1
|
Animal Models Used in Hepatitis C Virus Research. Int J Mol Sci 2020; 21:ijms21113869. [PMID: 32485887 PMCID: PMC7312079 DOI: 10.3390/ijms21113869] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
The narrow range of species permissive to infection by hepatitis C virus (HCV) presents a unique challenge to the development of useful animal models for studying HCV, as well as host immune responses and development of chronic infection and disease. Following earlier studies in chimpanzees, several unique approaches have been pursued to develop useful animal models for research while avoiding the important ethical concerns and costs inherent in research with chimpanzees. Genetically related hepatotropic viruses that infect animals are being used as surrogates for HCV in research studies; chimeras of these surrogate viruses harboring specific regions of the HCV genome are being developed to improve their utility for vaccine testing. Concurrently, genetically humanized mice are being developed and continually advanced using human factors known to be involved in virus entry and replication. Further, xenotransplantation of human hepatocytes into mice allows for the direct study of HCV infection in human liver tissue in a small animal model. The current advances in each of these approaches are discussed in the present review.
Collapse
|
2
|
Patterson JL, Lanford RE. Experimental Infections of the Common Marmoset (Callithrix jacchus). THE COMMON MARMOSET IN CAPTIVITY AND BIOMEDICAL RESEARCH 2019. [PMCID: PMC7149626 DOI: 10.1016/b978-0-12-811829-0.00028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Interest in the use of marmosets for experimental infectious disease has dramatically increased in the last decade. These animals are native to the Atlantic coastal forests in northeastern Brazil. The majority of experimental animals come from the National Primate Research Centers and other breeding facilities. They are advantageous because of their relative small size, weighting 350–400 g as adults, their life span is compact compared with other nonhuman primate (NHP), and they produce offspring by 3 years of age. They are free of Herpes B virus and, it is believed, to date, other dangerous human pathogens (Abbot et al., 2003) [1]. We describe here the experimental infections of marmosets to human pathogens. While it is always interesting to compare various NHPs with each other, the importance of an animal model is always in comparing its similarities to human infections.
Collapse
|
3
|
Suzuki S, Mori KI, Higashino A, Iwasaki Y, Yasutomi Y, Maki N, Akari H. Persistent replication of a hepatitis C virus genotype 1b-based chimeric clone carrying E1, E2 and p6 regions from GB virus B in a New World monkey. Microbiol Immunol 2016; 60:26-34. [PMID: 26634303 DOI: 10.1111/1348-0421.12349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022]
Abstract
The development of effective hepatitis C virus (HCV) vaccines is essential for the prevention of further HCV dissemination, especially in developing countries. Therefore the aim of this study is to establish a feasible and immunocompetent surrogate animal model of HCV infection that will help in evaluation of the protective efficacy of newly developing HCV vaccine candidates. To circumvent the narrow host range of HCV, an HCV genotype 1b-based chimeric clone carrying E1, E2 and p6 regions from GB virus B (GBV-B), which is closely related to HCV, was generated. The chimera between HCV and GBV-B, named HCV/G, replicated more efficiently as compared with the HCV clone in primary marmoset hepatocytes. Furthermore, it was found that the chimera persistently replicated in a tamarin for more than 2 years after intrahepatic inoculation of the chimeric RNA. Although relatively low (<200 copies/mL), the viral RNA loads in plasma were detectable intermittently during the observation period. Of note, the chimeric RNA was found in the pellet fraction obtained by ultracentrifugation of the plasma at 73 weeks, indicating production of the chimeric virus. Our results will help establish a novel non-human primate model for HCV infection on the basis of the HCV/G chimera in the major framework of the HCV genome.
Collapse
Affiliation(s)
- Saori Suzuki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506
| | - Ken-Ichi Mori
- Advanced Life Science Institute, 2-10-23 Maruyamadai, Wako, Saitama 351-0112
| | - Atsunori Higashino
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506
| | - Yuki Iwasaki
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843
| | - Noboru Maki
- Advanced Life Science Institute, 2-10-23 Maruyamadai, Wako, Saitama 351-0112
| | - Hirofumi Akari
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506.,Laboratory of Evolutional Virology, Institute for Virus Research, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
4
|
Determinants Involved in Hepatitis C Virus and GB Virus B Primate Host Restriction. J Virol 2015; 89:12131-44. [PMID: 26401036 DOI: 10.1128/jvi.01161-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/17/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) only infects humans and chimpanzees, while GB virus B (GBV-B), another hepatotropic hepacivirus, infects small New World primates (tamarins and marmosets). In an effort to develop an immunocompetent small primate model for HCV infection to study HCV pathogenesis and vaccine approaches, we investigated the HCV life cycle step(s) that may be restricted in small primate hepatocytes. First, we found that replication-competent, genome-length chimeric HCV RNAs encoding GBV-B structural proteins in place of equivalent HCV sequences designed to allow entry into simian hepatocytes failed to induce viremia in tamarins following intrahepatic inoculation, nor did they lead to progeny virus in permissive, transfected human Huh7.5 hepatoma cells upon serial passage. This likely reflected the disruption of interactions between distantly related structural and nonstructural proteins that are essential for virion production, whereas such cross talk could be restored in similarly designed HCV intergenotypic recombinants via adaptive mutations in NS3 protease or helicase domains. Next, HCV entry into small primate hepatocytes was examined directly using HCV-pseudotyped retroviral particles (HCV-pp). HCV-pp efficiently infected tamarin hepatic cell lines and primary marmoset hepatocyte cultures through the use of the simian CD81 ortholog as a coreceptor, indicating that HCV entry is not restricted in small New World primate hepatocytes. Furthermore, we observed genomic replication and modest virus secretion following infection of primary marmoset hepatocyte cultures with a highly cell culture-adapted HCV strain. Thus, HCV can successfully complete its life cycle in primary simian hepatocytes, suggesting the possibility of adapting some HCV strains to small primate hosts. IMPORTANCE Hepatitis C virus (HCV) is an important human pathogen that infects over 150 million individuals worldwide and leads to chronic liver disease. The lack of a small animal model for this infection impedes the development of a preventive vaccine and pathogenesis studies. In seeking to establish a small primate model for HCV, we first attempted to generate recombinants between HCV and GB virus B (GBV-B), a hepacivirus that infects small New World primates (tamarins and marmosets). This approach revealed that the genetic distance between these hepaciviruses likely prevented virus morphogenesis. We next showed that HCV pseudoparticles were able to infect tamarin or marmoset hepatocytes efficiently, demonstrating that there was no restriction in HCV entry into these simian cells. Furthermore, we found that a highly cell culture-adapted HCV strain was able to achieve a complete viral cycle in primary marmoset hepatocyte cultures, providing a promising basis for further HCV adaptation to small primate hosts.
Collapse
|
5
|
Manickam C, Reeves RK. Modeling HCV disease in animals: virology, immunology and pathogenesis of HCV and GBV-B infections. Front Microbiol 2014; 5:690. [PMID: 25538700 PMCID: PMC4259104 DOI: 10.3389/fmicb.2014.00690] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/21/2014] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus (HCV) infection has become a global public health burden costing billions of dollars in health care annually. Even with rapidly advancing scientific technologies this disease still poses a significant threat due to a lack of vaccines and affordable treatment options. The immune correlates of protection and predisposing factors toward chronicity remain major obstacles to development of HCV vaccines and immunotherapeutics due, at least in part, to lack of a tangible infection animal model. This review discusses the currently available animal models for HCV disease with a primary focus on GB virus B (GBV-B) infection of New World primates that recapitulates the dual Hepacivirus phenotypes of acute viral clearance and chronic pathologic disease. HCV and GBV-B are also closely phylogenetically related and advances in characterization of the immune systems of New World primates have already led to the use of this model for drug testing and vaccine trials. Herein, we discuss the benefits and caveats of the GBV-B infection model and discuss potential avenues for future development of novel vaccines and immunotherapies.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center - Harvard Medical School Boston, MA, USA
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center - Harvard Medical School Boston, MA, USA
| |
Collapse
|
6
|
NS2 proteins of GB virus B and hepatitis C virus share common protease activities and membrane topologies. J Virol 2014; 88:7426-44. [PMID: 24741107 DOI: 10.1128/jvi.00656-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED GB virus B (GBV-B), which is hepatotropic in experimentally infected small New World primates, is a member of the Hepacivirus genus but phylogenetically relatively distant from hepatitis C virus (HCV). To gain insights into the role and specificity of hepaciviral nonstructural protein 2 (NS2), which is required for HCV polyprotein processing and particle morphogenesis, we investigated whether NS2 structural and functional features are conserved between HCV and GBV-B. We found that GBV-B NS2, like HCV NS2, has cysteine protease activity responsible for cleavage at the NS2/NS3 junction, and we experimentally confirmed the location of this junction within the viral polyprotein. A model for GBV-B NS2 membrane topology was experimentally established by determining the membrane association properties of NS2 segments fused to green fluorescent protein (GFP) and their nuclear magnetic resonance structures using synthetic peptides as well as by applying an N-glycosylation scanning approach. Similar glycosylation studies confirmed the HCV NS2 organization. Together, our data show that despite limited amino acid sequence similarity, GBV-B and HCV NS2 proteins share a membrane topology with 3 N-terminal transmembrane segments, which is also predicted to apply to other recently discovered hepaciviruses. Based on these data and using trans-complementation systems, we found that intragenotypic hybrid NS2 proteins with heterologous N-terminal membrane segments were able to efficiently trans-complement an assembly-deficient HCV mutant with a point mutation in the NS2 C-terminal domain, while GBV-B/HCV or intergenotypic NS2 chimeras were not. These studies indicate that virus- and genotype-specific intramolecular interactions between N- and C-terminal domains of NS2 are critically involved in HCV morphogenesis. IMPORTANCE Nonstructural protein 2 (NS2) of hepatitis C virus (HCV) is a multifunctional protein critically involved in polyprotein processing and virion morphogenesis. To gain insights into NS2 mechanisms of action, we investigated whether NS2 structural and functional features are conserved between HCV and GB virus B (GBV-B), a phylogenetically relatively distant primate hepacivirus. We showed that GBV-B NS2, like HCV NS2, carries cysteine protease activity. We experimentally established a model for GBV-B NS2 membrane topology and demonstrated that despite limited sequence similarity, GBV-B and HCV NS2 share an organization with three N-terminal transmembrane segments. We found that the role of HCV NS2 in particle assembly is genotype specific and relies on critical interactions between its N- and C-terminal domains. This first comparative analysis of NS2 proteins from two hepaciviruses and our structural predictions of NS2 from other newly identified mammal hepaciviruses highlight conserved key features of the hepaciviral life cycle.
Collapse
|
7
|
Stewart H, Walter C, Jones D, Lyons S, Simmonds P, Harris M. The non-primate hepacivirus 5' untranslated region possesses internal ribosomal entry site activity. J Gen Virol 2013; 94:2657-2663. [PMID: 24026670 PMCID: PMC3836496 DOI: 10.1099/vir.0.055764-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/09/2013] [Indexed: 12/29/2022] Open
Abstract
The 5' untranslated region (5'UTR) of the recently described non-primate hepacivirus (NPHV) contains a region with sequence homology to the internal ribosomal entry site (IRES) of hepatitis C virus (HCV) and GB virus B (GBV-B). Here, we demonstrated internal translation initiation by the NPHV 5'UTR in a bicistronic vector. An RNA stem-loop upstream of the NPHV IRES was structurally distinct from corresponding regions in HCV and GBV-B, and was not required for IRES function. Insertion of the NPHV stem-loop into the corresponding region of the HCV 5'UTR within the HCV subgenomic replicon significantly impaired RNA replication, indicating that long-range interactions between the 5'UTR and cis-acting downstream elements within the NPHV genome are not interchangeable with those of HCV. Despite similarities in IRES structure and function between hepaciviruses, replication elements in the NPHV 5'UTR appear functionally distinct from those of HCV.
Collapse
Affiliation(s)
- Hazel Stewart
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Cheryl Walter
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Dale Jones
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sinead Lyons
- Infection and Immunity Division, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Peter Simmonds
- Infection and Immunity Division, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
8
|
Gao F, Yao H, Lu J, Wei Z, Zheng H, Zhuang J, Tong G, Yuan S. Replacement of the heterologous 5' untranslated region allows preservation of the fully functional activities of type 2 porcine reproductive and respiratory syndrome virus. Virology 2013; 439:1-12. [PMID: 23453581 PMCID: PMC7111940 DOI: 10.1016/j.virol.2012.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 12/20/2012] [Accepted: 12/25/2012] [Indexed: 10/27/2022]
Abstract
The 5' untranslated region (UTR) is believed to be vital for the replication of porcine reproductive and respiratory syndrome virus (PRRSV), yet its functional mechanism remains largely unknown. In this study, to define the cis-acting elements for viral replication and infectivity, The 5' UTR swapping chimeric clones pTLV8 and pSHSP5 were constructed based on two different genotypes full-length infectious cDNA clone pAPRRS and pSHE backbones. Between them, vTLV8 could be rescued from pTLV8 and had similar virological properties to vAPRRS, including phenotypic characteristic and RNA synthesis level. However, pSHSP5 exhibited no evidence of infectivity. Taken together, the results presented here demonstrate that only the 5' UTR of type 1 PRRSV did not affect the infectivity and replication of type 2 PRRSV in vitro. The 5' UTR of type 2 PRRSV could be functionally replaced by its counterpart from type 1.
Collapse
Affiliation(s)
- Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Wargo AR, Kurath G. Viral fitness: definitions, measurement, and current insights. Curr Opin Virol 2012; 2:538-45. [PMID: 22986085 PMCID: PMC7102723 DOI: 10.1016/j.coviro.2012.07.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/24/2012] [Indexed: 11/03/2022]
Abstract
Viral fitness is an active area of research, with recent work involving an expanded number of human, non-human vertebrate, invertebrate, plant, and bacterial viruses. Many publications deal with RNA viruses associated with major disease emergence events, such as HIV-1, influenza virus, and Dengue virus. Study topics include drug resistance, immune escape, viral emergence, host jumps, mutation effects, quasispecies diversity, and mathematical models of viral fitness. Important recent trends include increasing use of in vivo systems to assess vertebrate virus fitness, and a broadening of research beyond replicative fitness to also investigate transmission fitness and epidemiologic fitness. This is essential for a more integrated understanding of overall viral fitness, with implications for disease management in the future.
Collapse
Affiliation(s)
- Andrew R Wargo
- US Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA 98115, USA
| | | |
Collapse
|
10
|
Benureau Y, Warter L, Malcolm BA, Martin A. A comparative analysis of the substrate permissiveness of HCV and GBV-B NS3/4A proteases reveals genetic evidence for an interaction with NS4B protein during genome replication. Virology 2010; 406:228-40. [PMID: 20701941 DOI: 10.1016/j.virol.2010.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/04/2010] [Accepted: 07/11/2010] [Indexed: 01/09/2023]
Abstract
The hepatitis C virus (HCV) serine protease (NS3/4A) processes the NS3-NS5B segment of the viral polyprotein and also cleaves host proteins involved in interferon signaling, making it an important target for antiviral drug discovery and suggesting a wide breadth of substrate specificity. We compared substrate specificities of the HCV protease with that of the GB virus B (GBV-B), a distantly related nonhuman primate hepacivirus, by exchanging amino acid sequences at the NS4B/5A and/or NS5A/5B cleavage junctions between these viruses within the backbone of subgenomic replicons. This mutagenesis study demonstrated that the GBV-B protease had a broader substrate tolerance, a feature corroborated by structural homology modeling. However, despite efficient polyprotein processing, GBV-B RNAs containing HCV sequences at the C-terminus of NS4B had a pseudo-lethal replication phenotype. Replication-competent revertants contained second-site substitutions within the NS3 protease or NS4B N-terminus, providing genetic evidence for an essential interaction between NS3 and NS4B during genome replication.
Collapse
Affiliation(s)
- Yann Benureau
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Department of Virology, F-75015 Paris, France
| | | | | | | |
Collapse
|
11
|
Weatherford T, Chavez D, Brasky KM, Lemon SM, Martin A, Lanford RE. Lack of adaptation of chimeric GB virus B/hepatitis C virus in the marmoset model: possible effects of bottleneck. J Virol 2009; 83:8062-75. [PMID: 19474092 PMCID: PMC2715777 DOI: 10.1128/jvi.00032-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 05/20/2009] [Indexed: 01/06/2023] Open
Abstract
Approximately 3% of the world population is chronically infected with hepatitis C virus (HCV). GB virus B (GBV-B), a surrogate model for HCV, causes hepatitis in tamarins and is the virus phylogenetically most closely related to HCV. Previously we described a chimeric GBV-B containing an HCV insert from the 5' noncoding region (NCR) that was adapted for efficient replication in tamarins (Saguinus species). We have also demonstrated that wild-type (WT) GBV-B rapidly adapts for efficient replication in a closely related species, the common marmoset (Callithrix jacchus). Here, we demonstrate that the chimeric virus failed to adapt during serial passage in marmosets. The chimeric virus was passaged four times through 24 marmosets. During passage, two marmoset phenotypes were observed: susceptible and partially resistant. Although appearing to adapt in a resistant animal during a prolonged and gradual increase in viremia, the chimeric GBV-B failed to replicate efficiently upon passage to a naïve marmoset. The resistance was specific to the chimeric virus, as the chimeric virus-resistant animals were susceptible to marmoset-adapted WT virus during rechallenge studies. Three isolates of the chimeric virus were sequenced, and 20 nucleotide changes were observed, including eight amino acid changes. Three unique changes were observed in the 5' NCR chimeric insert, an area that is highly conserved in HCV. We speculate that the failure of the chimeric virus to adapt in marmosets might be due to a bottleneck that occurs at the time of infection of resistant animals, which may lead to a loss of fitness upon serial passage.
Collapse
Affiliation(s)
- Trudie Weatherford
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, TX 78227, USA
| | | | | | | | | | | |
Collapse
|