1
|
Ajay AK, Zhu LJ, Zhao L, Liu Q, Ding Y, Chang YC, Shah SI, Hsiao LL. Local vascular Klotho mediates diabetes-induced atherosclerosis via ERK1/2 and PI3-kinase-dependent signaling pathways. Atherosclerosis 2024; 396:118531. [PMID: 38996716 DOI: 10.1016/j.atherosclerosis.2024.118531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND AND AIMS Diabetes is one of the major causes of cardiovascular disease (CVD). As high as 29 % of patients with diabetes develop atherosclerosis. Vascular Smooth Muscle Cells (VSMCs) are a key mediator in the pathogenesis of atherosclerosis, generating pro-inflammatory and proliferative characteristics in atherosclerotic lesions. METHODS We used human atherosclerotic samples, developed diabetes-induced atherosclerotic mice, and generated loss of function and gain of function in Klotho human aortic smooth muscle cells to investigate the function of Klotho in atherosclerosis. RESULTS We found that Klotho expression is decreased in smooth muscle actin-positive cells in patients with diabetes and atherosclerosis. Consistent with human data, we found that Apoe knockout mice with streptozotocin-induced diabetes fed on a high-fat diet showed decreased expression of Klotho in SMCs. Additionally, these mice showed increased expression of TGF-β, MMP9, phosphorylation of ERK and Akt. Further, we utilized primary Human Aortic Smooth Muscle Cells (HASMCs) with d-glucose under dose-response and in time-dependent conditions to study the role of Klotho in these cells. Klotho gain of function and loss of function studies showed that Klotho inversely regulated the expression of atherosclerotic markers TGF-β, MMP2, MMP9, and Fractalkine. Further, High Glucose (HG) induced Akt, and ERK1/2 phosphorylation were enhanced or mitigated by endogenous Klotho deficiency or its overexpression respectively. PI3K/Akt and MAPK/ERK inhibition partially abolished the HG-induced upregulation of TGF-β, MMP2, MMP9, and Fractalkine. Additionally, Klotho knockdown increased the proliferation of HASMCs and enhanced α-SMA and TGF-β expression. CONCLUSIONS Taken together, these results indicate that local vascular Klotho is involved in diabetes-induced atherosclerosis, which is via PI3K/Akt and ERK1/2-dependent signaling pathways.
Collapse
MESH Headings
- Klotho Proteins/metabolism
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Glucuronidase/metabolism
- Glucuronidase/genetics
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Mice, Knockout, ApoE
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Male
- Signal Transduction
- Cells, Cultured
- Aorta/pathology
- Aorta/metabolism
- MAP Kinase Signaling System
- Mice
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Aortic Diseases/genetics
- Aortic Diseases/enzymology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Mice, Inbred C57BL
- Proto-Oncogene Proteins c-akt/metabolism
- Cell Proliferation
Collapse
Affiliation(s)
- Amrendra K Ajay
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115.
| | - Lang-Jing Zhu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115; Department of Nephrology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Li Zhao
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115; Division of Renal Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qinghua Liu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115; Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Ding
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115
| | - Yu-Chun Chang
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115
| | - Sujal I Shah
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115
| | - Li-Li Hsiao
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA, 02115.
| |
Collapse
|
2
|
Ding J, Yang X, Huang H, Wang B. Role of PIM2 in acute lung injury induced by sepsis. Exp Ther Med 2022; 24:543. [PMID: 35978927 PMCID: PMC9366265 DOI: 10.3892/etm.2022.11480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/28/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Juncai Ding
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiufang Yang
- Department of Pediatrics, Zhongshan People's Hospital Affiliated to Sun Yat‑sen University, Zhongshan, Guangdong 528403, P.R. China
| | - Huijuan Huang
- Department of Pediatrics, Zhongshan People's Hospital Affiliated to Sun Yat‑sen University, Zhongshan, Guangdong 528403, P.R. China
| | - Bo Wang
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou, Guangdong 511442, P.R. China
| |
Collapse
|
3
|
Immunobiology of tubercle bacilli and prospects of immunomodulatory drugs to tackle tuberculosis (TB) and other non-tubercular mycobacterial infections. Immunobiology 2022; 227:152224. [PMID: 35533535 PMCID: PMC9068598 DOI: 10.1016/j.imbio.2022.152224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 01/17/2023]
Abstract
The COVID-19 pandemic has set back progress made on antimicrobial resistance (AMR). Without urgent re-focus, we risk slowing down drug discovery and providing treatment for drug resistant Mycobacterium tuberculosis. Unique in its immune evasion, dormancy and resuscitation, the causal pathogens of tuberculosis (TB) have demonstrated resistance to antibiotics with efflux pumps and the ability to form biofilms. Repurposing drugs is a prospective avenue for finding new anti-TB drugs. There are many advantages to discovering novel targets of an existing drug, as the pharmacokinetic and pharmacodynamic properties have already been established, they are cost-efficient and can be commercially accelerated for the new development. One such group of drugs are non-steroidal anti-inflammatory drugs (NSAIDs) that are originally known for their ability to supress the host proinflammatory responses. In addition to their anti-inflammatory properties, some NSAIDs have been discovered to have antimicrobial modes of action. Of particular interest is Carprofen, identified to inhibit the efflux mechanism and disrupt biofilm formation in mycobacteria. Due to the complexities of host-pathogens interactions in the lung microbiome, inflammatory responses must carefully be controlled alongside the in vivo actions of the prospective anti-infectives. This critical review explores the potential dual role of a selection of NSAIDs, as an anti-inflammatory and anti-tubercular adjunct to reverse the tide of antimicrobial resistance in existing treatments.
Collapse
|
4
|
Meng Y, Yin D, Qiu S, Zhang X. Abrine promotes cell proliferation and inhibits apoptosis of interleukin-1β-stimulated chondrocytes via PIM2/VEGF signalling in osteoarthritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153906. [PMID: 35026522 DOI: 10.1016/j.phymed.2021.153906] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Osteoarthritis (OA), a common joint disorder with an increasing incidence worldwide, severely affects the quality of life of patients. In Chinese herbal medicine, Abrus cantoniensis Hance is considered to exert protective effects on the liver and to have beneficial effects on the gallbladder; additionally, it has antibacterial and anti-inflammatory properties, as well as the ability to enhance immunity, scavenge free radicals, regulate smooth muscle function, and improve endurance. Abrine extracted from A. cantoniensis Hance has been reported as a main functional compound capable of treating chronic inflammation. PURPOSE In this study, we explored the effect of abrine on OA progression. STUDY DESIGN Bioinformatics analysis was performed on abrine and its potential targets in OA, using the Comparative Toxicogenomics Database, GSE1919 dataset from the Gene Expression Omnibus database, Gene Set Enrichment Analysis, and docking interaction analysis. METHODS The effect of abrine in vitro was analysed by Cell Counting Kit 8 assays, colony formation assays, enzyme-linked immunosorbent assay, flow cytometry analysis, quantitative real-time PCR, and western blotting using human transformed chondrocyte cell line C28/I2. The effect of abrine was evaluated in vivo using the anterior cruciate ligament transection (ACLT) Sprague-Dawley rat OA model. RESULTS Abrine enhanced the proliferation of interleukin (IL)-1β-stimulated C28/I2 cells in a dose-dependant manner. Expression of pro-inflammatory cytokines was induced by IL-1β treatment, whereas abrine treatment repressed the induction of C28/I2 cells in a dose dependant manner (p < 0.05). Abrine induced cell proliferation and inhibited apoptosis in IL-1β-stimulated C28/I2 cells (p < 0.05). Abrine also inhibited Proviral Integrations of Moloney virus 2 (PIM2) expression in IL-1β-stimulated C28/I2 cells (p < 0.05). The expression of vascular endothelial growth factor (VEGF), p-VEGFR2, and p-eNOS was induced by IL-1β treatment in C28/I2 cells, while abrine inhibited this induction in a dose dependant manner. Treatment with abrine decreased the expression levels of PIM2 and VEGF in IL-1β-stimulated C28/I2 cells (p < 0.05). Overexpression of PIM2 induced cell proliferation and inhibited apoptosis in IL-1β-stimulated C28/I2 cells, while VEGF silencing reversed this effect (p < 0.05). Finally, abrine prevented cartilage degradation in the ACLT model. CONCLUSION We demonstrated that abrine promoted cell proliferation and inhibited apoptosis in IL-1β-stimulated C28/I2 cells through PIM2/VEGF signalling. These findings indicate PIM2 to be a potential drug target. Moreover, abrine has potential applicability as a therapeutic agent against OA.
Collapse
Affiliation(s)
- Yong Meng
- Department of Orthopaedics, Weihai Municipal Hospital, Weihai, Shandong 264200, PR China; Department of Orthopaedics, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital) Jinan University, Heyuan, Guangdong 517000, PR China
| | - Dezhen Yin
- Department of Spine Surgery, Weihai Municipal Hospital, Weihai, Shandong 264200, PR China
| | - Siqiang Qiu
- Department of Spine Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong 250031, PR China
| | - Xin Zhang
- Department of Orthopeadic Surgery, Zhucheng people's hospital, Zhucheng, Shandong 262200, PR China.
| |
Collapse
|
5
|
Xuan L, Hu JH, Bi R, Liu SQ, Wang CX. Andrographolide Inhibits Proliferation and Promotes Apoptosis in Bladder Cancer Cells by Interfering with NF-κB and PI3K/AKT Signaling In Vitro and In Vivo. Chin J Integr Med 2022; 28:349-356. [PMID: 35048242 DOI: 10.1007/s11655-022-3464-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To explore the influences of andrographolide (Andro) on bladder cancer cell lines and a tumor xenograft mouse model bearing 5637 cells. METHODS For in vitro experiments, T24 cells were stimulated with Andro (0-40 µmol/L) and 5637 cells were stimulated with Andro (0 to 80 µmol/L). Cell growth, migration, and infiltration were assessed using cell counting kit-8, colony formation, wound healing, and transwell assays. Apoptosis rate was examined using flow cytometry. In in vivo study, the antitumor effect of Andro (10 mg/kg) was evaluated by 5637 tumor-bearing mice, and levels of nuclear factor κB (NF-κB) and phosphoinositide 3-kinase/AKT related-proteins were determined by immunoblotting. RESULTS Andro suppressed growth, migration, and infiltraion of bladder cancer cells (P⩽0.05 or P⩽0.01). Additionally, Andro induced intrinsic mitochondria-dependent apoptosis in bladder cancer cell lines. Furthermore, Andro inhibited bladder cancer growth in mice (P⩽0.01). The expression of p65, p-AKT were suppressed by Andro treatment in vitro and in vivo (P⩽0.05 or P⩽0.01). CONCLUSIONS Andrographolide inhibits proliferation and promotes apoptosis in bladder cancer cells by interfering with NF-κB and PI3K/AKT signaling in vitro and in vivo.
Collapse
Affiliation(s)
- Lei Xuan
- Department of Urology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Jing-Hai Hu
- Department of Urology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Ran Bi
- Department of Urology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Si-Qi Liu
- Department of Urology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Chun-Xi Wang
- Department of Urology, the First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Wang Y, Xiu J, Ren C, Yu Z. Protein kinase PIM2: A simple PIM family kinase with complex functions in cancer metabolism and therapeutics. J Cancer 2021; 12:2570-2581. [PMID: 33854618 PMCID: PMC8040705 DOI: 10.7150/jca.53134] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
PIM2 (proviral integration site for Moloney murine leukemia virus 2) kinase plays an important role as an oncogene in multiple cancers, such as leukemia, liver, lung, myeloma, prostate and breast cancers. PIM2 is largely expressed in both leukemia and solid tumors, and it promotes the transcriptional activation of genes involved in cell survival, cell proliferation, and cell-cycle progression. Many tumorigenic signaling molecules have been identified as substrates for PIM2 kinase, and a variety of inhibitors have been developed for its kinase activity, including SMI-4a, SMI-16a, SGI-1776, JP11646 and DHPCC-9. Here, we summarize the signaling pathways involved in PIM2 kinase regulation and PIM2 mechanisms in various neoplastic diseases. We also discuss the current status and future perspectives for the development of PIM2 kinase inhibitors to combat human cancer, and PIM2 will become a therapeutic target in cancers in the future.
Collapse
Affiliation(s)
- Yixin Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Jing Xiu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| |
Collapse
|
7
|
PIM2 deletion alleviates lipopolysaccharide (LPS)-induced respiratory distress syndrome (ARDS) by suppressing NLRP3 inflammasome. Biochem Biophys Res Commun 2020; 533:1419-1426. [PMID: 33333710 DOI: 10.1016/j.bbrc.2020.08.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/30/2020] [Indexed: 11/24/2022]
Abstract
Inflammation has an essential role in regulating the pathogenesis of acute respiratory distress syndrome (ARDS). The serine/threonine kinase PIM2 is highly expressed in human macrophages, and exhibits regulatory role in inflammatory response. However, its effect on ARDS progression has not been investigated and still remains unclear. In the study, we attempted to investigate the potential of PIM2 during ARDS progression, and to reveal the underlying molecular mechanisms. Here, we found that PIM2 expression was dramatically up-regulated in lipopolysaccharide (LPS)-exposed murine macrophages through a dose- and time-dependent manner. Additionally, we found that PIM2 knockdown greatly alleviated LPS-triggered activation of Caspase-1, interleukin (IL)-1β, NOD-like receptor pyrin domain 3 (NLRP3) and apoptosis-associated speck-like protein (ASC) in macrophages, along with suppressed inflammatory response. Importantly, we identified that PIM2 could directly interact with NLRP3. PIM2 over-expression could further promote LPS-triggered inflammation and NLRP3 inflammasome in macrophages. Furthermore, PIM2 knockout significantly alleviated the severity of ARDS in LPS-challenged mice. Evidently decreased inflammatory response and NLRP3 inflammasome were detected in pulmonary tissues of LPS-treated mice with PIM2 deficiency. Together, our findings demonstrated that PIM2 as a promising therapeutic target for ARDS treatment through regulating NLRP3 inflammasome.
Collapse
|
8
|
The Role of Matrix Metalloproteinase-9 in Atherosclerotic Plaque Instability. Mediators Inflamm 2020; 2020:3872367. [PMID: 33082709 PMCID: PMC7557896 DOI: 10.1155/2020/3872367] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) belongs to the MMP family and has been widely investigated. Excessive MMP-9 expression can enhance extracellular matrix degradation and promote plaque instability. Studies have demonstrated that MMP-9 levels are higher in vulnerable plaques than in stable plaques. Additionally, several human studies have demonstrated that MMP-9 may be a predictor of atherosclerotic plaque instability and a risk factor for future adverse cardiovascular and cerebrovascular events. MMP-9 deficiency or blocking MMP-9 expression can inhibit plaque inflammation and prevent atherosclerotic plaque instability. All of these results suggest that MMP-9 may be a useful predictive biomarker for vulnerable atherosclerotic plaques, as well as a therapeutic target for preventing atherosclerotic plaque instability. In this review, we describe the structure, function, and regulation of MMP-9. We also discuss the role of MMP-9 in predicting and preventing atherosclerotic plaque instability.
Collapse
|
9
|
PIM2 promotes hepatocellular carcinoma tumorigenesis and progression through activating NF-κB signaling pathway. Cell Death Dis 2020; 11:510. [PMID: 32641749 PMCID: PMC7343807 DOI: 10.1038/s41419-020-2700-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory factors and activation of oncogenes both played critical roles in the development and progression of human hepatocellular carcinoma (HCC). However, the interplay between these two has not been well studied. In this study, we found that regulated by TNFα, Pim-2 proto-oncogene, serine/threonine kinase (PIM2) was highly expressed in HCC and correlated with poor prognosis (P = 0.007) as well as tumor recurrence (P = 0.014). Functional studies showed that PIM2 could enhance abilities of cell proliferation, cell motility, angiogenesis, chemo-resistance, and in vivo tumorigenicity and HCC metastasis. Mechanistic studies revealed that PIM2 could activate NF-κB signaling pathway through upregulating phosphorylation level of RIPK2. Interestingly, TNFα treatment could induce the expression of PIM2, and overexpression of PIM2 could in turn upregulate the expression of TNFα in HCC cells. More importantly, we found the expression level of PIM2 increased with the progression of liver cirrhosis, and PIM kinase inhibitor AZD1208 treatment could effectively attenuate HCC cells’ tumorigenic ability both in vitro and in vivo. Collectively, our study revealed the interaction between an inflammatory factor and a proto-oncogene that contributed to tumorigenesis and progression of HCC, and PIM kinase inhibition may serve as a therapeutic target in the treatment of HCC.
Collapse
|
10
|
Recognition of Mycobacteria by Dendritic Cell Immunoactivating Receptor. Curr Top Microbiol Immunol 2020. [PMID: 32300915 DOI: 10.1007/82_2020_203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Mycobacteria have unique lipids on their cell walls, and the structures and physiological activities of these lipid components have been the subject of many studies. Although the host receptors for mycobacterial lipid have long been elusive, in recent years C-type lectin receptors (CLRs) have been reported to recognize these components. The dendritic cell immunoactivating receptor (DCAR), a CLR member, is encoded by Clec4b1. DCAR, which was identified in 2003, is reported to be associated with the immunoreceptor tyrosine-based activation motif (ITAM)-containing adaptor protein, the Fc receptor γ chain (FcRγ). However, its physiological ligand and biological function were unknown. We recently identified DCAR as an activating receptor for mycobacteria. DCAR recognizes acylated phosphatidyl-inositol mannosides (PIMs) in mycobacteria to promote Th1 responses during mycobacterial infection. This review summarizes recent discoveries about the ligands and immunological roles of DCAR.
Collapse
|
11
|
Sun J, Ailiman M. Regulation of calcium pump through Notch/Jagged/Hes signaling pathway in canine model of chronic atrial fibrillation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:4034-4040. [PMID: 31933799 PMCID: PMC6949788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Using a canine model of atrial fibrillation (AF) induced by chronic pacing of left atrial fibrillation, the present study aimed to investigate the protein expression and content change of Notch-1 and its downstream target genes including Hes1, Jagged1, and SERCA2a in the atrial myocardium of canines with chronic AF. Furthermore, the correlation between Notch-1/Hes1/Jagged1 and the SERCA2a calcium pump was also analyzed. METHODS Ten healthy Beagle dogs including both males and females, aged 7-9 years were randomly divided into a sham group (n = 5) and AF group (n = 5). The AF group underwent minimally invasive surgery with implantation of a pacemaker into the left atrial appendage for induction of AF. After 8 weeks of pacemaker implantation, animals were euthanized and specimens from the right and left atrial free walls were excised for histologic and biochemical analyses. RESULTS After 8 weeks' pacemaker implantation, immunohistochemical expression of Notch-1, Hes1, Jagget1 and SERCA2a in the sham group was positive. Compared with the sham operation group, the intensity of Notch-1, Hes1 and Jagget1 in AF group was stronger with a significant increasing trend in the intensity of the color, respectively. The expression of SERCA2a was weak; the intensity decreased significantly (P < 0.05). Pearson correlation analysis revealed that in the AF group, Notch-1 was negatively correlated with SERCA2a (r = -0.77, P = 0.028), and was positively correlated with Hes1 and Jagged1 (r = 0.92, P = 0.014; r = 0.73, P = 0.030) proteins, respectively. CONCLUSION The activation of the Notch signaling pathway was associated with a decrease in SERCA2a protein expression and contributes to the development and maintenance of electrical remodeling in AF through modulation of calcium pump function and calcium homeostasis.
Collapse
|
12
|
Total flavonoids from Semen Cuscutae target MMP9 and promote invasion of EVT cells via Notch/AKT/MAPK signaling pathways. Sci Rep 2018; 8:17342. [PMID: 30478366 PMCID: PMC6255888 DOI: 10.1038/s41598-018-35732-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/31/2018] [Indexed: 01/04/2023] Open
Abstract
Miscarriage is a common condition during pregnancy and its mechanisms remain largely unknown. Extravillous trophoblast (EVT) cell invasion is required to maintain normal pregnancy and its malfunction has been proposed as a major cause for miscarriage. Homeostasis of matrix metalloproteinase 9 (MMP9) is a key to regulate EVT cell invasion. Total flavonoids from Semen Cuscutae (TFSC) have been applied clinically used for preventing or treating miscarriage in the past. Given its potential clinical benefit on preventing miscarriage, this study aims at examining the therapeutic effect of TFSC in the prevention of premature birth by upregulating MMP9 and promote EVT cell invasion. HTR-8 cells migration and invasion functions were analyzed using wound healing and transwell assays. The regulatory effect of TFSC on MMP9 expression and relevant signaling pathways were analyzed by Western Blot. The results show compared to control group, TFSC significantly promoted the migration of EVT cells in a dose and time-dependent manner. The migration and invasion of EVT cells were maximized at the highest dosage of 5 μg/ml of TFSC. The expression of MMP9 in EVT cells was significantly increased after TFSC treatment. Furthermore, cells treated with TFSC significantly upregulated protein expressions in Notch, AKT and p38/MAPK signaling pathways. We believe TFSC can promote the migration and invasion of EVT cells by increasing MMP9 expression, and prevent miscarriage by activating Notch, AKT, and MAPK signaling pathways.
Collapse
|
13
|
Zeng L, Wang WH, Arrington J, Shao G, Geahlen RL, Hu CD, Tao WA. Identification of Upstream Kinases by Fluorescence Complementation Mass Spectrometry. ACS CENTRAL SCIENCE 2017; 3:1078-1085. [PMID: 29104924 PMCID: PMC5658758 DOI: 10.1021/acscentsci.7b00261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 05/09/2023]
Abstract
Protein kinases and their substrates comprise extensive signaling networks that regulate many diverse cellular functions. However, methods and techniques to systematically identify kinases directly responsible for specific phosphorylation events have remained elusive. Here we describe a novel proteomic strategy termed fluorescence complementation mass spectrometry (FCMS) to identify kinase-substrate pairs in high throughput. The FCMS strategy employs a specific substrate and a kinase library, both of which are fused with fluorescence complemented protein fragments. Transient and weak kinase-substrate interactions in living cells are stabilized by the association of fluorescence protein fragments. These kinase-substrate pairs are then isolated with high specificity and are identified and quantified by LC-MS. FCMS was applied to the identification of both known and novel kinases of the transcription factor, cAMP response element-binding protein (CREB). Novel CREB kinases were validated by in vitro kinase assays, and the phosphorylation sites were unambiguously located. These results uncovered possible new roles for CREB in multiple important signaling pathways and demonstrated the great potential of this new proteomic strategy.
Collapse
Affiliation(s)
- Lingfei Zeng
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wen-Horng Wang
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Justine Arrington
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Gengbao Shao
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Robert L. Geahlen
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue
Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chang-Deng Hu
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue
Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - W. Andy Tao
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department
of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue
Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
- E-mail:
| |
Collapse
|
14
|
Nair JR, Caserta J, Belko K, Howell T, Fetterley G, Baldino C, Lee KP. Novel inhibition of PIM2 kinase has significant anti-tumor efficacy in multiple myeloma. Leukemia 2017; 31:1715-1726. [PMID: 28008178 PMCID: PMC5537056 DOI: 10.1038/leu.2016.379] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 12/14/2022]
Abstract
The PIM kinase family (PIM1, 2 and 3) have a central role in integrating growth and survival signals, and are expressed in a wide range of solid and hematological malignancies. We now confirm that PIM2 is overexpressed in multiple myeloma (MM) patients, and within MM group it is overexpressed in the high-risk MF subset (activation of proto-oncogenes MAF/MAFB). This is consistent with our finding of PIM2's role in key signaling pathways (IL-6, CD28 activation) that confer chemotherapy resistance in MM cells. These studies have identified a novel PIM2-selective non-ATP competitive inhibitor (JP11646) that has a 4 to 760-fold greater suppression of MM proliferation and viability than ATP-competitive PIM inhibitors. This increased efficacy is due not only to the inhibition of PIM2 kinase activity, but also to a novel mechanism involving specific downregulation of PIM2 mRNA and protein expression not seen with the ATP competitive inhibitors. Treatment with JP11646 in xenogeneic myeloma murine models demonstrated significant reduction in tumor burden and increased median survival. Altogether our findings suggest the existence of previously unrecognized feedback loop(s) where PIM2 kinase activity regulates PIM2 gene expression in malignant cells, and that JP11646 represents a novel class of PIM2 inhibitors that interdicts this feedback.
Collapse
Affiliation(s)
- Jayakumar R. Nair
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Justin Caserta
- Jasco Pharmaceuticals, 10-N Roessler Road, Woburn, MA 01801
- Boston Biomedical, Inc., Cambridge, MA 02139
| | - Krista Belko
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Tyger Howell
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Gerald Fetterley
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Carmen Baldino
- Jasco Pharmaceuticals, 10-N Roessler Road, Woburn, MA 01801
| | - Kelvin P. Lee
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| |
Collapse
|
15
|
Li Y, Xie Z, Chen L, Yan J, Ma Y, Wang L, Chen Z. Association in a Chinese population of a genetic variation in the early B-cell factor 1 gene with coronary artery disease. BMC Cardiovasc Disord 2017; 17:57. [PMID: 28183271 PMCID: PMC5301365 DOI: 10.1186/s12872-017-0489-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/03/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Early B-cell factor 1 (EBF1) is a transcription factor expressed primarily during early B cell development. Previous studies have shown EBF1 regulates blood glucose and lipid metabolism in mice with diabetes and central adiposity. Recently, a genetic variation (rs36071027) located in an EBF1 gene intron was associated with carotid artery intima-media thickness. However, whether this polymorphism is actually linked with coronary artery disease (CAD) and its severity remains unclear. METHODS This study includes 293 CAD cases and 262 controls without CAD. All participants were devided into two groups based on their coronary angiography results. A polymerase chain reaction-ligase detection reaction was used to identify genotypes at rs36071027, and CAD patients were further divided into subgroups with one-, two-, or three-vessel stenosis reflective of CAD severity. RESULTS The frequency of the rs36071027 TT genotype was significantly higher in CAD cases versus controls (4.8% vs. 1.5%, 95% CI: 1.13-10.81 P = 0.029). Subjects with a variant genotype T allele had an increased risk of CAD compared to C allele carriers (additive model: 95% CI: 1.13-2.23, P = 0.008). After adjustment for cardiovascular risk factors, analysis of the additive and dominant models involving rs36071027 also revealed that T allele carriers had a significantly higher risk for CAD than C allele carriers (additive model: OR 1.56, 95% CI 1.10-2.22, P = 0.013; dominant model: OR 1.60, 95% CI 1.07-2.41, P = 0.023). Furthermore, both diabetes and the CT + TT rs36071027 genotype were significantly associated with three-vessel stenosis. CONCLUSION Our results in a Chinese population suggest that the TT genotype and T alleles in rs36071027 in the EBF1 gene are associated with an increased risk of CAD and its severity.
Collapse
Affiliation(s)
- Yafei Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gu Lou Area, Nanjing, 210029 China
| | - Zhiyong Xie
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gu Lou Area, Nanjing, 210029 China
| | - Lei Chen
- Department of Cardiology, Xuzhou Medical University, NO.209 Tongshan Road, Xuzhou, 221000 China
| | - Jianjun Yan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gu Lou Area, Nanjing, 210029 China
| | - Yao Ma
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gu Lou Area, Nanjing, 210029 China
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Gu Lou Area, Nanjing, 210029 China
| | - Zhong Chen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital East Campus, No. 222 Huanhu Xisan Road, Pudong New Area, Shanghai, 201306 China
| |
Collapse
|
16
|
Ruan ZB, Fu XL, Li W, Ye J, Wang RZ, Zhu L. Effect of notch1,2,3 genes silicing on NF-κB signaling pathway of macrophages in patients with atherosclerosis. Biomed Pharmacother 2016; 84:666-673. [DOI: 10.1016/j.biopha.2016.09.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022] Open
|
17
|
Toyonaga K, Torigoe S, Motomura Y, Kamichi T, Hayashi JM, Morita YS, Noguchi N, Chuma Y, Kiyohara H, Matsuo K, Tanaka H, Nakagawa Y, Sakuma T, Ohmuraya M, Yamamoto T, Umemura M, Matsuzaki G, Yoshikai Y, Yano I, Miyamoto T, Yamasaki S. C-Type Lectin Receptor DCAR Recognizes Mycobacterial Phosphatidyl-Inositol Mannosides to Promote a Th1 Response during Infection. Immunity 2016; 45:1245-1257. [PMID: 27887882 DOI: 10.1016/j.immuni.2016.10.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/25/2016] [Accepted: 08/26/2016] [Indexed: 12/21/2022]
Abstract
Phosphatidyl-inositol mannosides (PIM) are glycolipids unique to mycobacteria and other related bacteria that stimulate host immune responses and are implicated in mycobacteria pathogenicity. Here, we found that the FcRγ-coupled C-type lectin receptor DCAR (dendritic cell immunoactivating receptor; gene symbol Clec4b1) is a direct receptor for PIM. Mycobacteria activated reporter cells expressing DCAR, and delipidation of mycobacteria abolished this activity. Acylated PIMs purified from mycobacteria were identified as ligands for DCAR. DCAR was predominantly expressed in small peritoneal macrophages and monocyte-derived inflammatory cells in lungs and spleen. These cells produced monocyte chemoattractant protein-1 (MCP-1) upon PIM treatment, and absence of DCAR or FcRγ abrogated MCP-1 production. Upon mycobacterial infection, Clec4b1-deficient mice showed reduced numbers of monocyte-derived inflammatory cells at the infection site, impaired IFNγ production by T cells, and an increased bacterial load. Thus, DCAR is a critical receptor for PIM that functions to promote T cell responses against mycobacteria.
Collapse
Affiliation(s)
- Kenji Toyonaga
- Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Shota Torigoe
- Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takane Kamichi
- Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences Kyushu University, Fukuoka 812-8582, Japan
| | - Jennifer M Hayashi
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Naoto Noguchi
- Division of Host Defense, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | - Hiroshi Tanaka
- Department of Applied Chemistry, Graduate School of Science and Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Yoshiko Nakagawa
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Masaki Ohmuraya
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Masayuki Umemura
- Molecular Microbiology Group, Department of Infectious Diseases, Tropical Biosphere Research Center, and Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Goro Matsuzaki
- Molecular Microbiology Group, Department of Infectious Diseases, Tropical Biosphere Research Center, and Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Ikuya Yano
- Japan BCG Laboratory, Kiyose 204-0022, Japan
| | - Tomofumi Miyamoto
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Sho Yamasaki
- Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan.
| |
Collapse
|
18
|
Mycobacterium tuberculosis: Manipulator of Protective Immunity. Int J Mol Sci 2016; 17:131. [PMID: 26927066 PMCID: PMC4813124 DOI: 10.3390/ijms17030131] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/17/2015] [Accepted: 12/23/2015] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium tuberculosis (MTB) is one of the most successful pathogens in human history and remains a global health challenge. MTB has evolved a plethora of strategies to evade the immune response sufficiently to survive within the macrophage in a bacterial-immunological equilibrium, yet causes sufficient immunopathology to facilitate its transmission. This review highlights MTB as the driver of disease pathogenesis and presents evidence of the mechanisms by which MTB manipulates the protective immune response into a pathological productive infection.
Collapse
|
19
|
Prakhar P, Holla S, Ghorpade DS, Gilleron M, Puzo G, Udupa V, Balaji KN. Ac2PIM-responsive miR-150 and miR-143 target receptor-interacting protein kinase 2 and transforming growth factor beta-activated kinase 1 to suppress NOD2-induced immunomodulators. J Biol Chem 2015; 290:26576-86. [PMID: 26391398 PMCID: PMC4646315 DOI: 10.1074/jbc.m115.662817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/15/2015] [Indexed: 11/06/2022] Open
Abstract
Specific and coordinated regulation of innate immune receptor-driven signaling networks often determines the net outcome of the immune responses. Here, we investigated the cross-regulation of toll-like receptor (TLR)2 and nucleotide-binding oligomerization domain (NOD)2 pathways mediated by Ac2PIM, a tetra-acylated form of mycobacterial cell wall component and muramyl dipeptide (MDP), a peptidoglycan derivative respectively. While Ac2PIM treatment of macrophages compromised their ability to induce NOD2-dependent immunomodulators like cyclooxygenase (COX)-2, suppressor of cytokine signaling (SOCS)-3, and matrix metalloproteinase (MMP)-9, no change in the NOD2-responsive NO, TNF-α, VEGF-A, and IL-12 levels was observed. Further, genome-wide microRNA expression profiling identified Ac2PIM-responsive miR-150 and miR-143 to target NOD2 signaling adaptors, RIP2 and TAK1, respectively. Interestingly, Ac2PIM was found to activate the SRC-FAK-PYK2-CREB cascade via TLR2 to recruit CBP/P300 at the promoters of miR-150 and miR-143 and epigenetically induce their expression. Loss-of-function studies utilizing specific miRNA inhibitors establish that Ac2PIM, via the miRNAs, abrogate NOD2-induced PI3K-PKCδ-MAPK pathway to suppress β-catenin-mediated expression of COX-2, SOCS-3, and MMP-9. Our investigation has thus underscored the negative regulatory role of Ac2PIM-TLR2 signaling on NOD2 pathway which could broaden our understanding on vaccine potential or adjuvant utilities of Ac2PIM and/or MDP.
Collapse
Affiliation(s)
- Praveen Prakhar
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | - Sahana Holla
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | - Devram Sampat Ghorpade
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS and Université de Toulouse, 31077 Toulouse, France
| | - Germain Puzo
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS and Université de Toulouse, 31077 Toulouse, France
| | - Vibha Udupa
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | | |
Collapse
|
20
|
Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol 2015; 13:620-30. [PMID: 26324094 DOI: 10.1038/nrmicro3480] [Citation(s) in RCA: 844] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are produced by all domains of life. In Gram-negative bacteria, EVs are produced by the pinching off of the outer membrane; however, how EVs escape the thick cell walls of Gram-positive bacteria, mycobacteria and fungi is still unknown. Nonetheless, EVs have been described in a variety of cell-walled organisms, including Staphylococcus aureus, Mycobacterium tuberculosis and Cryptococcus neoformans. These EVs contain varied cargo, including nucleic acids, toxins, lipoproteins and enzymes, and have important roles in microbial physiology and pathogenesis. In this Review, we describe the current status of vesiculogenesis research in thick-walled microorganisms and discuss the cargo and functions associated with EVs in these species.
Collapse
Affiliation(s)
- Lisa Brown
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | - Rafael Prados-Rosales
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205, USA
| |
Collapse
|
21
|
Role of inflammation in the process of clinical Kashin-Beck disease: latest findings and interpretations. Inflamm Res 2015; 64:853-60. [DOI: 10.1007/s00011-015-0861-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 12/17/2022] Open
|
22
|
Kanayasu-Toyoda T, Tanaka T, Ishii-Watabe A, Kitagawa H, Matsuyama A, Uchida E, Yamaguchi T. Angiogenic Role of MMP-2/9 Expressed on the Cell Surface of Early Endothelial Progenitor Cells/Myeloid Angiogenic Cells. J Cell Physiol 2015; 230:2763-75. [DOI: 10.1002/jcp.25002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/24/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Toshie Kanayasu-Toyoda
- Division of Biological Chemistry and Biologicals; National Institute of Health Sciences, Kamiyoga 1-18-1, Setagayaku; Tokyo Japan
| | - Takeshi Tanaka
- Nihon Pharmaceutical University; Komuro 10281, Inamachi, Kitaadachigun; Saitama Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals; National Institute of Health Sciences, Kamiyoga 1-18-1, Setagayaku; Tokyo Japan
| | - Hiroko Kitagawa
- Division of Biological Chemistry and Biologicals; National Institute of Health Sciences, Kamiyoga 1-18-1, Setagayaku; Tokyo Japan
| | - Akifumi Matsuyama
- National Institute of Biomedical Innovation; 7-6-8 Asagi Saito Ibaraki-City; Osaka Japan
| | - Eriko Uchida
- Division of Cellular Gene Therapy Products; National Institute of Health Sciences; Tokyo Japan
| | - Teruhide Yamaguchi
- Division of Biological Chemistry and Biologicals; National Institute of Health Sciences, Kamiyoga 1-18-1, Setagayaku; Tokyo Japan
| |
Collapse
|
23
|
Pan J, Mor G, Ju W, Zhong J, Luo X, Aldo PB, Zhong M, Yu Y, Jenkins EC, Brown WT, Zhong N. Viral Infection-Induced Differential Expression of LncRNAs Associated with Collagen in Mouse Placentas and Amniotic Sacs. Am J Reprod Immunol 2015; 74:237-57. [PMID: 26073538 DOI: 10.1111/aji.12406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/13/2015] [Indexed: 12/29/2022] Open
Abstract
PROBLEM We have previously determined that long non-coding RNAs (lncRNAs) are differentially expressed in preterm premature rupture of membranes (PPROM) and hypothesized that the collagenolysis ubiquitin-proteasome system may be activated by infection and inflammation. However, direct evidence of the involvement of lncRNAs in transcriptional and posttranscriptional regulation of the infection-triggered alteration of collagen is lacking. METHOD OF STUDY A previously developed mouse model with MHV68 viral infection was assessed to determine whether viral infection may induce differential expression of lncRNAs in mouse placentas and amniotic sacs. RESULTS Differential expression of lncRNAs that are associated with collagen was found in HMV68 viral-infected, compared to non-infected, mouse placentas and amniotic sacs. Differential expression of messenger RNAs (mRNAs) of collagen was also documented. CONCLUSIONS Our data demonstrate, for the first time, that viral infection may induce the differential expression of lncRNAs that are associated with collagen. Based on this finding, we propose that lncRNA may have involved in regulating of infection-induced collagen transcription.
Collapse
Affiliation(s)
- Jing Pan
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China
| | - Gil Mor
- Department of Obstetrics Gynecology and Reproductive Sciences, Reproductive Immunology Unit, School of Medicine, Yale University, New Haven, CT, USA
| | - Weina Ju
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Julia Zhong
- Hunter College High School, New York, NY, USA
| | - Xiucui Luo
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China
| | - Paulomi Bole Aldo
- Department of Obstetrics Gynecology and Reproductive Sciences, Reproductive Immunology Unit, School of Medicine, Yale University, New Haven, CT, USA
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Edmund C Jenkins
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - William T Brown
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Nanbert Zhong
- Center of Translational Medicine for Maternal and Children's Health, Lianyungang Maternal and Children's Hospital, Lianyungang, Jiangsu, China.,Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
24
|
Gogiraju R, Xu X, Bochenek ML, Steinbrecher JH, Lehnart SE, Wenzel P, Kessel M, Zeisberg EM, Dobbelstein M, Schäfer K. Endothelial p53 deletion improves angiogenesis and prevents cardiac fibrosis and heart failure induced by pressure overload in mice. J Am Heart Assoc 2015; 4:jah3850. [PMID: 25713289 PMCID: PMC4345879 DOI: 10.1161/jaha.115.001770] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Cardiac dysfunction developing in response to chronic pressure overload is associated with apoptotic cell death and myocardial vessel rarefaction. We examined whether deletion of tumor suppressor p53 in endothelial cells may prevent the transition from cardiac hypertrophy to heart failure. Methods and Results Mice with endothelial‐specific deletion of p53 (End.p53‐KO) were generated by crossing p53fl/fl mice with mice expressing Cre recombinase under control of an inducible Tie2 promoter. Cardiac hypertrophy was induced by transverse aortic constriction. Serial echocardiography measurements revealed improved cardiac function in End.p53‐KO mice that also exhibited better survival. Cardiac hypertrophy was associated with increased p53 levels in End.p53‐WT controls, whereas banded hearts of End.p53‐KO mice exhibited lower numbers of apoptotic endothelial and non‐endothelial cells and altered mRNA levels of genes regulating cell cycle progression (p21), apoptosis (Puma), or proliferation (Pcna). A higher cardiac capillary density and improved myocardial perfusion was observed, and pharmacological inhibition or genetic deletion of p53 also promoted endothelial sprouting in vitro and new vessel formation following hindlimb ischemia in vivo. Hearts of End.p53‐KO mice exhibited markedly less fibrosis compared with End.p53‐WT controls, and lower mRNA levels of p53‐regulated genes involved in extracellular matrix production and turnover (eg, Bmp‐7, Ctgf, or Pai‐1), or of transcription factors involved in controlling mesenchymal differentiation were observed. Conclusions Our analyses reveal that accumulation of p53 in endothelial cells contributes to blood vessel rarefaction and fibrosis during chronic cardiac pressure overload and suggest that endothelial cells may be a therapeutic target for preserving cardiac function during hypertrophy.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (R.G., X.X., J.H.S., S.E.L., E.M.Z., K.S.)
| | - Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (R.G., X.X., J.H.S., S.E.L., E.M.Z., K.S.)
| | - Magdalena L Bochenek
- Division of Cardiology, Department of Medicine 2, University Medical Center Mainz, Germany (M.L.B., P.W., K.S.) Center for Thrombosis and Hemostasis, University Medical Center Mainz, Germany (M.L.B., P.W.)
| | - Julia H Steinbrecher
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (R.G., X.X., J.H.S., S.E.L., E.M.Z., K.S.)
| | - Stephan E Lehnart
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (R.G., X.X., J.H.S., S.E.L., E.M.Z., K.S.) German Center for Cardiovascular Research (DZHK), University of Maryland Baltimore, MD (S.E.L., E.M.Z., K.S.) Center for Biomedical Engineering and Technology, University of Maryland Baltimore, MD (S.E.L.)
| | - Philip Wenzel
- Division of Cardiology, Department of Medicine 2, University Medical Center Mainz, Germany (M.L.B., P.W., K.S.) Center for Thrombosis and Hemostasis, University Medical Center Mainz, Germany (M.L.B., P.W.)
| | - Michael Kessel
- Department of Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany (M.K.)
| | - Elisabeth M Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (R.G., X.X., J.H.S., S.E.L., E.M.Z., K.S.) German Center for Cardiovascular Research (DZHK), University of Maryland Baltimore, MD (S.E.L., E.M.Z., K.S.)
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, University Medical Center Göttingen, Germany (M.D.)
| | - Katrin Schäfer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (R.G., X.X., J.H.S., S.E.L., E.M.Z., K.S.) Division of Cardiology, Department of Medicine 2, University Medical Center Mainz, Germany (M.L.B., P.W., K.S.) German Center for Cardiovascular Research (DZHK), University of Maryland Baltimore, MD (S.E.L., E.M.Z., K.S.)
| |
Collapse
|
25
|
Chistyakov DV, Aleshin S, Sergeeva MG, Reiser G. Regulation of peroxisome proliferator-activated receptor β/δ expression and activity levels by toll-like receptor agonists and MAP kinase inhibitors in rat astrocytes. J Neurochem 2014; 130:563-74. [DOI: 10.1111/jnc.12757] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Dmitry V. Chistyakov
- Otto-von-Guericke-Universität Magdeburg; Medizinische Fakultät, Institut für Neurobiochemie; Magdeburg Germany
- Belozersky Institute of Physico-Chemical Biology; Moscow State University; Moscow Russia
| | - Stepan Aleshin
- Otto-von-Guericke-Universität Magdeburg; Medizinische Fakultät, Institut für Neurobiochemie; Magdeburg Germany
| | - Marina G. Sergeeva
- Belozersky Institute of Physico-Chemical Biology; Moscow State University; Moscow Russia
| | - Georg Reiser
- Otto-von-Guericke-Universität Magdeburg; Medizinische Fakultät, Institut für Neurobiochemie; Magdeburg Germany
| |
Collapse
|
26
|
Madikizela B, Ndhlala AR, Finnie JF, Van Staden J. Antimycobacterial, anti-inflammatory and genotoxicity evaluation of plants used for the treatment of tuberculosis and related symptoms in South Africa. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:386-391. [PMID: 24576406 DOI: 10.1016/j.jep.2014.02.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/17/2014] [Accepted: 02/16/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Emergence of drug-resistant tuberculosis strains and long duration of treatment has established an urgent need to search for new effective agents. The great floral diversity of South Africa has potential for producing new bioactive compounds, therefore pharmacological screening of plant extracts within this region offers much potential. To assess the in vitro antimycobacterial, anti-inflammatory and genotoxicity activity of selected plants that are used for the treatment of TB and related symptoms in South Africa. MATERIALS AND METHODS Ground plant materials from 10 plants were extracted sequentially with four solvents (petroleum ether, dichloromethane, 80% ethanol and water) and a total of 68 extracts were produced. A broth microdilution method was used to screen extracts against Mycobacterium tuberculosis H37Ra. The cyclooxygenase-2 (COX-2) enzyme was used to evaluate the anti-inflammatory activity of the extracts and the Salmonella microsome assay using two Salmonella typhimurium strains (TA98 and TA100) to establish genotoxicity. RESULTS Six out of 68 extracts showed good antimycobacterial activity. Three extracts showed good inhibition (>70%) of COX-2 enzyme. All the extracts tested were non-genotoxic against the tested Salmonella strains. CONCLUSION The results observed in this study indicate that some of the plants such as Abrus precatorius subsp. africanus, Ficus sur, Pentanisia prunelloides and Terminalia phanerophlebia could be investigated further against drug-resistant TB strains.
Collapse
Affiliation(s)
- B Madikizela
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - A R Ndhlala
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - J F Finnie
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - J Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa.
| |
Collapse
|
27
|
Ghorpade DS, Holla S, Sinha AY, Alagesan SK, Balaji KN. Nitric oxide and KLF4 protein epigenetically modify class II transactivator to repress major histocompatibility complex II expression during Mycobacterium bovis bacillus Calmette-Guerin infection. J Biol Chem 2013; 288:20592-606. [PMID: 23733190 DOI: 10.1074/jbc.m113.472183] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pathogenic mycobacteria employ several immune evasion strategies such as inhibition of class II transactivator (CIITA) and MHC-II expression, to survive and persist in host macrophages. However, precise roles for specific signaling components executing down-regulation of CIITA/MHC-II have not been adequately addressed. Here, we demonstrate that Mycobacterium bovis bacillus Calmette-Guérin (BCG)-mediated TLR2 signaling-induced iNOS/NO expression is obligatory for the suppression of IFN-γ-induced CIITA/MHC-II functions. Significantly, NOTCH/PKC/MAPK-triggered signaling cross-talk was found critical for iNOS/NO production. NO responsive recruitment of a bifunctional transcription factor, KLF4, to the promoter of CIITA during M. bovis BCG infection of macrophages was essential to orchestrate the epigenetic modifications mediated by histone methyltransferase EZH2 or miR-150 and thus calibrate CIITA/MHC-II expression. NO-dependent KLF4 regulated the processing and presentation of ovalbumin by infected macrophages to reactive T cells. Altogether, our study delineates a novel role for iNOS/NO/KLF4 in dictating the mycobacterial capacity to inhibit CIITA/MHC-II-mediated antigen presentation by infected macrophages and thereby elude immune surveillance.
Collapse
Affiliation(s)
- Devram Sampat Ghorpade
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Sonic hedgehog-dependent induction of microRNA 31 and microRNA 150 regulates Mycobacterium bovis BCG-driven toll-like receptor 2 signaling. Mol Cell Biol 2012; 33:543-56. [PMID: 23166298 DOI: 10.1128/mcb.01108-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hedgehog (HH) signaling is a significant regulator of cell fate decisions during embryogenesis, development, and perpetuation of various disease conditions. Testing whether pathogen-specific HH signaling promotes unique innate recognition of intracellular bacteria, we demonstrate that among diverse Gram-positive or Gram-negative microbes, Mycobacterium bovis BCG, a vaccine strain, elicits a robust activation of Sonic HH (SHH) signaling in macrophages. Interestingly, sustained tumor necrosis factor alpha (TNF-α) secretion by macrophages was essential for robust SHH activation, as TNF-α(-/-) macrophages exhibited compromised ability to activate SHH signaling. Neutralization of TNF-α or blockade of TNF-α receptor signaling significantly reduced the infection-induced SHH signaling activation both in vitro and in vivo. Intriguingly, activated SHH signaling downregulated M. bovis BCG-mediated Toll-like receptor 2 (TLR2) signaling events to regulate a battery of genes associated with divergent functions of M1/M2 macrophages. Genome-wide expression profiling as well as conventional gain-of-function or loss-of-function analysis showed that SHH signaling-responsive microRNA 31 (miR-31) and miR-150 target MyD88, an adaptor protein of TLR2 signaling, thus leading to suppression of TLR2 responses. SHH signaling signatures could be detected in vivo in tuberculosis patients and M. bovis BCG-challenged mice. Collectively, these investigations identify SHH signaling to be what we believe is one of the significant regulators of host-pathogen interactions.
Collapse
|
30
|
Kim JK, Lee SM, Suk K, Lee WH. Synthetic peptides containing ITIM-like domains block expression of inflammatory mediators and migration/invasion of cancer cells through activation of SHP-1 and PI3K. Cancer Invest 2012; 30:364-71. [PMID: 22571339 DOI: 10.3109/07357907.2012.664671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increasing evidence supports that inflammation is closely associated with the development of cancer. In an effort to develop synthetic peptides that can suppress the inflammatory activation of cancer cells, decapeptides representing immunoreceptor tyrosine-based inhibitory motif (ITIM)-like sequences of immune receptor expressed on myeloid cells-1 (IREM-1) were tested for their anti-inflammatory effects in cancer cell lines. One (named TAT-YADL) out of the five synthetic peptides tested exhibited inhibitory effects on the expression of inflammatory mediators as well as invasion and migration. The inhibitory activities of the synthetic peptides required activation of SH2-containing protein tyrosine phosphatase-1 (SHP-1) and phosphoinositide 3-kinase (PI3K).
Collapse
Affiliation(s)
- Jae-Kwan Kim
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Korea
| | | | | | | |
Collapse
|
31
|
Li YF, Xu XB, Chen XH, Wei G, He B, Wang JD. The nuclear factor-κB pathway is involved in matrix metalloproteinase-9 expression in RU486-induced endometrium breakdown in mice. Hum Reprod 2012; 27:2096-106. [PMID: 22587999 DOI: 10.1093/humrep/des110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Progesterone-withdrawal (WP)-induced endometrial breakdown occurs in both physiological and pathological processes such as menstruation and abortion. However, the underlying mechanisms are not clearly understood. As the nuclear factor-κB (NF-κB) pathway has been proposed to play a role in endometrial breakdown, we tested this hypothesis using RU486-induced mouse menstruation-like model. METHODS The activation of NF-κB was evaluated by immunohistochemistry, western blot and immunofluorescence. The expression of matrix metalloproteinase-9 (MMP9) was analyzed by real-time PCR and its proteins by gelatin zymography and western blot. Chromatin immunoprecipitation was used to investigate the direct binding of NF-κB to MMP9 gene promoter. Inhibitors of NF-κB were used to block its signal in vivo and in vitro to analyze the function of NF-κB in the tissue breakdown process. RESULTS Administration of RU486 resulted in increased phospho-IκB levels and nuclear translocation of p65 in decidual stromal cells, accompanied by the up-regulation of NF-κB inducing kinase and IκB kinase β mRNA. The NF-κB inhibitor, 'pyrrolidine dithiocarbamate' partially suppressed the RU486-induced endometrial breakdown, thus verifying the role of this pathway in vivo. MMP9 was up- and down-regulated following the NF-κB activation and inhibition, respectively. RU486 stimulated recruitment of NF-κB p65 to the MMP9 promoter and further increased its expression. Effects of NF-κB activation and inactivation on MMP9 expression were further explored in human stromal cells in vitro. A similar MMP9 expression pattern was observed in cultured human, as well as mouse, decidual stromal cells following RU486 treatment. CONCLUSIONS The activation of the NF-κB pathway induces downstream target genes, including MMP9 from stromal cells to facilitate tissue breakdown in mouse uterus, highlighting the likelihood that this regulatory pattern exists in the human endometrium.
Collapse
Affiliation(s)
- Yun-Feng Li
- Graduate School of Peking Union Medical College, Beijing 100730, People's Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
MicroRNA-155 is required for Mycobacterium bovis BCG-mediated apoptosis of macrophages. Mol Cell Biol 2012; 32:2239-53. [PMID: 22473996 DOI: 10.1128/mcb.06597-11] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pathogenic mycobacteria, including Mycobacterium tuberculosis and Mycobacterium bovis, cause significant morbidity and mortality worldwide. However, the vaccine strain Mycobacterium bovis BCG, unlike virulent strains, triggers extensive apoptosis of infected macrophages, a step necessary for the elicitation of robust protective immunity. We here demonstrate that M. bovis BCG triggers Toll-like receptor 2 (TLR2)-dependent microRNA-155 (miR-155) expression, which involves signaling cross talk among phosphatidylinositol 3-kinase (PI3K), protein kinase Cδ (PKCδ), and mitogen-activated protein kinases (MAPKs) and recruitment of NF-κB and c-ETS to miR-155 promoter. Genetic and signaling perturbations presented the evidence that miR-155 regulates PKA signaling by directly targeting a negative regulator of PKA, protein kinase inhibitor alpha (PKI-α). Enhanced activation of PKA signaling resulted in the generation of PKA C-α; phosphorylation of MSK1, cyclic AMP response element binding protein (CREB), and histone H3; and recruitment of phospho-CREB to the apoptotic gene promoters. The miR-155-triggered activation of caspase-3, BAK1, and cytochrome c translocation involved signaling integration of MAPKs and epigenetic or posttranslational modification of histones or CREB. Importantly, M. bovis BCG infection-induced apoptosis was severely compromised in macrophages derived from miR-155 knockout mice. Gain-of-function and loss-of-function studies validated the requirement of miR-155 for M. bovis BCG's ability to trigger apoptosis. Overall, M. bovis BCG-driven miR-155 dictates cell fate decisions of infected macrophages, strongly implicating a novel role for miR-155 in orchestrating cellular reprogramming during immune responses to mycobacterial infection.
Collapse
|
33
|
Mitogen-activated protein kinases mediate Mycobacterium tuberculosis–induced CD44 surface expression in monocytes. J Biosci 2012; 37:41-54. [DOI: 10.1007/s12038-011-9179-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
A SK, Bansal K, Holla S, Verma-Kumar S, Sharma P, Balaji KN. ESAT-6 induced COX-2 expression involves coordinated interplay between PI3K and MAPK signaling. Mol Immunol 2012; 49:655-63. [DOI: 10.1016/j.molimm.2011.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 01/08/2023]
|
35
|
Qian CJ, Yao J, Si JM. Nuclear JAK2: form and function in cancer. Anat Rec (Hoboken) 2011; 294:1446-59. [PMID: 21809458 DOI: 10.1002/ar.21443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/19/2011] [Indexed: 12/23/2022]
Abstract
The conventional view of Janus kinase 2 (JAK2) is a nonreceptor tyrosine kinase which transmits information to the nucleus via the signal transducer and activator of transcriptions (STATs) without leaving the cytoplasm. However, accumulating data suggest that JAK2 may signal by exporting from cytoplasm to nucleus, where it guides the transcriptional machinery independent of STATs protein. Recent studies demonstrated that JAK2 is a crucial component of signaling pathways operating in the nucleus. Especially the latest landmark discovery confirmed that JAK2 goes into the nucleus and directly interacts with nucleoproteins, such as histone H3 at tyrosine 41 (H3Y41), nuclear factor 1-C2 (NF1-C2) and SWI/SNF-related helicases/ATPases (RUSH)-1α, indicating that JAK2 has a fresh nuclear function. Nuclear JAK2 is linked to a variety of cellular functions, such as cell cycle progression, apoptosis and genetic instability. The balance between these functions is an essential factor in determining whether a cell remains benign or becomes malignant. The aim of this review is intended to summarize the state of our knowledge on nuclear localization of JAK2 and nuclear JAK2 pathways, and to highlight the emerging roles for nuclear JAK2 in carcinogenesis.
Collapse
Affiliation(s)
- Cui-Juan Qian
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | |
Collapse
|
36
|
Ghorpade DS, Kaveri SV, Bayry J, Balaji KN. Cooperative regulation of NOTCH1 protein-phosphatidylinositol 3-kinase (PI3K) signaling by NOD1, NOD2, and TLR2 receptors renders enhanced refractoriness to transforming growth factor-beta (TGF-beta)- or cytotoxic T-lymphocyte antigen 4 (CTLA-4)-mediated impairment of human dendritic cell maturation. J Biol Chem 2011; 286:31347-60. [PMID: 21768114 DOI: 10.1074/jbc.m111.232413] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dendritic cells (DCs) as sentinels of the immune system are important for eliciting both primary and secondary immune responses to a plethora of microbial pathogens. Cooperative stimulation of a complex set of pattern-recognition receptors, including TLR2 and nucleotide-binding oligomerization domain (NOD)-like receptors on DCs, acts as a rate-limiting factor in determining the initiation and mounting of the robust immune response. It underscores the need for "decoding" these multiple receptor interactions. In this study, we demonstrate that TLR2 and NOD receptors cooperatively regulate functional maturation of human DCs. Intriguingly, synergistic stimulation of TLR2 and NOD receptors renders enhanced refractoriness to TGF-β- or CTLA-4-mediated impairment of human DC maturation. Signaling perturbation data suggest that NOTCH1-PI3K signaling dynamics assume critical importance in TLR2- and NOD receptor-mediated surmounting of CTLA-4- and TGF-β-suppressed maturation of human DCs. Interestingly, the NOTCH1-PI3K signaling axis holds the capacity to regulate DC functions by virtue of PKCδ-MAPK-dependent activation of NF-κB. This study provides mechanistic and functional insights into TLR2- and NOD receptor-mediated regulation of DC functions and unravels NOTCH1-PI3K as a signaling cohort for TLR2 and NOD receptors. These findings serve in building a conceptual foundation for the design of improved strategies for adjuvants and immunotherapies against infectious diseases.
Collapse
Affiliation(s)
- Devram Sampat Ghorpade
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
37
|
Prados-Rosales R, Baena A, Martinez LR, Luque-Garcia J, Kalscheuer R, Veeraraghavan U, Camara C, Nosanchuk JD, Besra GS, Chen B, Jimenez J, Glatman-Freedman A, Jacobs WR, Porcelli SA, Casadevall A. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J Clin Invest 2011; 121:1471-83. [PMID: 21364279 DOI: 10.1172/jci44261] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 01/05/2011] [Indexed: 12/21/2022] Open
Abstract
Bacteria naturally release membrane vesicles (MVs) under a variety of growth environments. Their production is associated with virulence due to their capacity to concentrate toxins and immunomodulatory molecules. In this report, we show that the 2 medically important species of mycobacteria, Mycobacterium tuberculosis and Mycobacterium bovis bacille Calmette-Guérin, release MVs when growing in both liquid culture and within murine phagocytic cells in vitro and in vivo. We documented MV production in a variety of virulent and nonvirulent mycobacterial species, indicating that release of MVs is a property conserved among mycobacterial species. Extensive proteomic analysis revealed that only MVs from the virulent strains contained TLR2 lipoprotein agonists. The interaction of MVs with macrophages isolated from mice stimulated the release of cytokines and chemokines in a TLR2-dependent fashion, and infusion of MVs into mouse lungs elicited a florid inflammatory response in WT but not TLR2-deficient mice. When MVs were administered to mice before M. tuberculosis pulmonary infection, an accelerated local inflammatory response with increased bacterial replication was seen in the lungs and spleens. Our results provide strong evidence that actively released mycobacterial vesicles are a delivery mechanism for immunologically active molecules that contribute to mycobacterial virulence. These findings may open up new horizons for understanding the pathogenesis of tuberculosis and developing vaccines.
Collapse
Affiliation(s)
- Rafael Prados-Rosales
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rajanbabu V, Chen JY. The antimicrobial peptide, tilapia hepcidin 2-3, and PMA differentially regulate the protein kinase C isoforms, TNF-α and COX-2, in mouse RAW264.7 macrophages. Peptides 2011; 32:333-41. [PMID: 21093509 DOI: 10.1016/j.peptides.2010.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 11/06/2010] [Accepted: 11/08/2010] [Indexed: 11/22/2022]
Abstract
The antimicrobial and immunomodulatory functions of the antimicrobial peptide, tilapia hepcidin (TH)2-3, were previously studied. Herein, we report the differential modulation of protein kinase C (PKC)-associated proteins by TH2-3, and the PKC activator, phorbol 12-myristate 13-acetate (PMA), in RAW264.7 macrophages. Treatment with TH2-3 at 40 or 80μg/ml did not affect the cell morphology, but TH2-3 at 120μg/ml produced morphological changes similar to those after treatment with PMA in RAW264.7 cells. The coexistence of the PKC inhibitor, Ro-31-8220, prevented morphological changes induced by either PMA or 120μg/ml TH2-3 in RAW264.7 cells. Since PMA is known to induce expression of the proinflammatory cytokine, tumor necrosis factor (TNF)-α, activation of the TNF-α promoter in response to TH2-3 and PMA treatments in lipopolysaccharide (LPS)-stimulated cells was compared. In LPS-stimulated RAW264.7 cells, TNF-α promoter activity was significantly suppressed by TH2-3, but not by PMA. In addition, PMA activated prostaglandin synthase-associated cyclooxygenase (COX)-2 proteins on the cell surface, while the presence of TH2-3 inhibited its expression. Western blotting demonstrated that the expressions of PKC-μ, phosphorylated (p)-PKCμ at serine (S)-744, and p-PKCδ were activated by PMA, but were suppressed by TH2-3. In addition, p-PKC at S-916 was activated by TH2-3 and inhibited by PMA. In conclusion, the differential regulation of PKC isoforms by PMA and TH2-3 may influence morphological changes and regulation of TNF-α in RAW264.7 cells.
Collapse
Affiliation(s)
- Venugopal Rajanbabu
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan 262, Taiwan
| | | |
Collapse
|
39
|
Bansal K, Balaji KN. Intracellular pathogen sensor NOD2 programs macrophages to trigger Notch1 activation. J Biol Chem 2010; 286:5823-35. [PMID: 21156799 DOI: 10.1074/jbc.m110.192393] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Intracellular pathogen sensor, NOD2, has been implicated in regulation of wide range of anti-inflammatory responses critical during development of a diverse array of inflammatory diseases; however, underlying molecular details are still imprecisely understood. In this study, we demonstrate that NOD2 programs macrophages to trigger Notch1 signaling. Signaling perturbations or genetic approaches suggest signaling integration through cross-talk between Notch1-PI3K during the NOD2-triggered expression of a multitude of immunological parameters including COX-2/PGE(2) and IL-10. NOD2 stimulation enhanced active recruitment of CSL/RBP-Jk on the COX-2 promoter in vivo. Intriguingly, nitric oxide assumes critical importance in NOD2-mediated activation of Notch1 signaling as iNOS(-/-) macrophages exhibited compromised ability to execute NOD2-triggered Notch1 signaling responses. Correlative evidence demonstrates that this mechanism operates in vivo in brain and splenocytes derived from wild type, but not from iNOS(-/-) mice. Importantly, NOD2-driven activation of the Notch1-PI3K signaling axis contributes to its capacity to impart survival of macrophages against TNF-α or IFN-γ-mediated apoptosis and resolution of inflammation. Current investigation identifies Notch1-PI3K as signaling cohorts involved in the NOD2-triggered expression of a battery of genes associated with anti-inflammatory functions. These findings serve as a paradigm to understand the pathogenesis of NOD2-associated inflammatory diseases and clearly pave a way toward development of novel therapeutics.
Collapse
Affiliation(s)
- Kushagra Bansal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
40
|
Bansal K, Sinha AY, Ghorpade DS, Togarsimalemath SK, Patil SA, Kaveri SV, Balaji KN, Bayry J. Src homology 3-interacting domain of Rv1917c of Mycobacterium tuberculosis induces selective maturation of human dendritic cells by regulating PI3K-MAPK-NF-kappaB signaling and drives Th2 immune responses. J Biol Chem 2010; 285:36511-22. [PMID: 20837474 DOI: 10.1074/jbc.m110.158055] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis, an etiological agent of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Pathogenic mycobacteria survive in the host by subverting host innate immunity. Dendritic cells (DCs) are professional antigen-presenting cells that are vital for eliciting immune responses to infectious agents, including pathogenic mycobacteria. DCs orchestrate distinct Th responses based on the signals they receive. In this perspective, deciphering the interactions of the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family of proteins of M. tuberculosis with DCs assumes significant pathophysiological attributes. In this study, we demonstrate that Rv1917c (PPE34), a representative member of the proline-proline-glutamic-major polymorphic tandem repeat family, interacts with TLR2 and triggers functional maturation of human DCs. Signaling perturbations implicated a critical role for integrated cross-talk among PI3K-MAPK and NF-κB signaling cascades in Rv1917c-induced maturation of DCs. However, this maturation of DCs was associated with a secretion of high amounts of anti-inflammatory cytokine IL-10, whereas Th1-polarizing cytokine IL-12 was not induced. Consistent with these results, Rv1917c-matured DCs favored secretion of IL-4, IL-5, and IL-10 from CD4(+) T cells and contributed to Th2-skewed cytokine balance ex vivo in healthy individuals and in patients with pulmonary tuberculosis. Interestingly, the Rv1917c-skewed Th2 immune response involved induced expression of cyclooxygenase-2 (COX-2) in DCs. Taken together, these results indicate that Rv1917c facilitates a shift in the ensuing immunity toward the Th2 phenotype and could aid in immune evasion by mycobacteria.
Collapse
Affiliation(s)
- Kushagra Bansal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Mitchell K, Svenson KB, Longmate WM, Gkirtzimanaki K, Sadej R, Wang X, Zhao J, Eliopoulos AG, Berditchevski F, Dipersio CM. Suppression of integrin alpha3beta1 in breast cancer cells reduces cyclooxygenase-2 gene expression and inhibits tumorigenesis, invasion, and cross-talk to endothelial cells. Cancer Res 2010; 70:6359-67. [PMID: 20631072 DOI: 10.1158/0008-5472.can-09-4283] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Integrin receptors for cell adhesion to extracellular matrix have important roles in promoting tumor growth and progression. Integrin alpha3beta1 is highly expressed in breast cancer cells in which it is thought to promote invasion and metastasis; however, its roles in regulating malignant tumor cell behavior remain unclear. In the current study, we used short-hairpin RNA (shRNA) to show that suppression of alpha3beta1 in a human breast cancer cell line, MDA-MB-231, leads to decreased tumorigenicity, reduced invasiveness, and decreased production of factors that stimulate endothelial cell migration. Real-time PCR revealed that suppression of alpha3beta1 caused a dramatic reduction in expression of the cyclooxygenase-2 (COX-2) gene, which is frequently overexpressed in breast cancers and has been exploited as a therapeutic target. Decreased COX-2 was accompanied by reduced prostaglandin E2 (PGE(2)), a major prostanoid produced downstream of COX-2 and an important effector of COX-2 signaling. shRNA-mediated suppression of COX-2 showed that it has a role in tumor cell invasion and cross-talk to endothelial cells. Furthermore, treatment with PGE(2) restored these functions in alpha3beta1-deficient MDA-MB-231 cells. These findings identify a role for alpha3beta1 in regulating two properties of tumor cells that facilitate cancer progression: invasiveness and ability to stimulate endothelial cells. They also reveal a novel role for COX-2 as a downstream effector of alpha3beta1 in tumor cells, thereby identifying alpha3beta1 as a potential therapeutic target to inhibit breast cancer.
Collapse
Affiliation(s)
- Kara Mitchell
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208-3479, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chaturvedi R, Bansal K, Narayana Y, Kapoor N, Sukumar N, Togarsimalemath SK, Chandra N, Mishra S, Ajitkumar P, Joshi B, Katoch VM, Patil SA, Balaji KN. The multifunctional PE_PGRS11 protein from Mycobacterium tuberculosis plays a role in regulating resistance to oxidative stress. J Biol Chem 2010; 285:30389-403. [PMID: 20558725 DOI: 10.1074/jbc.m110.135251] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis utilizes unique strategies to survive amid the hostile environment of infected host cells. Infection-specific expression of a unique mycobacterial cell surface antigen that could modulate key signaling cascades can act as a key survival strategy in curtailing host effector responses like oxidative stress. We demonstrate here that hypothetical PE_PGRS11 ORF encodes a functional phosphoglycerate mutase. The transcriptional analysis revealed that PE_PGRS11 is a hypoxia-responsive gene, and enforced expression of PE_PGRS11 by recombinant adenovirus or Mycobacterium smegmatis imparted resistance to alveolar epithelial cells against oxidative stress. PE_PGRS11-induced resistance to oxidative stress necessitated the modulation of genetic signatures like induced expression of Bcl2 or COX-2. This modulation of specific antiapoptotic molecular signatures involved recognition of PE_PGRS11 by TLR2 and subsequent activation of the PI3K-ERK1/2-NF-κB signaling axis. Furthermore, PE_PGRS11 markedly diminished H(2)O(2)-induced p38 MAPK activation. Interestingly, PE_PGRS11 protein was exposed at the mycobacterial cell surface and was involved in survival of mycobacteria under oxidative stress. Furthermore, PE_PGRS11 displayed differential B cell responses during tuberculosis infection. Taken together, our investigation identified PE_PGRS11 as an in vivo expressed immunodominant antigen that plays a crucial role in modulating cellular life span restrictions imposed during oxidative stress by triggering TLR2-dependent expression of COX-2 and Bcl2. These observations clearly provide a mechanistic basis for the rescue of pathogenic Mycobacterium-infected lung epithelial cells from oxidative stress.
Collapse
Affiliation(s)
- Rashmi Chaturvedi
- Department of Microbiology and Cell Biology, Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bansal K, Elluru SR, Narayana Y, Chaturvedi R, Patil SA, Kaveri SV, Bayry J, Balaji KN. PE_PGRS antigens of Mycobacterium tuberculosis induce maturation and activation of human dendritic cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:3495-504. [PMID: 20176745 DOI: 10.4049/jimmunol.0903299] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mycobacterium tuberculosis, the causative agent of pulmonary tuberculosis, infects one-third of the world's population. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). DCs are sentinels of the immune system and are important for eliciting both primary and secondary immune responses to pathogens. In this context, to understand the molecular pathogenesis of tuberculosis and host response to mycobacteria and to conceive prospective vaccine candidates, it is important to understand how cell wall Ags of M. tuberculosis and, in particular, the proline-glutamic acid_polymorphic guanine-cytosine-rich sequence (PE_PGRS) family of proteins modulate DC maturation and function. In this study, we demonstrate that two cell wall-associated/secretory PE_PGRS proteins, PE_PGRS 17 (Rv0978c) and PE_PGRS 11 (Rv0754), recognize TLR2, induce maturation and activation of human DCs, and enhance the ability of DCs to stimulate CD4(+) T cells. We further found that PE_PGRS protein-mediated activation of DCs involves participation of ERK1/2, p38 MAPK, and NF-kappaB signaling pathways. Priming of human DCs with IFN-gamma further augmented PE_PGRS 17 or PE_PGRS 11 Ag-induced DC maturation and secretion of key proinflammatory cytokines. Our results suggest that by activating DCs, PE_PGRS proteins, important mycobacterial cell wall Ags, could potentially contribute in the initiation of innate immune responses during tuberculosis infection and hence regulate the clinical course of tuberculosis.
Collapse
Affiliation(s)
- Kushagra Bansal
- Department of Microbiology and Cell Biology, Indian Institute of Science, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Anderson RH, Thompson RP, Kern CB. Development of Aortic Valves With 2 and 3 Leaflets. J Am Coll Cardiol 2009; 54:2319-20. [DOI: 10.1016/j.jacc.2009.05.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 05/19/2009] [Indexed: 01/20/2023]
|
45
|
Narayana Y, Bansal K, Sinha AY, Kapoor N, Puzo G, Gilleron M, Balaji KN. SOCS3 expression induced by PIM2 requires PKC and PI3K signaling. Mol Immunol 2009; 46:2947-54. [DOI: 10.1016/j.molimm.2009.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/11/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
|
46
|
Abstract
Migration of dendritic cells (DCs) from skin to lymph nodes on activation is an essential step in the initiation of an adequate immune response. The dermal microenvironment including stromal cells and their soluble factors might be involved in the regulation of DC migration. To focus on the role of dermal fibroblasts, we studied whether interaction of DCs with fibroblasts promotes the migration of DCs. DCs were co-cultured with resting fibroblasts or with tumor necrosis factor (TNF)alpha/IL-1beta-activated fibroblasts to mimic an inflammatory microenvironment. Interaction of DCs with TNFalpha/IL-1beta-stimulated fibroblasts increased the secretion of matrix metalloproteinase-9 (MMP-9) from DCs within 6 hours compared with DCs alone or DCs stimulated with lipopolysaccharide or TNFalpha/IL-1beta. In contrast, unstimulated fibroblasts did not affect MMP-9 secretion. IL-6 released by TNFalpha/IL-1beta-stimulated fibroblasts was identified as a factor responsible for fibroblast-stimulated MMP-9 secretion from DCs. In accordance with the elevated MMP-9 release, on co-culture with TNFalpha/IL-1beta-stimulated fibroblasts, DCs migrated significantly more effectively through matrigel matrices than did TNFalpha/IL-1beta-stimulated DCs. This was inhibited by a selective blocking of MMP-9, indicating the importance of MMP-9 for this migratory capacity of DCs. In summary, fibroblasts in the local dermal microenvironment are capable of potentiating the migratory capacity of DCs, and thus have the potential to actively participate in the regulation of a cutaneous immune response.
Collapse
|