilitate the accumulation of PpIX in the shell gland.
Collapse
Affiliation(s)
- Guangqi Li
- National Engineering Laboratory for Animal Breeding and Ministry of Agriculture Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|
29
|
Santin G, Paulis M, Vezzoni P, Pacchiana G, Bottiroli G, Croce AC. Autofluorescence properties of murine embryonic stem cells during spontaneous differentiation phases. Lasers Surg Med 2013; 45:597-607. [PMID: 24114723 DOI: 10.1002/lsm.22182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVE The autofluorescence (AF) analysis allows in vivo, real-time assessment of cell functional activities, depending on the presence of biomolecules strictly involved in metabolic reactions and acting as endogenous fluorophores. Pluripotent stem cells during differentiation are known to undergo changes in their morphofunctional properties, with particular reference to bioenergetic metabolic signatures involving endogenous fluorophores such as NAD(P)H, flavins, lipofuscin-like lipopigments. Since the development of regenerative therapies based on pluripotent cells requires a careful monitoring of the successful maturation into the desired phenotype, aim of our work is to evaluate the AF potential to assess the differentiation phases in a murine stem cell model. STUDY DESIGN/MATERIALS AND METHODS Mouse embryonic stem cells (ESCs) maintained with and without leukemia inhibitory factor (LIF), embryoid bodies (EBs), and EB-derived cells undergoing spontaneous differentiation toward the hematopoietic lineage have been used as a sample models. Cell AF properties have been characterized upon 366-nm excitation, under living conditions and in the absence of exogenous markers. Imaging, microspectrofluorometric techniques, and spectral fitting analysis based on the spectral parameters of each endogenous fluorophore have been applied to estimate their contribution to the whole cell AF emission spectra. Specific cytochemical labeling has been performed to validate AF data. RESULTS Depending on the differentiation phases, cells undergo changes in morphology, AF distribution patterns, and AF emission spectral profiles. These latter reflect variations in the single endogenous fluorophore contribution to the overall emission. The coenzyme NAD(P)H accounts for up to 80% of the whole spectral area. The free form prevails on the bound one, and their changes have been investigated in terms of NAD(P)Hbound/free and redox ratios. These values vary in agreement with a slow metabolic activity and prevailing glycolytic metabolism in the undifferentiated HM1 cells, an increased metabolic activity still relying on glycolysis during the early differentiation phases, and an increased oxidative phosphorylation in EB and hematopoietic precursor cells. Lipofuscin-like lipopigments decrease following differentiation, and porphyrins contributing for less than 5%, prevail in the more actively differentiating cells. These results reflect the shift between anaerobic and aerobic respiration following differentiation, consistently with a decreased autophagy of cell organelles (i.e., mitochondria, as a strategy reported in the literature to keep the undifferentiated homeostasis state), higher mitochondrial activity with more numerous NADH binding sites and synthesis of heme as prosthetic group of proteins, that is, cytochromes. CONCLUSIONS These data open promising perspectives for the monitoring of stem cells differentiation under living conditions without labeling with exogenous agents (inducing perturbations when used in vivo), or immunomarkers not always available for veterinary and zootechnics, by exploiting endogenous fluorophores as intrinsic biomarkers of cell morphofunctional changes.
Collapse
Affiliation(s)
- Giada Santin
- IGM-CNR and Department of Biology & Biotechnology, University Pavia, Pavia, 27100, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Protoporphyrin IX accumulation disrupts mitochondrial dynamics and function in ABCG2-deficient hepatocytes. FEBS Lett 2013; 587:3202-9. [PMID: 23954234 DOI: 10.1016/j.febslet.2013.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 12/12/2022]
Abstract
Targeted inhibition of multidrug ABCG2 transporter is believed to improve cancer therapeutics. However, the consequences of ABCG2 inhibition have not been systematically evaluated since ABCG2 is expressed in several organs including the liver. Here, we demonstrate that ABCG2-deficient hepatocytes have increased amounts of fragmental mitochondria accompanied by disruption of mitochondrial dynamics and functions. This disruption was due to ABCG2 knockout elevating intracellular protoporphyrin IX, which led to upregulation of DRP-1-mediated mitochondrial fission. The finding that ABCG2 deficiency can generate dysfunctional mitochondria in hepatocytes raises concerns regarding the systematic use of ABCG2 inhibitor in cancer patients.
Collapse
|
31
|
Abstract
Understanding the potential health risks posed by environmental chemicals is a significant challenge elevated by the large number of diverse chemicals with generally uncharacterized exposures, mechanisms, and toxicities. The ToxCast computational toxicology research program was launched by EPA in 2007 and is part of the federal Tox21 consortium to develop a cost-effective approach for efficiently prioritizing the toxicity testing of thousands of chemicals and the application of this information to assessing human toxicology. ToxCast addresses this problem through an integrated workflow using high-throughput screening (HTS) of chemical libraries across more than 650 in vitro assays including biochemical assays, human cells and cell lines, and alternative models such as mouse embryonic stem cells and zebrafish embryo development. The initial phase of ToxCast profiled a library of 309 environmental chemicals, mostly pesticidal actives having rich in vivo data from guideline studies that include chronic/cancer bioassays in mice and rats, multigenerational reproductive studies in rats, and prenatal developmental toxicity endpoints in rats and rabbits. The first phase of ToxCast was used to build models that aim to determine how well in vivo animal effects can be predicted solely from the in vitro data. Phase I is now complete and both the in vitro data (ToxCast) and anchoring in vivo database (ToxRefDB) have been made available to the public (http://actor.epa.gov/). As Phase II of ToxCast is now underway, the purpose of this chapter is to review progress to date with ToxCast predictive modeling, using specific examples on developmental and reproductive effects in rats and rabbits with lessons learned during Phase I.
Collapse
|
32
|
Cyclohexylmethyl Flavonoids Suppress Propagation of Breast Cancer Stem Cells via Downregulation of NANOG. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:170261. [PMID: 23662114 PMCID: PMC3638599 DOI: 10.1155/2013/170261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/02/2013] [Indexed: 12/22/2022]
Abstract
Breast cancer stem cells (CSCs) are highly tumorigenic and possess the capacity to self-renew. Recent studies indicated that pluripotent gene NANOG involves in regulating self-renewal of breast CSCs, and expression of NANOG is correlated with aggressiveness of poorly differentiated breast cancer. We initially confirmed that breast cancer MCF-7 cells expressed NANOG, and overexpression of NANOG enhanced the tumorigenicity of MCF-7 cells and promoted the self-renewal expansion of CD24−/lowCD44+ CSC subpopulation. In contrast, knockdown of NANOG significantly affected the growth of breast CSCs. Utilizing flow cytometry, we identified five cyclohexylmethyl flavonoids that can inhibit propagation of NANOG-positive cells in both breast cancer MCF-7 and MDA-MB231 cells. Among these flavonoids, ugonins J and K were found to be able to induce apoptosis in non-CSC populations and to reduce self-renewal growth of CD24−/lowCD44+ CSC population. Treatment with ugonin J significantly reduced the tumorigenicity of MCF-7 cells and efficiently suppressed formation of mammospheres. This suppression was possibly due to p53 activation and NANOG reduction as either addition of p53 inhibitor or overexpression of NANOG can counteract the suppressive effect of ugonin J. We therefore conclude that cyclohexylmethyl flavonoids can possibly be utilized to suppress the propagation of breast CSCs via reduction of NANOG.
Collapse
|
33
|
Das B, Bayat-Mokhtari R, Tsui M, Lotfi S, Tsuchida R, Felsher DW, Yeger H. HIF-2α suppresses p53 to enhance the stemness and regenerative potential of human embryonic stem cells. Stem Cells 2013; 30:1685-95. [PMID: 22689594 PMCID: PMC3584519 DOI: 10.1002/stem.1142] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human embryonic stem cells (hESCs) have been reported to exert cytoprotective activity in the area of tissue injury. However, hypoxia/oxidative stress prevailing in the area of injury could activate p53, leading to death and differentiation of hESCs. Here we report that when exposed to hypoxia/oxidative stress, a small fraction of hESCs, namely the SSEA3+/ABCG2+ fraction undergoes a transient state of reprogramming to a low p53 and high hypoxia inducible factor (HIF)-2α state of transcriptional activity. This state can be sustained for a period of 2 weeks and is associated with enhanced transcriptional activity of Oct-4 and Nanog, concomitant with high teratomagenic potential. Conditioned medium obtained from the post-hypoxia SSEA3+/ABCG2+ hESCs showed cytoprotection both in vitro and in vivo. We termed this phenotype as the “enhanced stemness” state. We then demonstrated that the underlying molecular mechanism of this transient phenotype of enhanced stemness involved high Bcl-2, fibroblast growth factor (FGF)-2, and MDM2 expression and an altered state of the p53/MDM2 oscillation system. Specific silencing of HIF-2α and p53 resisted the reprogramming of SSEA3+/ABCG2+ to the enhanced stemness phenotype. Thus, our studies have uncovered a unique transient reprogramming activity in hESCs, the enhanced stemness reprogramming where a highly cytoprotective and undifferentiated state is achieved by transiently suppressing p53 activity. We suggest that this transient reprogramming is a form of stem cell altruism that benefits the surrounding tissues during the process of tissue regeneration.
Collapse
Affiliation(s)
- Bikul Das
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Xu ZY, Wang K, Li XQ, Chen S, Deng JM, Cheng Y, Wang ZG. The ABCG2 transporter is a key molecular determinant of the efficacy of sonodynamic therapy with Photofrin in glioma stem-like cells. ULTRASONICS 2013; 53:232-238. [PMID: 22771084 DOI: 10.1016/j.ultras.2012.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 05/01/2012] [Accepted: 06/10/2012] [Indexed: 06/01/2023]
Abstract
We aimed to investigate the role of the ABCG2 transporter in the efficacy of sonodynamic therapy (SDT) with Photofrin in the glioma stem-like cells (GSCs) isolated and cultured from U251 glioma cells. Immunocytochemistry and flow cytometry analyses showed that ABCG2 was overexpressed in GSCs, and the percentage of ABCG2-positive GSCs was approximately 100%. The effect of ABCG2 on Photofrin extrusion in the absence or presence of a specific inhibitor of ABCG2 (fumitremorgin C; FTC) was investigated by determining the intracellular concentration of Photofrin in GSCs incubated with 20μg/ml Photofrin. Extrusion of Photofrin by ABCG2 was inhibited by 10μM FTC, which significantly increased the intracellular Photofrin concentration (p<0.05) from 0.32±0.11μg/10(6) cells to 0.89±0.13μg/10(6) cells. MTT and TUNEL assays showed that the antitumor effect of SDT (incubation of GSCs with 20μg/ml Photofrin for 6h in the dark and ultrasonic activation at 1.0MHz and 0.5W/cm(2) for 2min) was significantly improved by FTC pretreatment (p<0.05). Moreover, incubation of GSCs with FTC significantly increased the relative production of ROS in response to SDT. The overexpression of ABCG2 in GSCs results in efflux of Photofrin, indicating that the antitumor effect of SDT with Photofrin may be reduced in GSCs overexpressing ABCG2. However, since FTC improves the efficacy of SDT in GSCs by inhibiting ABCG2-mediated efflux of Photofrin, FTC may be useful in SDT treatment of ABCG2-expressing cancer cells.
Collapse
Affiliation(s)
- Zhong-Ye Xu
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing University of Medical Science, Chongqing 400010, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Kobuchi H, Moriya K, Ogino T, Fujita H, Inoue K, Shuin T, Yasuda T, Utsumi K, Utsumi T. Mitochondrial localization of ABC transporter ABCG2 and its function in 5-aminolevulinic acid-mediated protoporphyrin IX accumulation. PLoS One 2012. [PMID: 23189181 PMCID: PMC3506543 DOI: 10.1371/journal.pone.0050082] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Accumulation of protoporphyrin IX (PpIX) in malignant cells is the basis of 5-aminolevulinic acid (ALA)-mediated photodynamic therapy. We studied the expression of proteins that possibly affect ALA-mediated PpIX accumulation, namely oligopeptide transporter-1 and -2, ferrochelatase and ATP-binding cassette transporter G2 (ABCG2), in several tumor cell lines. Among these proteins, only ABCG2 correlated negatively with ALA-mediated PpIX accumulation. Both a subcellular fractionation study and confocal laser microscopic analysis revealed that ABCG2 was distributed not only in the plasma membrane but also intracellular organelles, including mitochondria. In addition, mitochondrial ABCG2 regulated the content of ALA-mediated PpIX in mitochondria, and Ko143, a specific inhibitor of ABCG2, enhanced mitochondrial PpIX accumulation. To clarify the possible roles of mitochondrial ABCG2, we characterized stably transfected-HEK (ST-HEK) cells overexpressing ABCG2. In these ST-HEK cells, functionally active ABCG2 was detected in mitochondria, and treatment with Ko143 increased ALA-mediated mitochondrial PpIX accumulation. Moreover, the mitochondria isolated from ST-HEK cells exported doxorubicin probably through ABCG2, because the export of doxorubicin was inhibited by Ko143. The susceptibility of ABCG2 distributed in mitochondria to proteinase K, endoglycosidase H and peptide-N-glycosidase F suggested that ABCG2 in mitochondrial fraction is modified by N-glycans and trafficked through the endoplasmic reticulum and Golgi apparatus and finally localizes within the mitochondria. Thus, it was found that ABCG2 distributed in mitochondria is a functional transporter and that the mitochondrial ABCG2 regulates ALA-mediated PpIX level through PpIX export from mitochondria to the cytosol.
Collapse
Affiliation(s)
- Hirotsugu Kobuchi
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sereti KI, Oikonomopoulos A, Unno K, Cao X, Qiu Y, Liao R. ATP-binding cassette G-subfamily transporter 2 regulates cell cycle progression and asymmetric division in mouse cardiac side population progenitor cells. Circ Res 2012; 112:27-34. [PMID: 23136123 DOI: 10.1161/circresaha.111.300010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE After cardiac injury, cardiac progenitor cells are acutely reduced and are replenished in part by regulated self-renewal and proliferation, which occurs through symmetric and asymmetric cellular division. Understanding the molecular cues controlling progenitor cell self-renewal and lineage commitment is critical for harnessing these cells for therapeutic regeneration. We previously have found that the cell surface ATP-binding cassette G-subfamily transporter 2 (Abcg2) influences the proliferation of cardiac side population (CSP) progenitor cells, but through unclear mechanisms. OBJECTIVE To determine the role of Abcg2 on cell cycle progression and mode of division in mouse CSP cells. METHODS AND RESULTS Herein, using CSP cells isolated from wild-type and Abcg2 knockout mice, we found that Abcg2 regulates G1-S cell cycle transition by fluorescence ubiquitination cell cycle indicators, cell cycle-focused gene expression arrays, and confocal live-cell fluorescent microscopy. Moreover, we found that modulation of cell cycle results in transition from symmetric to asymmetric cellular division in CSP cells lacking Abcg2. CONCLUSIONS Abcg2 modulates CSP cell cycle progression and asymmetric cell division, establishing a mechanistic link between this surface transporter and cardiac progenitor cell function. Greater understanding of progenitor cell biology and, in particular, the regulation of resident progenitor cell homeostasis is vital for guiding the future development of cell-based therapies for cardiac regeneration.
Collapse
Affiliation(s)
- Konstantina-Ioanna Sereti
- Cardiac Muscle Research Laboratory, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, NRB 431, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
37
|
Choi JH, Lyu SY, Lee HJ, Jung J, Park WB, Kim GJ. Korean mistletoe lectin regulates self-renewal of placenta-derived mesenchymal stem cells via autophagic mechanisms. Cell Prolif 2012; 45:420-9. [PMID: 22925501 DOI: 10.1111/j.1365-2184.2012.00839.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES The balance between survival and death is a key point for regulation of physiology of stem cells. Recently, applications of natural products to enhance efficiencies in culturing and differentiation of stem cells are increasing. Korean mistletoe lectin (Viscum album L. var. coloratum agglutinin, VCA) has been known to be toxic to some cancer cells, but it is still unclear whether VCA has a cytotoxic or indeed a proliferative effect on mesenchymal stem cells (MSCs). Here, we have compared effects of VCA in naïve placenta-derived stem cells (PDSCs), immortalized PDSCs and cancer cells (HepG2), and analysed their mechanisms. MATERIALS AND METHODS MTT assay was performed to analyse effects of VCA on naïve PDSCs, immortalized PDSCs and HepG2. FACS, ROS, caspase-3 assay, western blotting and immunofluorescence were performed to detect signalling events involved in self-renewal of the above cell types. RESULTS VCA had cancer cell-specific toxicity to HepG2 cells even with low concentrations of VCA (1-5 pg/ml), toxicity was observed to immortalized PDSCs and HepG2s, while proliferation of naïve PDSCs was significantly increased (P < 0.05). ROS production by VCA treatment in naïve PDSCs was significantly lower compared to controls (P < 0.05). Furthermore, autophagy was activated in naïve PDSCs treated with VCA through increase in type II LC3 and decrease in phosphorylated mTOR. CONCLUSIONS VCA can promote MSC proliferation through an activated autophagic mechanism.
Collapse
Affiliation(s)
- J H Choi
- Department of Biomedical Science, CHA University, Kangnak-ku, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
38
|
Padmanabhan R, Chen KG, Gillet JP, Handley M, Mallon BS, Hamilton RS, Park K, Varma S, Mehaffey MG, Robey PG, McKay RD, Gottesman MM. Regulation and expression of the ATP-binding cassette transporter ABCG2 in human embryonic stem cells. Stem Cells 2012; 30:2175-87. [PMID: 22887864 PMCID: PMC3480739 DOI: 10.1002/stem.1195] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The expression and function of several multidrug transporters (including ABCB1 and ABCG2) have been studied in human cancer cells and in mouse and human adult stem cells. However, the expression of ABCG2 in human embryonic stem cells (hESCs) remains unclear. Limited and contradictory results in the literature from two research groups have raised questions regarding its expression and function. In this study, we used quantitative real-time PCR, Northern blots, whole genome RNA sequencing, Western blots, and immunofluorescence microscopy to study ABCG2 expression in hESCs. We found that full-length ABCG2 mRNA transcripts are expressed in undifferentiated hESC lines. However, ABCG2 protein was undetectable even under embryoid body differentiation or cytotoxic drug induction. Moreover, surface ABCG2 protein was coexpressed with the differentiation marker stage-specific embryonic antigen-1 of hESCs, following constant BMP-4 signaling at days 4 and 6. This expression was tightly correlated with the downregulation of two microRNAs (miRNAs) (i.e., hsa-miR-519c and hsa-miR-520h). Transfection of miRNA mimics and inhibitors of these two miRNAs confirmed their direct involvement in the regulation ABCG2 translation. Our findings clarify the controversy regarding the expression of the ABCG2 gene and also provide new insights into translational control of the expression of membrane transporter mRNAs by miRNAs in hESCs.
Collapse
Affiliation(s)
- Raji Padmanabhan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kevin G. Chen
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jean-Pierre Gillet
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Misty Handley
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Barbara S. Mallon
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Rebecca S. Hamilton
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kyeyoon Park
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sudhir Varma
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michele G. Mehaffey
- SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Pamela G. Robey
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ronald D.G. McKay
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
39
|
Erdei Z, Sarkadi B, Brózik A, Szebényi K, Várady G, Makó V, Péntek A, Orbán TI, Apáti Á. Dynamic ABCG2 expression in human embryonic stem cells provides the basis for stress response. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:169-79. [PMID: 22851001 DOI: 10.1007/s00249-012-0838-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/26/2012] [Accepted: 07/09/2012] [Indexed: 12/21/2022]
Abstract
ABCG2 is a plasma membrane multidrug transporter with an established role in the cancer drug-resistance phenotype. This protein is expressed in a variety of tissues, including several types of stem cell. Although ABCG2 is not essential for life, knock-out mice were found to be hypersensitive to xenobiotics and had reduced levels of the side population of hematopoietic stem cells. Previously we have shown that ABCG2 is present in human embryonic stem cell (hESC) lines, with a heterogeneous expression pattern. In this study we examined this heterogeneity, and investigated whether it is related to stress responses in hESCs. We did not find any difference between expression of pluripotency markers in ABCG2-positive and negative hESCs; however, ABCG2-expressing cells had a higher growth rate after cell separation. We found that some harmful conditions (physical stress, drugs, and UV light exposure) are tolerated much better in the presence of ABCG2 protein. This property can be explained by the transporter function which eliminates potential toxic metabolites accumulated during stress conditions. In contrast, mild oxidative stress in hESCs caused rapid internalization of ABCG2, indicating that some environmental factors may induce removal of this transporter from the plasma membrane. On the basis of these results we suggest that a dynamic balance of ABCG2 expression at the population level has the advantage of enabling prompt response to changes in the cellular environment. Such actively maintained heterogeneity might be of evolutionary benefit in protecting special cell types, including pluripotent stem cells.
Collapse
Affiliation(s)
- Zsuzsa Erdei
- Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis, University and National Blood Center, Diószegi u. 64., 1113, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Xu ZY, Li XQ, Chen S, Cheng Y, Deng JM, Wang ZG. Glioma stem-like cells are less susceptible than glioma cells to sonodynamic therapy with photofrin. Technol Cancer Res Treat 2012; 11:615-23. [PMID: 22775340 DOI: 10.7785/tcrt.2012.500277] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite remarkable progress in diagnosis and treatment, malignant glioma, a highly lethal cancer of the central nervous system, remains incurable. Although glioma stem-like cells (GSCs) represent a relatively small fraction of the cells in malignant glioma, they can proliferate and self renew extensively, being crucial for tumor recurrence. Cancer treatment by sonodynamic therapy (SDT) chiefly depends on antitumor effects of reactive oxygen species (ROS) generated from a sonosensitizer activated by ultrasound. Although SDT effectively kills glioma cells, its efficiency against GSCs is not established. We attempted to compare the susceptibility of GSCs to SDT, using Photofrin, a porphyrin-derivative photosensitizer, with that of glioma cells. Cell viability and apoptosis assays showed that SDT damaged both GSCs and U251 glioma cells, but GSCs were significantly less susceptible to SDT (p < 0.01). To elucidate the mechanism of the antitumor effects of SDT, we evaluated intracellular ROS production and Photofrin uptake: ROS production and Photofrin content were significantly lower (p < 0.01) in GSCs than in U251 glioma cells. Thus, cellular differences in sonosensitizer uptake and ROS production influence the antitumor effects of SDT. Furthermore, the resistance of GSCs may be caused by decreased sonosensitizer uptake due to ABCG2 overexpression.
Collapse
Affiliation(s)
- Zhong-Ye Xu
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing University of Medical Science, 74 Linjiang Road, Yuzhong, Chongqing, 400010, China
| | | | | | | | | | | |
Collapse
|
41
|
Shipp LE, Hamdoun A. ATP-binding cassette (ABC) transporter expression and localization in sea urchin development. Dev Dyn 2012; 241:1111-24. [PMID: 22473856 DOI: 10.1002/dvdy.23786] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND ATP-binding cassette (ABC) transporters are membrane proteins that regulate intracellular concentrations of myriad compounds and ions. There are >100 ABC transporter predictions in the Strongylocentrotus purpuratus genome, including 40 annotated ABCB, ABCC, and ABCG "multidrug efflux" transporters. Despite the importance of multidrug transporters for protection and signaling, their expression patterns have not been characterized in deuterostome embryos. RESULTS Sea urchin embryos expressed 20 ABCB, ABCC, and ABCG transporter genes in the first 58 hr of development, from unfertilized egg to early prism. We quantified transcripts of ABCB1a, ABCB4a, ABCC1, ABCC5a, ABCC9a, and ABCG2b, and found that ABCB1a mRNA was 10-100 times more abundant than other transporter mRNAs. In situ hybridization showed ABCB1a was expressed ubiquitously in embryos, while ABCC5a was restricted to secondary mesenchyme cells and their precursors. Fluorescent protein fusions showed localization of ABCB1a on apical cell surfaces, and ABCC5a on basolateral surfaces. CONCLUSIONS Embryos use many ABC transporters with predicted functions in cell signaling, lysosomal and mitochondrial homeostasis, potassium channel regulation, pigmentation, and xenobiotic efflux. Detailed characterization of ABCB1a and ABCC5a revealed that they have different temporal and spatial gene expression profiles and protein localization patterns that correlate to their predicted functions in protection and development, respectively.
Collapse
Affiliation(s)
- Lauren E Shipp
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California 92093-0202, USA
| | | |
Collapse
|
42
|
Natarajan K, Xie Y, Baer MR, Ross DD. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol 2012; 83:1084-103. [PMID: 22248732 PMCID: PMC3307098 DOI: 10.1016/j.bcp.2012.01.002] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 01/16/2023]
Abstract
Since cloning of the ATP-binding cassette (ABC) family member breast cancer resistance protein (BCRP/ABCG2) and its characterization as a multidrug resistance efflux transporter in 1998, BCRP has been the subject of more than two thousand scholarly articles. In normal tissues, BCRP functions as a defense mechanism against toxins and xenobiotics, with expression in the gut, bile canaliculi, placenta, blood-testis and blood-brain barriers facilitating excretion and limiting absorption of potentially toxic substrate molecules, including many cancer chemotherapeutic drugs. BCRP also plays a key role in heme and folate homeostasis, which may help normal cells survive under conditions of hypoxia. BCRP expression appears to be a characteristic of certain normal tissue stem cells termed "side population cells," which are identified on flow cytometric analysis by their ability to exclude Hoechst 33342, a BCRP substrate fluorescent dye. Hence, BCRP expression may contribute to the natural resistance and longevity of these normal stem cells. Malignant tissues can exploit the properties of BCRP to survive hypoxia and to evade exposure to chemotherapeutic drugs. Evidence is mounting that many cancers display subpopulations of stem cells that are responsible for tumor self-renewal. Such stem cells frequently manifest the "side population" phenotype characterized by expression of BCRP and other ABC transporters. Along with other factors, these transporters may contribute to the inherent resistance of these neoplasms and their failure to be cured.
Collapse
Affiliation(s)
| | - Yi Xie
- University of Maryland Greenebaum Cancer Center
| | - Maria R. Baer
- University of Maryland Greenebaum Cancer Center
- Department of Medicine, University of Maryland School of Medicine
| | - Douglas D. Ross
- University of Maryland Greenebaum Cancer Center
- Department of Medicine, University of Maryland School of Medicine
- Departments of Pathology, and Pharmacology & Experimental Therapeutics, University of Maryland, School of Medicine
- Staff Physician, Baltimore VA Medical Center
| |
Collapse
|
43
|
Vessoni AT, Muotri AR, Okamoto OK. Autophagy in stem cell maintenance and differentiation. Stem Cells Dev 2012; 21:513-20. [PMID: 22066548 DOI: 10.1089/scd.2011.0526] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a lysosome-dependent degradation pathway that allows cells to recycle damaged or superfluous cytoplasmic content, such as proteins, organelles, and lipids. As a consequence of autophagy, the cells generate metabolic precursors for macromolecular biosynthesis or ATP generation. Deficiencies in this pathway were associated to several pathological conditions, such as neurodegenerative and cardiac diseases, cancer, and aging. The aim of this review is to summarize recent discoveries showing that autophagy also plays a critical role in stem cell maintenance and in a variety of cell differentiation processes. We also discuss a possible role for autophagy during cellular reprogramming and induced pluripotent stem (iPS) cell generation by taking advantage of ATP generation for chromatin remodeling enzyme activity and mitophagy. Finally, the significance of autophagy modulation is discussed in terms of augmenting efficiency of iPS cell generation and differentiation processes.
Collapse
Affiliation(s)
- Alexandre Teixeira Vessoni
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | |
Collapse
|
44
|
Ohtsuka T, Shimojo H, Matsunaga M, Watanabe N, Kometani K, Minato N, Kageyama R. Gene Expression Profiling of Neural Stem Cells and Identification of Regulators of Neural Differentiation During Cortical Development. Stem Cells 2011; 29:1817-28. [DOI: 10.1002/stem.731] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Ogino T, Kobuchi H, Munetomo K, Fujita H, Yamamoto M, Utsumi T, Inoue K, Shuin T, Sasaki J, Inoue M, Utsumi K. Serum-dependent export of protoporphyrin IX by ATP-binding cassette transporter G2 in T24 cells. Mol Cell Biochem 2011; 358:297-307. [PMID: 21748335 DOI: 10.1007/s11010-011-0980-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/29/2011] [Indexed: 12/23/2022]
Abstract
Accumulation of protoporphyrin IX (PpIX) in cancer cells is a basis of 5-aminolevulinic acid (ALA)-induced photodymanic therapy. We studied factors that affect PpIX accumulation in human urothelial carcinoma cell line T24, with particular emphasis on ATP-binding cassette transporter G2 (ABCG2) and serum in the medium. When the medium had no fetal bovine serum (FBS), ALA induced PpIX accumulation in a time- and ALA concentration-dependent manner. Inhibition of heme-synthesizing enzyme, ferrochelatase, by nitric oxide donor (Noc18) or deferoxamine resulted in a substantial increase in the cellular PpIX accumulation, whereas ABCG2 inhibition by fumitremorgin C or verapamil induced a slight PpIX increase. When the medium was added with FBS, cellular accumulation of PpIX stopped at a lower level with an increase of PpIX in the medium, which suggested PpIX efflux. ABCG2 inhibitors restored the cellular PpIX level to that of FBS(-) samples, whereas ferrochelatase inhibitors had little effects. Bovine serum albumin showed similar effects to FBS. Fluorescence microscopic observation revealed that inhibitors of ABC transporter affected the intracellular distribution of PpIX. These results indicated that ABCG2-mediated PpIX efflux was a major factor that prevented PpIX accumulation in cancer cells in the presence of serum. Inhibition of ABCG2 transporter system could be a new target for the improvement of photodynamic therapy.
Collapse
Affiliation(s)
- Tetsuya Ogino
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Okayama 700-8558, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kammerer R, Buchner A, Palluch P, Pongratz T, Oboukhovskij K, Beyer W, Johansson A, Stepp H, Baumgartner R, Zimmermann W. Induction of immune mediators in glioma and prostate cancer cells by non-lethal photodynamic therapy. PLoS One 2011; 6:e21834. [PMID: 21738796 PMCID: PMC3128096 DOI: 10.1371/journal.pone.0021834] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 06/13/2011] [Indexed: 02/02/2023] Open
Abstract
Background Photodynamic therapy (PDT) uses the combination of photosensitizing drugs and harmless light to cause selective damage to tumor cells. PDT is therefore an option for focal therapy of localized disease or for otherwise unresectable tumors. In addition, there is increasing evidence that PDT can induce systemic anti-tumor immunity, supporting control of tumor cells, which were not eliminated by the primary treatment. However, the effect of non-lethal PDT on the behavior and malignant potential of tumor cells surviving PDT is molecularly not well defined. Methodology/Principal Findings Here we have evaluated changes in the transcriptome of human glioblastoma (U87, U373) and human (PC-3, DU145) and murine prostate cancer cells (TRAMP-C1, TRAMP-C2) after non-lethal PDT in vitro and in vivo using oligonucleotide microarray analyses. We found that the overall response was similar between the different cell lines and photosensitizers both in vitro and in vivo. The most prominently upregulated genes encoded proteins that belong to pathways activated by cellular stress or are involved in cell cycle arrest. This response was similar to the rescue response of tumor cells following high-dose PDT. In contrast, tumor cells dealing with non-lethal PDT were found to significantly upregulate a number of immune genes, which included the chemokine genes CXCL2, CXCL3 and IL8/CXCL8 as well as the genes for IL6 and its receptor IL6R, which can stimulate proinflammatory reactions, while IL6 and IL6R can also enhance tumor growth. Conclusions Our results indicate that PDT can support anti-tumor immune responses and is, therefore, a rational therapy even if tumor cells cannot be completely eliminated by primary phototoxic mechanisms alone. However, non-lethal PDT can also stimulate tumor growth-promoting autocrine loops, as seen by the upregulation of IL6 and its receptor. Thus the efficacy of PDT to treat tumors may be improved by controlling unwanted and potentially deleterious growth-stimulatory pathways.
Collapse
Affiliation(s)
- Robert Kammerer
- Institute of Immunology, Friedrich Loeffler Institute, Tübingen, Germany
| | - Alexander Buchner
- Department of Urology, University Hospital of Munich, Munich, Germany
- Tumor Immunology Laboratory, LIFE Center, University Hospital of Munich, Munich, Germany
| | - Patrick Palluch
- Tumor Immunology Laboratory, LIFE Center, University Hospital of Munich, Munich, Germany
| | - Thomas Pongratz
- Laser Research Laboratory, LIFE Center, University Hospital of Munich, Munich, Germany
| | | | - Wolfgang Beyer
- Laser Research Laboratory, LIFE Center, University Hospital of Munich, Munich, Germany
| | - Ann Johansson
- Laser Research Laboratory, LIFE Center, University Hospital of Munich, Munich, Germany
| | - Herbert Stepp
- Laser Research Laboratory, LIFE Center, University Hospital of Munich, Munich, Germany
| | - Reinhold Baumgartner
- Laser Research Laboratory, LIFE Center, University Hospital of Munich, Munich, Germany
| | - Wolfgang Zimmermann
- Tumor Immunology Laboratory, LIFE Center, University Hospital of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
47
|
Evaluation of 309 environmental chemicals using a mouse embryonic stem cell adherent cell differentiation and cytotoxicity assay. PLoS One 2011; 6:e18540. [PMID: 21666745 PMCID: PMC3110185 DOI: 10.1371/journal.pone.0018540] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 03/02/2011] [Indexed: 12/23/2022] Open
Abstract
The vast landscape of environmental chemicals has motivated the need for alternative methods to traditional whole-animal bioassays in toxicity testing. Embryonic stem (ES) cells provide an in vitro model of embryonic development and an alternative method for assessing developmental toxicity. Here, we evaluated 309 environmental chemicals, mostly food-use pesticides, from the ToxCast™ chemical library using a mouse ES cell platform. ES cells were cultured in the absence of pluripotency factors to promote spontaneous differentiation and in the presence of DMSO-solubilized chemicals at different concentrations to test the effects of exposure on differentiation and cytotoxicity. Cardiomyocyte differentiation (α,β myosin heavy chain; MYH6/MYH7) and cytotoxicity (DRAQ5™/Sapphire700™) were measured by In-Cell Western™ analysis. Half-maximal activity concentration (AC50) values for differentiation and cytotoxicity endpoints were determined, with 18% of the chemical library showing significant activity on either endpoint. Mining these effects against the ToxCast Phase I assays (∼500) revealed significant associations for a subset of chemicals (26) that perturbed transcription-based activities and impaired ES cell differentiation. Increased transcriptional activity of several critical developmental genes including BMPR2, PAX6 and OCT1 were strongly associated with decreased ES cell differentiation. Multiple genes involved in reactive oxygen species signaling pathways (NRF2, ABCG2, GSTA2, HIF1A) were strongly associated with decreased ES cell differentiation as well. A multivariate model built from these data revealed alterations in ABCG2 transporter was a strong predictor of impaired ES cell differentiation. Taken together, these results provide an initial characterization of metabolic and regulatory pathways by which some environmental chemicals may act to disrupt ES cell growth and differentiation.
Collapse
|
48
|
Fukunaga-Kalabis M, Martinez G, Nguyen TTK, Kim D, Santiago-Walker A, Roesch A, Herlyn M. Tenascin-C promotes melanoma progression by maintaining the ABCB5-positive side population. Oncogene 2010; 29:6115-24. [PMID: 20729912 PMCID: PMC2991494 DOI: 10.1038/onc.2010.350] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 12/14/2022]
Abstract
Tenascin-C (TNC) is highly expressed in melanoma; however, little is known about its functions. Recent studies indicate that TNC has a role within the stem cell niche. We hypothesized that TNC creates a specific environment for melanoma cells to show a stem cell-like phenotype, promoting tumor growth and evading conventional therapies. TNC expression was strongly upregulated in melanoma cells grown as 3D spheres (enriched for stem-like cells) when compared to adherent cells. Downmodulation of TNC by shRNA lentiviruses significantly decreased the growth of melanoma spheres. The incidence of pulmonary metastases after intravenous injection of TNC knockdown cells was significantly lower in NOD/SCID IL2Rγ(null) mice compared with control cells. Melanoma spheres contain an increased number of side population (SP) cells, which show stem cell characteristics, and have the potential for drug resistance due to their high efflux capacity. Knockdown of TNC dramatically decreased the SP fraction in melanoma spheres and lowered their resistance to doxorubicin treatment, likely because of the downregulation of multiple ATP-binding cassette (ABC) transporters, including ABCB5. These data suggest that TNC is critical in melanoma progression as it mediates protective signals in the therapy-resistant population of melanoma.
Collapse
Affiliation(s)
| | - Gabriela Martinez
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104
| | | | - Diana Kim
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104
| | - Ademi Santiago-Walker
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104
| | - Alexander Roesch
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104
| |
Collapse
|
49
|
Wang J, Wei X, Ling J, Huang Y, Huo Y, Zhou Y. The presence of a side population and its marker ABCG2 in human deciduous dental pulp cells. Biochem Biophys Res Commun 2010; 400:334-9. [PMID: 20728430 DOI: 10.1016/j.bbrc.2010.08.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 08/17/2010] [Indexed: 01/09/2023]
Abstract
Stem cells have been identified using the DNA-binding dye Hoechst 33342 and flow cytometry (FCM) in various tissues known as the side population (SP). The present study shows, for the first time, the presence of side population cells in human deciduous dental pulp cells (DPCs). Flow cytometric identification revealed that 2% of human deciduous DPCs were SP cells and that this SP profile disappeared in the presence of verapamil. The SP marker ABCG2 protein was localized to DPCs in the cell membrane by immunofluorescence staining, and flow cytometric analysis demonstrated that 3.6% of DPCs were ABCG2-positive. Furthermore, quantitative real-time PCR proved that ABCG2 mRNA expression in DPCs isolated from human exfoliated deciduous teeth was higher than in DPCs from permanent teeth. Our findings demonstrate that DPCs from human exfoliated deciduous teeth contain a higher proportion of the SP phenotype than permanent teeth and that they may constitute a stem cell population.
Collapse
Affiliation(s)
- Jinming Wang
- Department of Oral Biology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou 510055, PR China
| | | | | | | | | | | |
Collapse
|
50
|
González-Lobato L, Real R, Prieto JG, Alvarez AI, Merino G. Differential inhibition of murine Bcrp1/Abcg2 and human BCRP/ABCG2 by the mycotoxin fumitremorgin C. Eur J Pharmacol 2010; 644:41-8. [PMID: 20655304 DOI: 10.1016/j.ejphar.2010.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 06/25/2010] [Accepted: 07/11/2010] [Indexed: 12/17/2022]
Abstract
Breast Cancer Resistance Protein (ABCG2/BCRP) is an ATP-binding cassette transporter expressed in absorptive and excretory organs whose main physiological role is protection of cells against xenobiotics. In addition, ABCG2/BCRP expression has been linked to cellular resistance to anticancer drugs due to the acquisition of a multidrug resistance phenotype. Fumitremorgin C (FTC) is a mycotoxin described as a potent ABCG2/BCRP inhibitor that reverses multidrug resistance. However, little is known about its species-specificity. This issue is scientifically relevant since FTC is widely used to evaluate the in vitro role of BCRP. We compared the FTC-mediated inhibition of human BCRP and its murine orthologue, overexpressed in two independent cell lines, MDCKII and MEF3.8 transduced cell lines. Accumulation experiments, using mitoxantrone and chlorine e6 as substrates, revealed that although FTC inhibits both Bcrp1 and BCRP, the human transporter is more potently inhibited, resulting in significantly lower IC(50) values. Transcellular transport of known Bcrp1/BCRP substrates, such as nitrofurantoin and mitoxantrone, was completely inhibited by FTC 1muM in human BCRP-transduced cells but only moderately in murine Bcrp1-transduced cells. Finally, cytotoxicity assays using mitoxantrone and topotecan as substrates revealed that the EC(90) values for FTC were always significantly lower in human BCRP-transduced cells. Altogether, these results indicate that human BCRP is more sensitive to inhibition by FTC than murine Bcrp1. This differential inhibition could have a great impact on the use of in vitro models of toxicity and pharmacological interaction for drug discovery and development involving FTC as Bcrp1/BCRP inhibitor.
Collapse
|