1
|
Gascón E, Calvo AC, Molina N, Zaragoza P, Osta R. Identifying Hub Genes and miRNAs Associated with Alzheimer's Disease: A Bioinformatics Pathway to Novel Therapeutic Strategies. Biomolecules 2024; 14:1641. [PMID: 39766348 PMCID: PMC11726968 DOI: 10.3390/biom14121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/15/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that mainly affects the elderly population. It is characterized by cognitive impairment and dementia due to abnormal levels of amyloid beta peptide (Aβ) and axonal Tau protein in the brain. However, the complex underlying mechanisms affecting this disease are not yet known, and there is a lack of standardized biomarkers and therapeutic targets. Therefore, in this study, by means of bioinformatics analysis, AD-affected brain tissue was analyzed using the GSE138260 dataset, identifying 612 differentially expressed genes (DEGs). Functional analysis revealed 388 upregulated DEGs associated with sensory perception and 224 downregulated DEGs linked to the regulation and modulation of synaptic processes. Protein-protein interaction network analysis identified 20 hub genes. Furthermore, miRNA target gene networks revealed 1767 miRNAs linked to hub genes, among which hsa-mir-106a-5p, hsa-mir-17-5p, hsa-mir-26a-5p, hsa-mir-27a-3p and hsa-mir-34a-5p were the most relevant. This study presents novel biomarkers and therapeutic targets for AD by analyzing the information obtained with a comprehensive literature review, providing new potential targets to study their role in AD.
Collapse
Affiliation(s)
- Elisa Gascón
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, 50013 Zaragoza, Spain; (E.G.); (A.C.C.); (P.Z.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Agroalimentary Institute of Aragon (IA2), University of Zaragoza, 50013 Zaragoza, Spain
- Institute of Health Research of Aragon (IIS), Av. San Juan Bosco 13, 50009 Zaragoza, Spain
| | - Ana Cristina Calvo
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, 50013 Zaragoza, Spain; (E.G.); (A.C.C.); (P.Z.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Agroalimentary Institute of Aragon (IA2), University of Zaragoza, 50013 Zaragoza, Spain
- Institute of Health Research of Aragon (IIS), Av. San Juan Bosco 13, 50009 Zaragoza, Spain
| | - Nora Molina
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, 50013 Zaragoza, Spain; (E.G.); (A.C.C.); (P.Z.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Agroalimentary Institute of Aragon (IA2), University of Zaragoza, 50013 Zaragoza, Spain
- Institute of Health Research of Aragon (IIS), Av. San Juan Bosco 13, 50009 Zaragoza, Spain
| | - Pilar Zaragoza
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, 50013 Zaragoza, Spain; (E.G.); (A.C.C.); (P.Z.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Agroalimentary Institute of Aragon (IA2), University of Zaragoza, 50013 Zaragoza, Spain
- Institute of Health Research of Aragon (IIS), Av. San Juan Bosco 13, 50009 Zaragoza, Spain
| | - Rosario Osta
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, 50013 Zaragoza, Spain; (E.G.); (A.C.C.); (P.Z.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
- Agroalimentary Institute of Aragon (IA2), University of Zaragoza, 50013 Zaragoza, Spain
- Institute of Health Research of Aragon (IIS), Av. San Juan Bosco 13, 50009 Zaragoza, Spain
| |
Collapse
|
2
|
Ghatak S, Diedrich JK, Talantova M, Bhadra N, Scott H, Sharma M, Albertolle M, Schork NJ, Yates JR, Lipton SA. Single-Cell Patch-Clamp/Proteomics of Human Alzheimer's Disease iPSC-Derived Excitatory Neurons Versus Isogenic Wild-Type Controls Suggests Novel Causation and Therapeutic Targets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400545. [PMID: 38773714 PMCID: PMC11304297 DOI: 10.1002/advs.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Indexed: 05/24/2024]
Abstract
Standard single-cell (sc) proteomics of disease states inferred from multicellular organs or organoids cannot currently be related to single-cell physiology. Here, a scPatch-Clamp/Proteomics platform is developed on single neurons generated from hiPSCs bearing an Alzheimer's disease (AD) genetic mutation and compares them to isogenic wild-type controls. This approach provides both current and voltage electrophysiological data plus detailed proteomics information on single-cells. With this new method, the authors are able to observe hyperelectrical activity in the AD hiPSC-neurons, similar to that observed in the human AD brain, and correlate it to ≈1400 proteins detected at the single neuron level. Using linear regression and mediation analyses to explore the relationship between the abundance of individual proteins and the neuron's mutational and electrophysiological status, this approach yields new information on therapeutic targets in excitatory neurons not attainable by traditional methods. This combined patch-proteomics technique creates a new proteogenetic-therapeutic strategy to correlate genotypic alterations to physiology with protein expression in single-cells.
Collapse
Affiliation(s)
- Swagata Ghatak
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
School of Biological SciencesNational Institute of Science Education and Research (NISER)‐Bhubaneswar, an OCC of Homi Bhabha National InstituteJataniOdisha752050India
| | - Jolene K. Diedrich
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Maria Talantova
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Nivedita Bhadra
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - Henry Scott
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Meetal Sharma
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Matthew Albertolle
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
Drug Metabolism and Pharmacokinetics DepartmentTakeda Development Center AmericasSan DiegoCA92121USA
| | - Nicholas J. Schork
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - John R. Yates
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Stuart A. Lipton
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Department of NeurosciencesSchool of MedicineUniversity of California, San DiegoLa JollaCA92093USA
| |
Collapse
|
3
|
Singh S A, Ansari MN, M. Elossaily G, Vellapandian C, Prajapati B. Investigating the Potential Impact of Air Pollution on Alzheimer's Disease and the Utility of Multidimensional Imaging for Early Detection. ACS OMEGA 2024; 9:8615-8631. [PMID: 38434844 PMCID: PMC10905749 DOI: 10.1021/acsomega.3c06328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/25/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Pollution is ubiquitous, and much of it is anthropogenic in nature, which is a severe risk factor not only for respiratory infections or asthma sufferers but also for Alzheimer's disease, which has received a lot of attention recently. This Review aims to investigate the primary environmental risk factors and their profound impact on Alzheimer's disease. It underscores the pivotal role of multidimensional imaging in early disease identification and prevention. Conducting a comprehensive review, we delved into a plethora of literature sources available through esteemed databases, including Science Direct, Google Scholar, Scopus, Cochrane, and PubMed. Our search strategy incorporated keywords such as "Alzheimer Disease", "Alzheimer's", "Dementia", "Oxidative Stress", and "Phytotherapy" in conjunction with "Criteria Pollutants", "Imaging", "Pathology", and "Particulate Matter". Alzheimer's disease is not only a result of complex biological factors but is exacerbated by the infiltration of airborne particles and gases that surreptitiously breach the nasal defenses to traverse the brain, akin to a Trojan horse. Various imaging modalities and noninvasive techniques have been harnessed to identify disease progression in its incipient stages. However, each imaging approach possesses inherent limitations, prompting exploration of a unified technique under a single umbrella. Multidimensional imaging stands as the linchpin for detecting and forestalling the relentless march of Alzheimer's disease. Given the intricate etiology of the condition, identifying a prospective candidate for Alzheimer's disease may take decades, rendering the development of a multimodal imaging technique an imperative. This research underscores the pressing need to recognize the chronic ramifications of invisible particulate matter and to advance our understanding of the insidious environmental factors that contribute to Alzheimer's disease.
Collapse
Affiliation(s)
- Ankul Singh S
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Mohd Nazam Ansari
- Department
of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Gehan M. Elossaily
- Department
of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Chitra Vellapandian
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Bhupendra Prajapati
- Department
of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy,
Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Gozaria Highway, Mehsana, North Gujarat 384012, India
| |
Collapse
|
4
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Albuhadily AK, Albukhaty S, Sulaiman GM, Batiha GES. Evaluation and targeting of amyloid precursor protein (APP)/amyloid beta (Aβ) axis in amyloidogenic and non-amyloidogenic pathways: A time outside the tunnel. Ageing Res Rev 2023; 92:102119. [PMID: 37931848 DOI: 10.1016/j.arr.2023.102119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
In Alzheimer disease (AD), amyloid precursor protein (APP) and production of amyloid beta (Aβ) which is generated by amyloidogenic pathway is implicated in neurotoxicity and neuronal cell deaths. However, physiological Aβ level is essential to improves neuronal survival, attenuates neuronal apoptosis and has neuroprotective effect. In addition, physiological APP level has neurotrophic effect on the central nervous system (CNS). APP has a critical role in the brain growth and development via activation of long-term potentiation (LTP) and acceleration of neurite outgrowth. Moreover, APP is cleaved by α secretase to form a neuroprotective soluble APP alpha (sAPPα) in non-amyloidogenic pathway. Consequently, this mini-review purposes to highlight the possible beneficial role of APP and Aβ. In addition, this mini-review discussed the modulation of APP processing and Aβ production.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied science, University of Technology, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq
| | | | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt
| |
Collapse
|
5
|
Thomas S, Prendergast GC. Gut-brain connections in neurodegenerative disease: immunotherapeutic targeting of Bin1 in inflammatory bowel disease and Alzheimer's disease. Front Pharmacol 2023; 14:1183932. [PMID: 37521457 PMCID: PMC10372349 DOI: 10.3389/fphar.2023.1183932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/13/2023] [Indexed: 08/01/2023] Open
Abstract
Longer lifespan produces risks of age-associated neurodegenerative disorders such as Alzheimer's disease (AD), which is characterized by declines in memory and cognitive function. The pathogenic causes of AD are thought to reflect a progressive aggregation in the brain of amyloid plaques composed of beta-amyloid (Aß) peptides and neurofibrillary tangles composed of phosphorylated tau protein. Recently, long-standing investigations of the Aß disease hypothesis gained support via a passive immunotherapy targeting soluble Aß protein. Tau-targeting approaches using antibodies are also being pursued as a therapeutic approach to AD. In genome-wide association studies, the disease modifier gene Bin1 has been identified as a top risk factor for late-onset AD in human populations, with recent studies suggesting that Bin1 binds tau and influences its extracellular deposition. Interestingly, before AD emerges in the brain, tau levels rise in the colon, where Bin1-a modifier of tissue barrier function and inflammation-acts to promote inflammatory bowel disease (IBD). This connection is provocative given clinical evidence of gut-brain communication in age-associated neurodegenerative disorders, including AD. In this review, we discuss a Bin1-targeting passive immunotherapy developed in our laboratory to treat IBD that may offer a strategy to indirectly reduce tau deposition and limit AD onset or progression.
Collapse
|
6
|
Cerón JJ, Ortín-Bustillo A, López-Martínez MJ, Martínez-Subiela S, Eckersall PD, Tecles F, Tvarijonaviciute A, Muñoz-Prieto A. S-100 Proteins: Basics and Applications as Biomarkers in Animals with Special Focus on Calgranulins (S100A8, A9, and A12). BIOLOGY 2023; 12:881. [PMID: 37372165 DOI: 10.3390/biology12060881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
S100 proteins are a group of calcium-binding proteins which received this name because of their solubility in a 100% saturated solution of ammonium sulphate. They have a similar molecular mass of 10-12 KDa and share 25-65% similarity in their amino acid sequence. They are expressed in many tissues, and to date 25 different types of S100 proteins have been identified. This review aims to provide updated information about S100 proteins and their use as biomarkers in veterinary science, with special emphasis on the family of calgranulins that includes S100A8 (calgranulin A; myeloid-related protein 8, MRP8), S100A9 (calgranulin B; MRP14), and S100A12 (calgranulin C). The proteins SA100A8 and S100A9 can be linked, forming a heterodimer which is known as calprotectin. Calgranulins are related to the activation of inflammation and the immune system and increase in gastrointestinal diseases, inflammation and sepsis, immunomediated diseases, and obesity and endocrine disorders in different animal species. This review reflects the current knowledge about calgranulins in veterinary science, which should increase in the future to clarify their role in different diseases and potential as biomarkers and therapeutic targets, as well as the practical use of their measurement in non-invasive samples such as saliva or feces.
Collapse
Affiliation(s)
- José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Alba Ortín-Bustillo
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - María José López-Martínez
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Peter David Eckersall
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Fernando Tecles
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| | - Alberto Muñoz-Prieto
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, 30100 Murcia, Spain
| |
Collapse
|
7
|
Khezri MR, Mohebalizadeh M, Ghasemnejad-Berenji M. Therapeutic potential of ADAM10 modulation in Alzheimer's disease: a review of the current evidence. Cell Commun Signal 2023; 21:60. [PMID: 36918870 PMCID: PMC10012555 DOI: 10.1186/s12964-023-01072-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/08/2023] [Indexed: 03/16/2023] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease worldwide, is caused by loss of neurons and synapses in central nervous system. Several causes for neuronal death in AD have been introduced, the most important of which are extracellular amyloid β (Aβ) accumulation and aggregated tau proteins. Increasing evidence suggest that targeting the process of Aβ production to reduce its deposition can serve as a therapeutic option for AD management. In this regard, therapeutic interventions shown that a disintegrin and metalloproteinase domain-containing protein (ADAM) 10, involved in non-amyloidogenic pathway of amyloid precursor protein processing, is known to be a suitable candidate. Therefore, this review aims to examine the molecular properties of ADAM10, its role in AD, and introduce it as a therapeutic target to reduce the progression of the disease. Video abstract.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Student Research Committee, Urmia University of Medical Sciences, Sero Road, Urmia, 5715799313, Iran.
| | - Mehdi Mohebalizadeh
- Student Research Committee, Urmia University of Medical Sciences, Sero Road, Urmia, 5715799313, Iran.,Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Morteza Ghasemnejad-Berenji
- Student Research Committee, Urmia University of Medical Sciences, Sero Road, Urmia, 5715799313, Iran. .,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran. .,Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
8
|
Intracellular DAMPs in Neurodegeneration and Their Role in Clinical Therapeutics. Mol Neurobiol 2023; 60:3600-3616. [PMID: 36859688 DOI: 10.1007/s12035-023-03289-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
Neuroinflammation is the major implication of neurodegeneration. This is a complex process which initiates from the cellular injury triggering the innate immune system which gives rise to damage-associated molecular patterns (DAMPs) which are also recognized as endogenous danger indicators. These originate from various compartments of the cell under pathological stimulus. These are very popular candidates having their origin in the intracellular compartments and organelles of the cell and may have their site of action itself in the intracellular or at the extracellular spaces. Under the influence of the pathological stimuli, they interact with the pattern-recognition receptor to initiate their pro-inflammatory cascade followed by the cytokine release. This provides a good opportunity for diagnostic and therapeutic interventions creating better conditions for repair and reversal. Since the major contributors arise from the intracellular compartment, in this review, we have attempted to focus on the DAMP molecules arising from the intracellular compartments and their specific roles in the neurodegenerative events explaining their downstream mediators and signaling. Moreover, we have tried to cover the latest interventions in terms of DAMPs as clinical biomarkers which can assist in detecting the disease and also target it to reduce the innate-immune activation response which can help in reducing the sterile neuroinflammation having an integral role in the neurodegenerative processes.
Collapse
|
9
|
Purewal JS, Doshi GM. Deciphering the Function of New Therapeutic Targets and Prospective Biomarkers in the Management of Psoriasis. Curr Drug Targets 2023; 24:1224-1238. [PMID: 38037998 DOI: 10.2174/0113894501277656231128060242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Psoriasis is an immune-mediated skin condition affecting people worldwide, presenting at any age, and leading to a substantial burden physically and mentally. The innate and adaptive immune systems interact intricately with the pathomechanisms that underlie disease. T cells can interact with keratinocytes, macrophages, and dendritic cells through the cytokines they secrete. According to recent research, psoriasis flare-ups can cause systemic inflammation and various other co-morbidities, including depression, psoriatic arthritis, and cardio-metabolic syndrome. Additionally, several auto-inflammatory and auto-immune illnesses may be linked to psoriasis. Although psoriasis has no proven treatment, care must strive by treating patients as soon as the disease surfaces, finding and preventing concurrent multimorbidity, recognising and reducing bodily and psychological distress, requiring behavioural modifications, and treating each patient individually. Biomarkers are traits that are assessed at any time along the clinical continuum, from the early stages of a disease through the beginning of treatment (the foundation of precision medicine) to the late stages of treatment (outcomes and endpoints). Systemic therapies that are frequently used to treat psoriasis provide a variety of outcomes. Targeted therapy selection, better patient outcomes, and more cost-effective healthcare would be made possible by biomarkers that reliably predict effectiveness and safety. This review is an attempt to understand the role of Antimicrobial peptides (AMP), Interleukin-38 (IL-38), autophagy 5 (ATG5) protein and squamous cell carcinoma antigen (SCCA) as biomarkers of psoriasis.
Collapse
Affiliation(s)
- Japneet Singh Purewal
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Mahesh Doshi
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
10
|
Inciarte-Mundo J, Frade-Sosa B, Sanmartí R. From bench to bedside: Calprotectin (S100A8/S100A9) as a biomarker in rheumatoid arthritis. Front Immunol 2022; 13:1001025. [PMID: 36405711 PMCID: PMC9672845 DOI: 10.3389/fimmu.2022.1001025] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 12/30/2022] Open
Abstract
S100A9/S100A8 (calprotectin), a member of the S100 protein family, has been shown to play a pivotal role in innate immunity activation. Calprotectin plays a critical role in the pathogenesis of rheumatoid arthritis (RA), as it triggers chemotaxis, phagocyte migration and modulation of neutrophils and macrophages. Higher calprotectin levels have been found in synovial fluid, plasma, and serum from RA patients. Recent studies have demonstrated better correlations between serum or plasma calprotectin and composite inflammatory disease activity indexes than c-reactive protein (CRP) or the erythrocyte sedimentation rate (ESR). Calprotectin serum levels decreased after treatment, independently of the DMARD type or strategy. Calprotectin has shown the strongest correlations with other sensitive techniques to detect inflammation, such as ultrasound. Calprotectin independently predicts radiographic progression. However, its value as a biomarker of treatment response and flare after tapering is unclear. This update reviews the current understanding of calprotectin in RA and discusses possible applications as a biomarker in clinical practice.
Collapse
Affiliation(s)
- José Inciarte-Mundo
- Biological aggression and Response Mechanisms, Inflammatory joint diseases (IJDs), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Beatriz Frade-Sosa
- Rheumatology Department, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Raimon Sanmartí
- Biological aggression and Response Mechanisms, Inflammatory joint diseases (IJDs), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain,Rheumatology Department, Hospital Clinic, University of Barcelona, Barcelona, Spain,*Correspondence: Raimon Sanmartí,
| |
Collapse
|
11
|
S100 Proteins as Novel Therapeutic Targets in Psoriasis and Other Autoimmune Diseases. Molecules 2022; 27:molecules27196640. [PMID: 36235175 PMCID: PMC9572071 DOI: 10.3390/molecules27196640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 01/07/2023] Open
Abstract
Psoriasis is one of the most common inflammatory skin diseases affecting about 1-3% of the population. One of the characteristic abnormalities in psoriasis is the excessive production of antimicrobial peptides and proteins, which play an essential role in the pathogenesis of the disease. Antimicrobial peptides and proteins can be expressed differently in normal and diseased skin, reflecting their usefulness as diagnostic biomarkers. Moreover, due to their very important functions in innate immunity, members of host defense peptides and proteins are currently considered to be promising new therapeutic targets for many inflammatory diseases. Koebnerisin (S100A15) belongs to an S100 family of antimicrobial proteins, which constitute the multigenetic group of calcium-binding proteins involved in ion-dependent cellular functions and regulation of immune mechanisms. S100A15 was first discovered to be overexpressed in 'koebnerized' psoriatic skin, indicating its involvement in the disease phenotype and the same promising potential as a new therapeutic target. This review describes the involvement of antimicrobial peptides and proteins in inflammatory diseases' development and therapy. The discussion focuses on S100 proteins, especially koebnerisin, which may be involved in the underlying mechanism of the Köebner phenomenon in psoriasis, as well as other immune-mediated inflammatory diseases described in the last decade.
Collapse
|
12
|
Kumar A, Doan VM, Kunkli B, Csősz É. Construction of Unified Human Antimicrobial and Immunomodulatory Peptide Database and Examination of Antimicrobial and Immunomodulatory Peptides in Alzheimer's Disease Using Network Analysis of Proteomics Datasets. Front Genet 2021; 12:633050. [PMID: 33995478 PMCID: PMC8113759 DOI: 10.3389/fgene.2021.633050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022] Open
Abstract
The reanalysis of genomics and proteomics datasets by bioinformatics approaches is an appealing way to examine large amounts of reliable data. This can be especially true in cases such as Alzheimer's disease, where the access to biological samples, along with well-defined patient information can be challenging. Considering the inflammatory part of Alzheimer's disease, our aim was to examine the presence of antimicrobial and immunomodulatory peptides in human proteomic datasets deposited in the publicly available proteomics database ProteomeXchange (http://www.proteomexchange.org/). First, a unified, comprehensive human antimicrobial and immunomodulatory peptide database, containing all known human antimicrobial and immunomodulatory peptides was constructed and used along with the datasets containing high-quality proteomics data originating from the examination of Alzheimer's disease and control groups. A throughout network analysis was carried out, and the enriched GO functions were examined. Less than 1% of all identified proteins in the brain were antimicrobial and immunomodulatory peptides, but the alterations characteristic of Alzheimer's disease could be recapitulated with their analysis. Our data emphasize the key role of the innate immune system and blood clotting in the development of Alzheimer's disease. The central role of antimicrobial and immunomodulatory peptides suggests their utilization as potential targets for mechanistic studies and future therapies.
Collapse
Affiliation(s)
- Ajneesh Kumar
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vo Minh Doan
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Kunkli
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
13
|
Bjorkli C, Sandvig A, Sandvig I. Bridging the Gap Between Fluid Biomarkers for Alzheimer's Disease, Model Systems, and Patients. Front Aging Neurosci 2020; 12:272. [PMID: 32982716 PMCID: PMC7492751 DOI: 10.3389/fnagi.2020.00272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disease characterized by the accumulation of two proteins in fibrillar form: amyloid-β (Aβ) and tau. Despite decades of intensive research, we cannot yet pinpoint the exact cause of the disease or unequivocally determine the exact mechanism(s) underlying its progression. This confounds early diagnosis and treatment of the disease. Cerebrospinal fluid (CSF) biomarkers, which can reveal ongoing biochemical changes in the brain, can help monitor developing AD pathology prior to clinical diagnosis. Here we review preclinical and clinical investigations of commonly used biomarkers in animals and patients with AD, which can bridge translation from model systems into the clinic. The core AD biomarkers have been found to translate well across species, whereas biomarkers of neuroinflammation translate to a lesser extent. Nevertheless, there is no absolute equivalence between biomarkers in human AD patients and those examined in preclinical models in terms of revealing key pathological hallmarks of the disease. In this review, we provide an overview of current but also novel AD biomarkers and how they relate to key constituents of the pathological cascade, highlighting confounding factors and pitfalls in interpretation, and also provide recommendations for standardized procedures during sample collection to enhance the translational validity of preclinical AD models.
Collapse
Affiliation(s)
- Christiana Bjorkli
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Axel Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Institute of Neuromedicine and Movement Science, Department of Neurology, St. Olavs Hospital, Trondheim, Norway.,Department of Pharmacology and Clinical Neurosciences, Division of Neuro, Head, and Neck, University Hospital of Umeå, Umeå, Sweden
| | - Ioanna Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
14
|
Tan N, Hu S, Hu Z, Wu Z, Wang B. Quantitative proteomic characterization of microvesicles/exosomes from the cerebrospinal fluid of patients with acute bilirubin encephalopathy. Mol Med Rep 2020; 22:1257-1268. [PMID: 32468033 PMCID: PMC7339682 DOI: 10.3892/mmr.2020.11194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/06/2020] [Indexed: 01/10/2023] Open
Abstract
Severe hyperbilirubinemia causes neurotoxicity and may lead to acute bilirubin encephalopathy (ABE) during the critical period of central nervous system development. The aim of the present study was to identify differentially expressed proteins (DEPs) in microvesicles/exosomes (MV/E) isolated from the cerebrospinal fluid (CSF) of patients with ABE. Co-precipitation was used to isolate the MV/E from the CSF of patients with ABE and age-matched controls. Isobaric tagging for relative and absolute quantification-based proteomic technology combined with liquid chromatography/tandem mass spectrometry was used to identify DEPs in the MV/E. Bioinformatics analysis was subsequently performed to investigate Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes enriched signaling pathways of these DEPs. A total of four proteins were selected for further validation via western blotting. A total of 291 dysregulated proteins were identified by comparing the patients with ABE with the controls. Bioinformatics analysis indicated the involvement of immune-inflammation-associated cellular processes and signaling pathways in the pathophysiology of ABE. In conclusion, the present study identified the proteomic profile of MV/E isolated from the CSF of patients with ABE. These results may provide an improved understanding of the pathogenesis of ABE and may help to identify early diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ning Tan
- Department of Pediatrics, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Shuiwang Hu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhen Hu
- National and Local Joint Engineering Laboratory for High‑through Molecular Diagnosis Technology, Translational Medicine Institute, Collaborative Research Center for Post‑doctoral Mobile Stations of Central South University, Affiliated The First People's Hospital of Chenzhou, Southern Medical University, University of South China, Chenzhou, Hunan 423000, P.R. China
| | - Zhouli Wu
- Department of Neonatology, Affiliated The First People's Hospital of Chenzhou, Southern Medical University, University of South China, Chenzhou, Hunan 423000, P.R. China
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
15
|
S100 proteins in atherosclerosis. Clin Chim Acta 2020; 502:293-304. [DOI: 10.1016/j.cca.2019.11.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
|
16
|
Vatanabe IP, Manzine PR, Cominetti MR. Historic concepts of dementia and Alzheimer's disease: From ancient times to the present. Rev Neurol (Paris) 2020; 176:140-147. [PMID: 31174886 DOI: 10.1016/j.neurol.2019.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 10/26/2022]
Abstract
The aim of this work is to describe the history of dementia and Alzheimer's disease (AD) concepts, from early descriptions in antiquity, through studies and authors from different historical periods throughout the centuries, to the latest updates of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V). The article also presents the inclusion of the biomarkers from the cerebrospinal fluid, such as Tau and phosphorylated Tau proteins and beta-amyloid peptide in the most recent diagnostic criteria. A literature search was carried out in order to construct a reflexive narrative review of studies dated up to 2015 in the LILACS and Medline databases and with the inclusion of bibliographical references of the area. The different terms used throughout the history of the dementia and Alzheimer's disease concepts were contextualized according to the scientific perspective of a given epoch and its way of producing and reproducing knowledge. The concepts of dementia and AD continue to evolve, largely due to their complexity. Considering the importance and the growth of AD cases in the last and the next decades, this review may contribute in practice with the historical knowledge of the concepts related to dementia and AD.
Collapse
Affiliation(s)
- I P Vatanabe
- Department of Gerontology, Federal University of São Carlos, Rod Washington Luís, Km 235, CEP 13565-905, São Carlos SP, Brazil.
| | - P R Manzine
- Department of Gerontology, Federal University of São Carlos, Rod Washington Luís, Km 235, CEP 13565-905, São Carlos SP, Brazil
| | - M R Cominetti
- Department of Gerontology, Federal University of São Carlos, Rod Washington Luís, Km 235, CEP 13565-905, São Carlos SP, Brazil
| |
Collapse
|
17
|
Role of S100 proteins in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118677. [PMID: 32057918 DOI: 10.1016/j.bbamcr.2020.118677] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 12/16/2022]
Abstract
The S100 family of proteins contains 25 known members that share a high degree of sequence and structural similarity. However, only a limited number of family members have been characterized in depth, and the roles of other members are likely undervalued. Their importance should not be underestimated however, as S100 family members function to regulate a diverse array of cellular processes including proliferation, differentiation, inflammation, migration and/or invasion, apoptosis, Ca2+ homeostasis, and energy metabolism. Here we detail S100 target protein interactions that underpin the mechanistic basis to their function, and discuss potential intervention strategies targeting S100 proteins in both preclinical and clinical situations.
Collapse
|
18
|
Sreejit G, Flynn MC, Patil M, Krishnamurthy P, Murphy AJ, Nagareddy PR. S100 family proteins in inflammation and beyond. Adv Clin Chem 2020; 98:173-231. [PMID: 32564786 DOI: 10.1016/bs.acc.2020.02.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.
Collapse
Affiliation(s)
| | - Michelle C Flynn
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
19
|
Bram JMDF, Talib LL, Joaquim HPG, Sarno TA, Gattaz WF, Forlenza OV. Protein levels of ADAM10, BACE1, and PSEN1 in platelets and leukocytes of Alzheimer's disease patients. Eur Arch Psychiatry Clin Neurosci 2019; 269:963-972. [PMID: 29845446 DOI: 10.1007/s00406-018-0905-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/22/2018] [Indexed: 12/31/2022]
Abstract
The clinical diagnosis of Alzheimer's disease (AD) is a probabilistic formulation that may lack accuracy particularly at early stages of the dementing process. Abnormalities in amyloid-beta precursor protein (APP) metabolism and in the level of APP secretases have been demonstrated in platelets, and to a lesser extent in leukocytes, of AD patients, with conflicting results. The aim of the present study was to compare the protein level of the APP secretases A-disintegrin and metalloprotease 10 (ADAM10), Beta-site APP-cleaving enzyme 1 (BACE1), and presenilin-1 (PSEN1) in platelets and leukocytes from 20 non-medicated older adults with AD and 20 healthy elders, and to determine the potential use of these biomarkers to discriminate cases of AD from controls. The protein levels of all APP secretases were significantly higher in platelets compared to leukocytes. We found statistically a significant decrease in ADAM10 (52.5%, p < 0.0001) and PSEN1 (32%, p = 0.02) in platelets from AD patients compared to controls, but not in leukocytes. Combining all three secretases to generate receiver-operating characteristic (ROC) curves, we found a good discriminatory effect (AD vs. controls) when using platelets (the area under the curve-AUC-0.90, sensitivity 88.9%, specificity 66.7%, p = 0.003), but not in leukocytes (AUC 0.65, sensitivity 77.8%, specificity 50.0%, p = 0.2). Our findings indicate that platelets represent a better biological matrix than leukocytes to address the peripheral level of APP secretases. In addition, combining the protein level of ADAM10, BACE1, and PSEN1 in platelets, yielded a good accuracy to discriminate AD from controls.
Collapse
Affiliation(s)
- Jessyka Maria de França Bram
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Leda Leme Talib
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Helena Passarelli Giroud Joaquim
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Tamires Alves Sarno
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Wagner Farid Gattaz
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Orestes Vicente Forlenza
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil.
| |
Collapse
|
20
|
Lavado LK, Zhang MH, Patel K, Khan S, Patel UK. Biometals as Potential Predictors of the Neurodegenerative Decline in Alzheimer's Disease. Cureus 2019; 11:e5573. [PMID: 31695992 PMCID: PMC6820671 DOI: 10.7759/cureus.5573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s Disease (AD) is a debilitating neurodegenerative disease that is diagnosed by gradual memory loss and certain cognitive impairments involving attention, reasoning, and language. Most of the research on Alzheimer’s disease focuses on the correlation of its neuropathological changes in the neurofibrillary tangles caused by hyper-phosphorylated tau protein and β-amyloid plaques with respect to cognitive impairment. Its pathology, however, remains incompletely understood. Currently, research has demonstrated that environmental factors such as biometals play a crucial role in exacerbating AD progression. The present review examines the role of metals in AD progression and how metal dyshomeostasis attributes to AD pathogenesis. It was found that certain metals possess both beneficial and harmful properties in terms of AD progression. Depending upon the concentration of the metal of interest, copper, zinc, iron, and selenium have general beneficial properties. However, when present in excess, they can lead to oxidative stress and hyperphosphorylation of tau protein, amongst other harmful effects, while calcium and magnesium were seen to have beneficial effects by regulating biometal uptake. In this review, we have provided evidential studies that focus on the involvement of certain metals in antioxidant pathways leading to the formation of reactive species indicative of neurodegeneration.
Collapse
Affiliation(s)
| | - Michelle H Zhang
- Psychological & Brain Sciences and Biology, Johns Hopkins University, Baltimore, USA
| | - Karan Patel
- Neuroscience, Johns Hopkins University, Baltimore, USA
| | - Sohim Khan
- Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Urvish K Patel
- Neurology and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
21
|
Delfino D, Rossetti DV, Martelli C, Inserra I, Vincenzoni F, Castagnola M, Urbani A, Scarpa S, Fuso A, Cavallaro RA, Desiderio C. Exploring the brain tissue proteome of TgCRND8 Alzheimer's Disease model mice under B vitamin deficient diet induced hyperhomocysteinemia by LC-MS top-down platform. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:165-172. [PMID: 31202182 DOI: 10.1016/j.jchromb.2019.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 01/23/2023]
Abstract
The multifactorial nature of Late Onset Alzheimer's Disease (LOAD), the AD form of major relevance on epidemiological and social aspects, has driven the original investigation by LC-MS and top-down proteomics approach of the protein repertoire of the brain tissue of TgCRND8 model mice fed with a diet deficient in B vitamins. The analysis of the acid-soluble fraction of brain tissue homogenates identified a list of proteins and peptides, proteoforms and PTMs. In order to disclose possible modulations, their relative quantification in wild type and AD model mice under both B vitamin deficient and control diets was performed. The levels of metallothionein III, guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2 and brain acid soluble protein 1 showed statistically significant alterations depending on genotype, diet or both effects, respectively. Particularly, metallothionein III exhibited increased levels in TgCRND8 mice under B vitamin deficient diet with respect to wild type mice under both diets. Brain acid soluble protein 1 showed the opposite, revealing decreased levels in all diet groups of AD model mice with respect to wild type mice in control diet. Lower levels of brain acid soluble protein 1 were also observed in wild type mice under deficiency of B vitamins. These results, besides contributing to increase the knowledge of AD at molecular level, give new suggestions for deeply investigating metallothionein III and brain acid soluble protein 1 in AD.
Collapse
Affiliation(s)
- Daniela Delfino
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Diana Valeria Rossetti
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italia; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Claudia Martelli
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Ilaria Inserra
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Federica Vincenzoni
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italia; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Massimo Castagnola
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy; Laboratorio di Proteomica e Metabonomica, IRCCS, Fondazione Santa Lucia, Roma, Italia
| | - Andrea Urbani
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italia; Area Diagnostica di Laboratorio, Fondazione Policlinico Universitario Agostino Gemelli - IRCCS, Roma, Italy
| | - Sigfrido Scarpa
- Dipartimento di Chirurgia "P. Valdoni", Sapienza Università di Roma, Rome, Italy
| | - Andrea Fuso
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Rome, Italy
| | - Rosaria A Cavallaro
- Dipartimento di Chirurgia "P. Valdoni", Sapienza Università di Roma, Rome, Italy
| | - Claudia Desiderio
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy.
| |
Collapse
|
22
|
Cristóvão JS, Gomes CM. S100 Proteins in Alzheimer's Disease. Front Neurosci 2019; 13:463. [PMID: 31156365 PMCID: PMC6532343 DOI: 10.3389/fnins.2019.00463] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/24/2019] [Indexed: 01/05/2023] Open
Abstract
S100 proteins are calcium-binding proteins that regulate several processes associated with Alzheimer's disease (AD) but whose contribution and direct involvement in disease pathophysiology remains to be fully established. Due to neuroinflammation in AD patients, the levels of several S100 proteins are increased in the brain and some S100s play roles related to the processing of the amyloid precursor protein, regulation of amyloid beta peptide (Aβ) levels and Tau phosphorylation. S100 proteins are found associated with protein inclusions, either within plaques or as isolated S100-positive puncta, which suggests an active role in the formation of amyloid aggregates. Indeed, interactions between S100 proteins and aggregating Aβ indicate regulatory roles over the aggregation process, which may either delay or aggravate aggregation, depending on disease stage and relative S100 and Aβ levels. Additionally, S100s are also known to influence AD-related signaling pathways and levels of other cytokines. Recent evidence also suggests that metal-ligation by S100 proteins influences trace metal homeostasis in the brain, particularly of zinc, which is also a major deregulated process in AD. Altogether, this evidence strongly suggests a role of S100 proteins as key players in several AD-linked physiopathological processes, which we discuss in this review.
Collapse
Affiliation(s)
- Joana S. Cristóvão
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudio M. Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Química e Bioquímica, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
23
|
Ba F, Zhou Y, Zhou J, Chen X. Repetitive transcranial magnetic stimulation protects mice against 6-OHDA-induced Parkinson’s disease symptoms by regulating brain amyloid β1–42 level. Mol Cell Biochem 2019; 458:71-78. [DOI: 10.1007/s11010-019-03531-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/10/2019] [Indexed: 01/08/2023]
|
24
|
Garyfallou GZ, Ketebu O, Şahin S, Mukaetova-Ladinska EB, Catt M, Yu EH. Electrochemical Detection of Plasma Immunoglobulin as a Biomarker for Alzheimer's Disease. SENSORS 2017; 17:s17112464. [PMID: 29077013 PMCID: PMC5713623 DOI: 10.3390/s17112464] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 12/24/2022]
Abstract
The clinical diagnosis and treatment of Alzheimer’s disease (AD) represent a challenge to clinicians due to the variability of clinical symptomatology as well as the unavailability of reliable diagnostic tests. In this study, the development of a novel electrochemical assay and its potential to detect peripheral blood biomarkers to diagnose AD using plasma immunoglobulins is investigated. The immunosensor employs a gold electrode as the immobilizing substrate, albumin depleted plasma immunoglobulin as the biomarker, and polyclonal rabbit Anti-human immunoglobulin (against IgA, IgG, IgM) as the receptor for plasma conjugation. The assay showed good response, sensitivity and reproducibility in differentiating plasma immunoglobulin from AD and control subjects down to 10−9 dilutions of plasma immunoglobulin representing plasma content concentrations in the pg mL−1 range. The newly developed assay is highly sensitive, less time consuming, easy to handle, can be easily modified to detect other dementia-related biomarkers in blood samples, and can be easily integrated into portable devices.
Collapse
Affiliation(s)
- Goulielmos-Zois Garyfallou
- School of Chemical Engineering and Advance Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| | - Orlando Ketebu
- School of Chemical Engineering and Advance Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| | - Samet Şahin
- School of Chemical Engineering and Advance Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
- Department of Chemical and Process Engineering, Faculty of Engineering, Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey.
| | | | - Michael Catt
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Eileen Hao Yu
- School of Chemical Engineering and Advance Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
25
|
Neuroprotective effect of ipriflavone against scopolamine-induced memory impairment in rats. Psychopharmacology (Berl) 2017; 234:3037-3053. [PMID: 28733814 DOI: 10.1007/s00213-017-4690-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alzheimer's disease is an age-related neurodegenerative disorder characterized clinically by a progressive loss of memory and cognitive functions resulting in severe dementia. Ipriflavone (IPRI) is a non-hormonal, semi-synthetic isoflavone, clinically used in some countries for the treatment and prevention of postmenopausal osteoporosis. Moreover, ipriflavone is a non-peptidomimetic small molecule AChE inhibitor with an improved bioavailability after systemic administration, due to its efficient blood-brain barrier permeability in comparison with peptidomimetic inhibitors. OBJECTIVE The present study aimed to evaluate the possible enhancing effects of IPRI on memory impairments caused by scopolamine administration. METHODS Male rats were administered IPRI (50 mg/kg, oral) 2 h before scopolamine injection (2 mg/kg, intraperitoneally injected) daily for 4 weeks. Effects of IPRI on acetylcholinesterase activity, amyloid-β precursor processing, and neuroplasticity in the rats' hippocampus were investigated. RESULTS Daily administration of IPRI reverted memory impairment caused by scopolamine as measured by the reduction of the escape latency. IPRI significantly alleviated the oxidative stress and restored the mRNA expression of both cAMP-response element-binding protein and brain-derived neurotrophic factor in the hippocampus. Furthermore, it significantly increased the expression of ADAM10 and ADAM17 (two putative α-secretase enzymes) and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) that associated with decreased expression of β-secretase (BACE) in the hippocampus. Finally, both the amyloid-β (Aβ) and Tau pathologies were reduced. CONCLUSIONS IPRI showed promising neuroprotective effects against scopolamine-induced memory dysfunction in rats. These findings contributed to the stimulation of α-secretase enzymes, the activation of MAPK/ERK1/2, and the alleviation of oxidative stress.
Collapse
|
26
|
Robinson RAS, Amin B, Guest PC. Multiplexing Biomarker Methods, Proteomics and Considerations for Alzheimer’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 974:21-48. [DOI: 10.1007/978-3-319-52479-5_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Shen CY, Jiang JG, Yang L, Wang DW, Zhu W. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery. Br J Pharmacol 2016; 174:1395-1425. [PMID: 27659301 DOI: 10.1111/bph.13631] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022] Open
Abstract
Ageing, an unanswered question in the medical field, is a multifactorial process that results in a progressive functional decline in cells, tissues and organisms. Although it is impossible to prevent ageing, slowing down the rate of ageing is entirely possible to achieve. Traditional Chinese medicine (TCM) is characterized by the nourishing of life and its role in anti-ageing is getting more and more attention. This article summarizes the work done on the natural products from TCM that are reported to have anti-ageing effects, in the past two decades. The effective anti-ageing ingredients identified can be generally divided into flavonoids, saponins, polysaccharides, alkaloids and others. Astragaloside, Cistanche tubulosa acteoside, icariin, tetrahydrocurcumin, quercetin, butein, berberine, catechin, curcumin, epigallocatechin gallate, gastrodin, 6-Gingerol, glaucarubinone, ginsenoside Rg1, luteolin, icarisid II, naringenin, resveratrol, theaflavin, carnosic acid, catalpol, chrysophanol, cycloastragenol, emodin, galangin, echinacoside, ferulic acid, huperzine, honokiol, isoliensinine, phycocyanin, proanthocyanidins, rosmarinic acid, oxymatrine, piceid, puerarin and salvianolic acid B are specified in this review. Simultaneously, chemical structures of the monomers with anti-ageing activities are listed, and their source, model, efficacy and mechanism are also described. The TCMs with anti-ageing function are classified according to their action pathways, including the telomere and telomerase, the sirtuins, the mammalian target of rapamycin, AMP-activated kinase and insulin/insulin-like growth factor-1 signalling pathway, free radicals scavenging and the resistance to DNA damage. Finally, Chinese compound prescription and extracts related to anti-ageing are introduced, which provides the basis and the direction for the further development of novel and potential drugs. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Li Yang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Da-Wei Wang
- The second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhu
- The second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
28
|
Insight into the Molecular Imaging of Alzheimer's Disease. Int J Biomed Imaging 2016; 2016:7462014. [PMID: 26880871 PMCID: PMC4736963 DOI: 10.1155/2016/7462014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease is a complex neurodegenerative disease affecting millions of individuals worldwide. Earlier it was diagnosed only via clinical assessments and confirmed by postmortem brain histopathology. The development of validated biomarkers for Alzheimer's disease has given impetus to improve diagnostics and accelerate the development of new therapies. Functional imaging like positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), and proton magnetic resonance spectroscopy provides a means of detecting and characterising the regional changes in brain blood flow, metabolism, and receptor binding sites that are associated with Alzheimer's disease. Multimodal neuroimaging techniques have indicated changes in brain structure and metabolic activity, and an array of neurochemical variations that are associated with neurodegenerative diseases. Radiotracer-based PET and SPECT potentially provide sensitive, accurate methods for the early detection of disease. This paper presents a review of neuroimaging modalities like PET, SPECT, and selected imaging biomarkers/tracers used for the early diagnosis of AD. Neuroimaging with such biomarkers and tracers could achieve a much higher diagnostic accuracy for AD and related disorders in the future.
Collapse
|
29
|
Metals and Neuronal Metal Binding Proteins Implicated in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9812178. [PMID: 26881049 PMCID: PMC4736980 DOI: 10.1155/2016/9812178] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/17/2015] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent age-related dementia affecting millions of people worldwide. Its main pathological hallmark feature is the formation of insoluble protein deposits of amyloid-β and hyperphosphorylated tau protein into extracellular plaques and intracellular neurofibrillary tangles, respectively. Many of the mechanistic details of this process remain unknown, but a well-established consequence of protein aggregation is synapse dysfunction and neuronal loss in the AD brain. Different pathways including mitochondrial dysfunction, oxidative stress, inflammation, and metal metabolism have been suggested to be implicated in this process. In particular, a body of evidence suggests that neuronal metal ions such as copper, zinc, and iron play important roles in brain function in health and disease states and altered homeostasis and distribution as a common feature across different neurodegenerative diseases and aging. In this focused review, we overview neuronal proteins that are involved in AD and whose metal binding properties may underlie important biochemical and regulatory processes occurring in the brain during the AD pathophysiological process.
Collapse
|
30
|
Babić M, Svob Štrac D, Mück-Šeler D, Pivac N, Stanić G, Hof PR, Simić G. Update on the core and developing cerebrospinal fluid biomarkers for Alzheimer disease. Croat Med J 2015; 55:347-65. [PMID: 25165049 PMCID: PMC4157375 DOI: 10.3325/cmj.2014.55.347] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Alzheimer disease (AD) is a complex neurodegenerative disorder, whose prevalence will dramatically rise by 2050. Despite numerous clinical trials investigating this disease, there is still no effective treatment. Many trials showed negative or inconclusive results, possibly because they recruited only patients with severe disease, who had not undergone disease-modifying therapies in preclinical stages of AD before severe degeneration occurred. Detection of AD in asymptomatic at risk individuals (and a few presymptomatic individuals who carry an autosomal dominant monogenic AD mutation) remains impractical in many of clinical situations and is possible only with reliable biomarkers. In addition to early diagnosis of AD, biomarkers should serve for monitoring disease progression and response to therapy. To date, the most promising biomarkers are cerebrospinal fluid (CSF) and neuroimaging biomarkers. Core CSF biomarkers (amyloid β1-42, total tau, and phosphorylated tau) showed a high diagnostic accuracy but were still unreliable for preclinical detection of AD. Hence, there is an urgent need for detection and validation of novel CSF biomarkers that would enable early diagnosis of AD in asymptomatic individuals. This article reviews recent research advances on biomarkers for AD, focusing mainly on the CSF biomarkers. In addition to core CSF biomarkers, the potential usefulness of novel CSF biomarkers is discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Goran Simić
- Goran Šimić, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia,
| |
Collapse
|
31
|
Sharma R, Gowda H, Chavan S, Advani J, Kelkar D, Kumar GSS, Bhattacharjee M, Chaerkady R, Prasad TSK, Pandey A, Nagaraja D, Christopher R. Proteomic Signature of Endothelial Dysfunction Identified in the Serum of Acute Ischemic Stroke Patients by the iTRAQ-Based LC–MS Approach. J Proteome Res 2015; 14:2466-79. [DOI: 10.1021/pr501324n] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rakesh Sharma
- Department
of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
- Department of Biochemistry, Faculty of Medicine, The University of Hong Kong, Hong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong
| | - Harsha Gowda
- Institute
of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Sandip Chavan
- Institute
of Bioinformatics, International Technology Park, Bangalore 560 066, India
- Manipal University, Manipal 576 104, India
| | - Jayshree Advani
- Institute
of Bioinformatics, International Technology Park, Bangalore 560 066, India
- Manipal University, Manipal 576 104, India
| | - Dhanashree Kelkar
- Institute
of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - G. S. Sameer Kumar
- Institute
of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Mitali Bhattacharjee
- Institute
of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Raghothama Chaerkady
- Institute
of Bioinformatics, International Technology Park, Bangalore 560 066, India
- Manipal University, Manipal 576 104, India
| | - T. S. Keshava Prasad
- Institute
of Bioinformatics, International Technology Park, Bangalore 560 066, India
- Manipal University, Manipal 576 104, India
| | - Akhilesh Pandey
- Institute
of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Dindagur Nagaraja
- Department
of Neurology, Dharwad Institute of Mental Health and Neuro Sciences, Dharwad 580001, India
| | - Rita Christopher
- Department
of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
| |
Collapse
|
32
|
Bekris LM, Tsuang DW, Peskind ER, Yu CE, Montine TJ, Zhang J, Zabetian CP, Leverenz JB. Cerebrospinal fluid Aβ42 levels and APP processing pathway genes in Parkinson's disease. Mov Disord 2015; 30:936-44. [PMID: 25808939 DOI: 10.1002/mds.26172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Of recent interest is the finding that certain cerebrospinal fluid (CSF) biomarkers traditionally linked to Alzheimer's disease (AD), specifically amyloid beta protein (Aβ), are abnormal in PD CSF. The aim of this exploratory investigation was to determine whether genetic variation within the amyloid precursor protein (APP) processing pathway genes correlates with CSF Aβ42 levels in Parkinson's disease (PD). METHODS Parkinson's disease (n = 86) and control (n = 161) DNA were genotyped for 19 regulatory region tagging single-nucleotide polymorphisms (SNPs) within nine genes (APP, ADAM10, BACE1, BACE2, PSEN1, PSEN2, PEN2, NCSTN, and APH1B) involved in the cleavage of APP. The SNP genotypes were tested for their association with CSF biomarkers and PD risk while adjusting for age, sex, and APOE ɛ4 status. RESULTS Significant correlation with CSF Aβ42 levels in PD was observed for two SNPs, (APP rs466448 and APH1B rs2068143). Conversely, significant correlation with CSF Aβ42 levels in controls was observed for three SNPs (APP rs214484, rs2040273, and PSEN1 rs362344). CONCLUSIONS In addition, results of this exploratory investigation suggest that an APP SNP and an APH1B SNP are marginally associated with PD CSF Aβ42 levels in APOE ɛ4 noncarriers. Further hypotheses generated include that decreased CSF Aβ42 levels are in part driven by genetic variation in APP processing genes. Additional investigation into the relationship between these findings and clinical characteristics of PD, including cognitive impairment, compared with other neurodegenerative diseases, such as AD, are warranted. © 2015 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lynn M Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Debby W Tsuang
- Northwest Network Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, USA.,Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elaine R Peskind
- Northwest Network Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, USA.,Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Chang E Yu
- Geriatric Research, Education, and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Thomas J Montine
- Northwest Network Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, USA.,Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA.,Northwest Network Parkinson's Disease Research, Education and Clinical Center (PADRECC), VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Jing Zhang
- Northwest Network Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, USA.,Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA.,Northwest Network Parkinson's Disease Research, Education and Clinical Center (PADRECC), VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Cyrus P Zabetian
- Geriatric Research, Education, and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, Washington, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA.,Northwest Network Parkinson's Disease Research, Education and Clinical Center (PADRECC), VA Puget Sound Health Care System, Seattle, Washington, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
33
|
Liu H, Xue X, Shi H, Qi L, Gong D. Osthole Upregulates BDNF to Enhance Adult Hippocampal Neurogenesis in APP/PS1 Transgenic Mice. Biol Pharm Bull 2015; 38:1439-49. [DOI: 10.1248/bpb.b15-00013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hong Liu
- Department of Neurology, Liaocheng Hospital
| | | | - Huijian Shi
- Department of Anesthesiology, Affilliated Hospital of TaiShan Medical College
| | - Lifeng Qi
- Department of Neurology, Liaocheng Hospital
| | | |
Collapse
|
34
|
Gregorich ZR, Ge Y. Top-down proteomics in health and disease: challenges and opportunities. Proteomics 2014; 14:1195-210. [PMID: 24723472 DOI: 10.1002/pmic.201300432] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/10/2014] [Accepted: 03/24/2014] [Indexed: 01/06/2023]
Abstract
Proteomics is essential for deciphering how molecules interact as a system and for understanding the functions of cellular systems in human disease; however, the unique characteristics of the human proteome, which include a high dynamic range of protein expression and extreme complexity due to a plethora of PTMs and sequence variations, make such analyses challenging. An emerging "top-down" MS-based proteomics approach, which provides a "bird's eye" view of all proteoforms, has unique advantages for the assessment of PTMs and sequence variations. Recently, a number of studies have showcased the potential of top-down proteomics for the unraveling of disease mechanisms and discovery of new biomarkers. Nevertheless, the top-down approach still faces significant challenges in terms of protein solubility, separation, and the detection of large intact proteins, as well as underdeveloped data analysis tools. Consequently, new technological developments are urgently needed to advance the field of top-down proteomics. Herein, we intend to provide an overview of the recent applications of top-down proteomics in biomedical research. Moreover, we will outline the challenges and opportunities facing top-down proteomics strategies aimed at understanding and diagnosing human diseases.
Collapse
Affiliation(s)
- Zachery R Gregorich
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
35
|
Afanador L, Roltsch EA, Holcomb L, Campbell KS, Keeling DA, Zhang Y, Zimmer DB. The Ca2+ sensor S100A1 modulates neuroinflammation, histopathology and Akt activity in the PSAPP Alzheimer's disease mouse model. Cell Calcium 2014; 56:68-80. [DOI: 10.1016/j.ceca.2014.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 11/25/2022]
|
36
|
Cerebrospinal fluid biomarkers of Alzheimer's disease. Neurosci Bull 2014; 30:233-42. [PMID: 24733653 DOI: 10.1007/s12264-013-1412-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 01/23/2014] [Indexed: 10/25/2022] Open
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disorder that takes about a decade to develop, making early diagnosis possible. Clinically, the diagnosis of AD is complicated, costly, and inaccurate, so it is urgent to find specific biomarkers. Due to its multifactorial nature, a panel of biomarkers for the multiple pathologies of AD, such as cerebral amyloidogenesis, neuronal dysfunction, synapse loss, oxidative stress, and inflammation, are most promising for accurate diagnosis. Highly sensitive and high-throughput proteomic techniques can be applied to develop a panel of novel biomarkers for AD. In this review, we discuss the metabolism and diagnostic performance of the well-established core candidate cerebrospinal fluid (CSF) biomarkers (β-amyloid, total tau, and hyperphosphorylated tau). Meanwhile, novel promising CSF biomarkers, especially those identified by proteomics, updated in the last five years are also extensively discussed. Furthermore, we provide perspectives on how biomarker discovery for AD is evolving.
Collapse
|
37
|
van Gool AJ, Hendrickson RC. The proteomic toolbox for studying cerebrospinal fluid. Expert Rev Proteomics 2014; 9:165-79. [DOI: 10.1586/epr.12.6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Choi YS, Choe LH, Lee KH. Recent cerebrospinal fluid biomarker studies of Alzheimer’s disease. Expert Rev Proteomics 2014; 7:919-29. [DOI: 10.1586/epr.10.75] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
|
40
|
Abstract
The S100 protein family consists of 24 members functionally distributed into three main subgroups: those that only exert intracellular regulatory effects, those with intracellular and extracellular functions and those which mainly exert extracellular regulatory effects. S100 proteins are only expressed in vertebrates and show cell-specific expression patterns. In some instances, a particular S100 protein can be induced in pathological circumstances in a cell type that does not express it in normal physiological conditions. Within cells, S100 proteins are involved in aspects of regulation of proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation and migration/invasion through interactions with a variety of target proteins including enzymes, cytoskeletal subunits, receptors, transcription factors and nucleic acids. Some S100 proteins are secreted or released and regulate cell functions in an autocrine and paracrine manner via activation of surface receptors (e.g. the receptor for advanced glycation end-products and toll-like receptor 4), G-protein-coupled receptors, scavenger receptors, or heparan sulfate proteoglycans and N-glycans. Extracellular S100A4 and S100B also interact with epidermal growth factor and basic fibroblast growth factor, respectively, thereby enhancing the activity of the corresponding receptors. Thus, extracellular S100 proteins exert regulatory activities on monocytes/macrophages/microglia, neutrophils, lymphocytes, mast cells, articular chondrocytes, endothelial and vascular smooth muscle cells, neurons, astrocytes, Schwann cells, epithelial cells, myoblasts and cardiomyocytes, thereby participating in innate and adaptive immune responses, cell migration and chemotaxis, tissue development and repair, and leukocyte and tumor cell invasion.
Collapse
Affiliation(s)
- R Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Cabras T, Pisano E, Montaldo C, Giuca MR, Iavarone F, Zampino G, Castagnola M, Messana I. Significant modifications of the salivary proteome potentially associated with complications of Down syndrome revealed by top-down proteomics. Mol Cell Proteomics 2013; 12:1844-52. [PMID: 23533003 DOI: 10.1074/mcp.m112.026708] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
People with Down syndrome, a frequent genetic disorder in humans, have increased risk of health problems associated with this condition. One clinical feature of Down syndrome is the increased prevalence and severity of periodontal disease in comparison with the general population. Because saliva plays an important role in maintaining oral health, in the present study the salivary proteome of Down syndrome subjects was investigated to explore modifications with respect to healthy subjects. Whole saliva of 36 Down syndrome subjects, divided in the age groups 10-17 yr and 18-50 yr, was analyzed by a top-down proteomic approach, based on the high performance liquid chromatography-electrospray ionization-MS analysis of the intact proteins and peptides, and the qualitative and quantitative profiles were compared with sex- and age-matched control groups. The results showed the following interesting features: 1) as opposed to controls, in Down syndrome subjects the concentration of the major salivary proteins of gland origin did not increase with age; as a consequence concentration of acidic proline rich proteins and S cystatins were found significantly reduced in older Down syndrome subjects with respect to matched controls; 2) levels of the antimicrobial α-defensins 1 and 2 and histatins 3 and 5 were significantly increased in whole saliva of older Down syndrome subjects with respect to controls; 3) S100A7, S100A8, and S100A12 levels were significantly increased in whole saliva of Down syndrome subjects in comparison with controls. The increased level of S100A7 and S100A12 may be of particular interest as a biomarker of early onset Alzheimer's disease, which is frequently associated with Down syndrome.
Collapse
Affiliation(s)
- Tiziana Cabras
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Monserrato (CA), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Expression and function of psoriasin (S100A7) and koebnerisin (S100A15) in the brain. Infect Immun 2013; 81:1788-97. [PMID: 23478321 DOI: 10.1128/iai.01265-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The expression and function of psoriasin in the brain have been insufficiently characterized. Here, we show the induction of psoriasin expression in the central nervous system (CNS) after bacterial and viral stimulation. We used a pneumococcal meningitis in vivo model that revealed S100A15 expression in astrocytes and meningeal cells. These results were confirmed by a cell-based in vivo assay using primary rat glial and meningeal cell cultures. We investigated psoriasin expression in glial and meningeal cells using polyinosinic-polycytidylic acid, a synthetic analog of double-stranded RNA that mimics viral infection. Furthermore, previous results showed that antimicrobial peptides have not only bactericidal but also immunomodulatory functions. To test this statement, we used recombinant psoriasin as a stimulus. Glial and meningeal cells were treated with recombinant psoriasin at concentrations from 25 to 500 ng/ml. Treated microglia and meningeal cells showed phosphorylation of the extracellular signal-regulated kinase 1 (ERK1)/ERK2 (ERK1/2) signal transduction pathway. We demonstrated that this activation of ERK depends on RAGE, the receptor for advanced glycation end products. Furthermore, microglia cells treated with recombinant psoriasin change their phenotype to an enlarged shape. In conclusion, our results indicate an occurrence of psoriasin in the brain. An involvement of psoriasin as an antimicrobial protein that modulates the innate immune system after bacterial or viral stimulation is possible.
Collapse
|
43
|
Burton MJ, Rajak SN, Ramadhani A, Weiss HA, Habtamu E, Abera B, Emerson PM, Khaw PT, Mabey DCW, Holland MJ, Bailey RL. Post-operative recurrent trachomatous trichiasis is associated with increased conjunctival expression of S100A7 (psoriasin). PLoS Negl Trop Dis 2012; 6:e1985. [PMID: 23285311 PMCID: PMC3527350 DOI: 10.1371/journal.pntd.0001985] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/12/2012] [Indexed: 01/17/2023] Open
Abstract
Background Surgery for trachomatous trichiasis (TT) is a key component of the SAFE Strategy for trachoma control. Unfortunately, recurrent TT following surgery is common, probably due to various surgical and disease factors. To develop strategies to reduce recurrence rates it is necessary to understand its pathological basis. In this study we investigated the relationship between recurrent trichiasis and the expression of various cytokines and fibrogenic genes during a two-year follow-up period. Methodology/Principal Findings Individuals undergoing surgery for TT were examined at baseline (pre-operative), 6, 12, 18 and 24 months. Conjunctival swab samples were collected from the tarsal conjunctiva for RNA isolation on each occasion. Individuals who developed recurrent TT with at least 3 lashes touching the eye on one or more occasion were designated “cases” and an equal number of “controls” were randomly selected from those without recurrent TT, frequency matched for age and baseline TT severity. The expression of the following genes was measured by quantitative RT-PCR: S100A7, IL1B, CXCL5, TNFA, NOS2A, CTGF, MMP7, MMP9 and MMP12. Thirteen hundred individuals were enrolled and underwent surgery. By two years 122 had developed recurrent TT with at least 3 lashes touching the eye. Recurrent TT was consistently associated across multiple time points with about a 2-fold increase in S100A7 expression (p = 0.008). Clinically visible conjunctival inflammation was associated with increased S100A7, IL1B, CXCL5, MMP9 and MMP12 expression. Conclusions/Significance Increased S100A7 expression was associated with trachomatous conjunctival scarring and may be linked to the pathophysiology of recurrent TT. S100A7 expression could be a potential biomarker for this disease process. As part of the epithelial innate immune response S100A7 has multiple actions, potentially contributing to a chronic pro-inflammatory response, which may lead to ongoing tissue damage and increased scarring. Trachoma causes blindness through corneal damage from in-turned eyelashes (trachomatous trichiasis [TT]). Trichiasis is treated surgically to correct the anatomical abnormality. Unfortunately, TT frequently returns following surgery, which again puts the person at risk of sight loss. Recurrent trichiasis is multifactorial. We investigated the possible role of various immuno-fibrogenic factors. To do this we operated on 1300 people with TT and followed them up every six months for a two-year period. On each occasion a conjunctival swab was collected for human gene expression analysis. We measured various factors that are thought to be important in inflammation and scarring diseases. The gene expression profile of people who developed recurrent TT was compared to a sample of those that did not have a recurrence. Recurrent TT was associated with increased expression of psoriasin (S100A7) before surgery and on multiple occasions during a two-year follow-up period. S100A7 is able to promote inflammation and may contribute to the development of the scarring process in trachoma.
Collapse
Affiliation(s)
- Matthew J Burton
- London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Dementia due to Alzheimer's disease (AD) is estimated to reach epidemic proportions by the year 2030. Given the limited accuracy of current AD clinical diagnosis, biomarkers of AD pathologies are currently being sought. Reductions in cerebrospinal fluid levels of β-amyloid 42 (a marker of amyloid plaques) and elevations in tau species (markers of neurofibrillary tangles and/or neurodegeneration) are well-established as biomarkers useful for AD diagnosis and prognosis. However, novel markers for other features of AD pathophysiology (e.g., β-amyloid processing, neuroinflammation and neuronal stress/dysfunction) and for other non-AD dementias are required to improve the accuracy of AD disease diagnosis, prognosis, staging and therapeutic monitoring (theragnosis). This article discusses the potential of several promising novel cerebrospinal fluid analytes, highlights the next steps critical for advancement in the field, and provides a prediction on how the field may evolve in 5-10 years.
Collapse
Affiliation(s)
- Anne M Fagan
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Ave., St Louis, MO 63110, USA.
| | | |
Collapse
|
45
|
Zhu X, Chen C, Ye D, Guan D, Ye L, Jin J, Zhao H, Chen Y, Wang Z, Wang X, Xu Y. Diammonium glycyrrhizinate upregulates PGC-1α and protects against Aβ1-42-induced neurotoxicity. PLoS One 2012; 7:e35823. [PMID: 22540007 PMCID: PMC3335163 DOI: 10.1371/journal.pone.0035823] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/22/2012] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial dysfunction is a hallmark of beta-amyloid (Aβ)-induced neurotoxicity in Alzheimer's disease (AD), and is considered an early event in AD pathology. Diammonium glycyrrhizinate (DG), the salt form of Glycyrrhizin, is known for its anti-inflammatory effects, resistance to biologic oxidation and membranous protection. In the present study, the neuroprotective effects of DG on Aβ(1-42)-induced toxicity and its potential mechanisms in primary cortical neurons were investigated. Exposure of neurons to 2 µM Aβ(1-42) resulted in significant viability loss and cell apoptosis. Accumulation of reactive oxygen species (ROS), decreased mitochondrial membrane potential, and activation of caspase-9 and caspase-3 were also observed after Aβ(1-42) exposure. All these effects induced by Aβ(1-42) were markedly reversed by DG treatment. In addition, DG could alleviate lipid peroxidation and partially restore the mitochondrial function in Aβ(1-42)-induced AD mice. DG also significantly increased the PGC-1α expression in vivo and in vitro, while knocking down PGC-1α partially blocked the protective effects, which indicated that PGC-1α contributed to the neuroprotective effects of DG. Furthermore, DG significantly decreased the escape latency and search distance and increased the target crossing times of Aβ(1-42)-induced AD mice in the Morris water maze test. Therefore, these results demonstrated that DG could attenuate Aβ(1-42)-induced neuronal injury by preventing mitochondrial dysfunction and oxidative stress and improved cognitive impairment in Aβ(1-42)-induced AD mice, indicating that DG exerted potential beneficial effects on AD.
Collapse
Affiliation(s)
- Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Cong Chen
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Dan Ye
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Dening Guan
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Lan Ye
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Jiali Jin
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Hui Zhao
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Yanting Chen
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Zhongyuan Wang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Xin Wang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing, People's Republic of China
- * E-mail:
| |
Collapse
|
46
|
Wijte D, McDonnell LA, Balog CI, Bossers K, Deelder AM, Swaab DF, Verhaagen J, Mayboroda OA. A novel peptidomics approach to detect markers of Alzheimer’s disease in cerebrospinal fluid. Methods 2012; 56:500-7. [DOI: 10.1016/j.ymeth.2012.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 12/27/2022] Open
|
47
|
Elucidating the role of metals in Alzheimer's disease through the use of Surface-Enhanced Laser Desorption/Ionisation time-of-flight mass spectrometry. Methods Mol Biol 2011; 752:229-40. [PMID: 21713641 DOI: 10.1007/978-1-60327-223-0_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Alzheimer's disease (AD) is a highly heterogeneous and progressive dementia which is characterised by a progressive decline in cognitive functioning, selective neuronal atrophy, and loss of cortical volume in areas involved in learning and memory. However, recent research has indicated that the AD-affected brain is also besieged by increases in oxidative stress as well as perturbations to the homeostasis of biometals, such as copper and iron. These metals are known to interact with the neuropathological hallmark of AD, the β-amyloid peptide (Aβ), in a manner which increases Aβ's neurotoxic effects. This knowledge has led to the development of therapeutic measures which act to restore biometal homeostasis within the AD brain. This chapter outlines how Surface-Enhanced Laser Desorption/Ionisation Time-of-Flight Mass Spectrometry can be used to monitor Aβ levels within biological systems as well as describing the use of immobilised metal affinity capture in the observation of synthetic Aβ peptides.
Collapse
|
48
|
Davinelli S, Intrieri M, Russo C, Di Costanzo A, Zella D, Bosco P, Scapagnini G. The "Alzheimer's disease signature": potential perspectives for novel biomarkers. IMMUNITY & AGEING 2011; 8:7. [PMID: 21933389 PMCID: PMC3192749 DOI: 10.1186/1742-4933-8-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/20/2011] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease is a progressive and neurodegenerative disorder which involves multiple molecular mechanisms. Intense research during the last years has accumulated a large body of data and the search for sensitive and specific biomarkers has undergone a rapid evolution. However, the diagnosis remains problematic and the current tests do not accurately detect the process leading to neurodegeneration. Biomarkers discovery and validation are considered the key aspects to support clinical diagnosis and provide discriminatory power between different stages of the disorder. A considerable challenge is to integrate different types of data from new potent approach to reach a common interpretation and replicate the findings across studies and populations. Furthermore, long-term clinical follow-up and combined analysis of several biomarkers are among the most promising perspectives to diagnose and manage the disease. The present review will focus on the recent published data providing an updated overview of the main achievements in the genetic and biochemical research of the Alzheimer's disease. We also discuss the latest and most significant results that will help to define a specific disease signature whose validity might be clinically relevant for future AD diagnosis.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Health Sciences, University of Molise, Campobasso, Italy.
| | | | | | | | | | | | | |
Collapse
|
49
|
Ghidoni R, Benussi L, Paterlini A, Albertini V, Binetti G, Emanuele E. Cerebrospinal fluid biomarkers for Alzheimer's disease: the present and the future. NEURODEGENER DIS 2011; 8:413-20. [PMID: 21709402 DOI: 10.1159/000327756] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 03/21/2011] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is the major cause of dementia in the elderly. The biochemical changes that precede AD may be present up to 20 years before the clinical manifestation of the disease. The translational development of AD biomarkers may be theoretically achieved via two different strategies: the first strategy can be defined as 'knowledge-based' (deductive method), while the second one is a hypothesis-generating 'unbiased' approach (inductive strategy). The 'knowledge-based' approach relies on a direct understanding of the neuropathological processes that underlie the development of AD. In contrast, the 'unbiased' approach involves the use of modern techniques including proteomics and bioinformatics that allow unbiased investigations of numerous putative markers that may be informative with regard to AD. Cerebrospinal fluid (CSF) dosage of neuropathological AD-associated proteins has already been incorporated into the neurochemical diagnosis of AD, attesting the relevance of translational research. In the last few years, biomarker discovery research has successfully utilized genomics and proteomics for the identification of several promising molecular markers for AD. In the present article, we discuss the present state of the art and the future challenges in the search of CSF biomarkers for AD.
Collapse
Affiliation(s)
- Roberta Ghidoni
- Proteomics Unit, IRCCS Centro S. Giovanni di Dio-Fatebenefratelli, Brescia, Italy. rghidoni @ fatebenefratelli.it
| | | | | | | | | | | |
Collapse
|
50
|
Steiner J, Bogerts B, Schroeter ML, Bernstein HG. S100B protein in neurodegenerative disorders. Clin Chem Lab Med 2011; 49:409-24. [PMID: 21303299 DOI: 10.1515/cclm.2011.083] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
"Classic" neurodegenerative disorders, such as Alzheimer's disease and amyotrophic lateral sclerosis share common pathophysiological features and involve progressive loss of specific neuronal populations, axonal or synaptic loss and dysfunction, reactive astrogliosis, and reduction in myelin. Furthermore, despite the absence of astrogliosis, impaired expression of astrocyte- and oligodendrocyte-related genes has been observed in patients with major psychiatric disorders, including schizophrenia and mood disorders. Because S100B is expressed in astrocytes and oligodendrocytes, its concentration in cerebrospinal fluid (CSF) or serum has been considered a suitable surrogate marker for the diagnostic or prognostic assessment of neurodegeneration. This review summarizes previous postmortem, CSF and serum studies regarding the role of S100B in this context. A general drawback is that only small single-center studies have been performed. Many potential confounding factors exist because of the wide extra-astrocytic and extracerebral expression of S100B. Due to lack of disease specificity, reliance on S100B concentrations for differential diagnostic purposes in cases of suspected neurodegenerative disorders is not recommended. Moreover, there is no consistent evidence for a correlation between disease severity and concentrations of S100B in CSF or serum. Therefore, S100B has limited usefulness for monitoring disease progression.
Collapse
Affiliation(s)
- Johann Steiner
- Department of Psychiatry, University of Magdeburg, Magdeburg, Germany.
| | | | | | | |
Collapse
|