1
|
Chen YH, Dettipponpong P, Sin MY, Chang LC, Cheng CY, Huang SY, Walzem RL, Cheng HC, Chen SE. Ovarian expression of functional MTTP and apoB for VLDL assembly and secretion in chickens. Poult Sci 2025; 104:104993. [PMID: 40073639 PMCID: PMC11951013 DOI: 10.1016/j.psj.2025.104993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
In mammals, tissues other than liver and intestine are known to possess functional MTTP (microsomal triglyceride transfer protein) and apoB (apolipoprotein B) capable of VLDL (very low-density lipoprotein) assembly. Birds are oviparous and possess unique capabilities in lipid biology to accommodate yolk formation through massive deposition of hepatically assembled yolk-targeted VLDLy into ovarian follicles. Following identifications of MTTP and ApoB expression within chicken ovarian stroma, granulosa, theca, and epithelial cells of various classes of follicles, we sought to define the functionality of ovarian MTTP and ApoB in VLDL assembly. In situ hybridization analysis found that ApoB transcripts are most abundant in thecal layers, whereas immunohistochemistry showed that MTTP predominates in the granulosa layers. MTTP lipid transfer activity was greater in small yellow follicles than in hierarchical follicles. Metabolic labeling, electron microscopy, and Western blot studies confirmed the functionality of ovarian apoB and MTTP as newly assembled VLDL around 50-200 nm in diameter and lacking ApoVLDL-II dissimilar to VLDLy, were secreted from cultured follicular cells. Lomitapide and the ApoB-antisense oligonucleotide Mipomersen dose-dependently decreased MTTP activity and VLDL-apoB secretion from cultured follicular cells, while oleate addition or acute heat stress enhanced VLDL-apoB secretion. Ultrastructural images showed VLDL assembly and trafficking toward the secretion route. The findings support the notion that VLDL assembly and secretion within avian ovarian tissues functions as a protective mechanism against fuel and physical stressors to secure follicle development and/or nutritional quality control of yolk for embryo development.
Collapse
Affiliation(s)
- Yu-Hui Chen
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | | | - Mei-Ying Sin
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404327, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 40402, Taiwan
| | - Ling-Chu Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404327, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 40402, Taiwan
| | - Chuen-Yu Cheng
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407224, Taiwan
| | - San-Yuan Huang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; The iEGG and Animal Biotechnology Center and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan; i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan
| | - Rosemary L Walzem
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
| | - Hsu-Chen Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan.
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; The iEGG and Animal Biotechnology Center and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan; i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
2
|
Scicchitano P, Amati F, Ciccone MM, D’Ascenzi F, Imbalzano E, Liga R, Paolillo S, Pastore MC, Rinaldi A, Mattioli AV, Cameli M. Hypertriglyceridemia: Molecular and Genetic Landscapes. Int J Mol Sci 2024; 25:6364. [PMID: 38928071 PMCID: PMC11203941 DOI: 10.3390/ijms25126364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Lipid disorders represent one of the most worrisome cardiovascular risk factors. The focus on the impact of lipids on cardiac and vascular health usually concerns low-density lipoprotein cholesterol, while the role of triglycerides (TGs) is given poor attention. The literature provides data on the impact of higher plasma concentrations in TGs on the cardiovascular system and, therefore, on the outcomes and comorbidities of patients. The risk for coronary heart diseases varies from 57 to 76% in patients with hypertriglyceridemia. Specifically, the higher the plasma concentrations in TGs, the higher the incidence and prevalence of death, myocardial infarction, and stroke. Nevertheless, the metabolism of TGs and the exact physiopathologic mechanisms which try to explain the relationship between TGs and cardiovascular outcomes are not completely understood. The aims of this narrative review were as follows: to provide a comprehensive evaluation of the metabolism of triglycerides and a possible suggestion for understanding the targets for counteracting hypertriglyceridemia; to describe the inner physiopathological background for the relationship between vascular and cardiac damages derived from higher plasma concentrations in TGs; and to outline the need for promoting further insights in therapies for reducing TGs plasma levels.
Collapse
Affiliation(s)
- Pietro Scicchitano
- Cardiology Department, Hospital “F Perinei” ASL BA, 70022 Altamura, Italy
| | - Francesca Amati
- Cardiovascular Diseases Section, University of Bari, 70124 Bari, Italy; (F.A.); (M.M.C.)
| | - Marco Matteo Ciccone
- Cardiovascular Diseases Section, University of Bari, 70124 Bari, Italy; (F.A.); (M.M.C.)
| | - Flavio D’Ascenzi
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy; (F.D.); (M.C.P.); (M.C.)
| | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Riccardo Liga
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Stefania Paolillo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Maria Concetta Pastore
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy; (F.D.); (M.C.P.); (M.C.)
| | - Andrea Rinaldi
- Unit of Cardiology, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Sant’Orsola-Malpighi Hospital, IRCCS, 40138 Bologna, Italy;
| | - Anna Vittoria Mattioli
- Department of Science of Quality of Life, University of Bologna “Alma Mater Studiorum”, 40126 Bologna, Italy;
| | - Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy; (F.D.); (M.C.P.); (M.C.)
| |
Collapse
|
3
|
Da Dalt L, Cabodevilla AG, Goldberg IJ, Norata GD. Cardiac lipid metabolism, mitochondrial function, and heart failure. Cardiovasc Res 2023; 119:1905-1914. [PMID: 37392421 PMCID: PMC10681665 DOI: 10.1093/cvr/cvad100] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 07/03/2023] Open
Abstract
A fine balance between uptake, storage, and the use of high energy fuels, like lipids, is crucial in the homeostasis of different metabolic tissues. Nowhere is this balance more important and more precarious than in the heart. This highly energy-demanding muscle normally oxidizes almost all the available substrates to generate energy, with fatty acids being the preferred source under physiological conditions. In patients with cardiomyopathies and heart failure, changes in the main energetic substrate are observed; these hearts often prefer to utilize glucose rather than oxidizing fatty acids. An imbalance between uptake and oxidation of fatty acid can result in cellular lipid accumulation and cytotoxicity. In this review, we will focus on the sources and uptake pathways used to direct fatty acids to cardiomyocytes. We will then discuss the intracellular machinery used to either store or oxidize these lipids and explain how disruptions in homeostasis can lead to mitochondrial dysfunction and heart failure. Moreover, we will also discuss the role of cholesterol accumulation in cardiomyocytes. Our discussion will attempt to weave in vitro experiments and in vivo data from mice and humans and use several human diseases to illustrate metabolism gone haywire as a cause of or accomplice to cardiac dysfunction.
Collapse
Affiliation(s)
- Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY, USA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY, USA
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Via Massimo Gorki 50, Cinisello Balsamo, Italy
| |
Collapse
|
4
|
Genetic-Based Hypertension Subtype Identification Using Informative SNPs. Genes (Basel) 2020; 11:genes11111265. [PMID: 33121163 PMCID: PMC7693873 DOI: 10.3390/genes11111265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
In this work, we proposed a process to select informative genetic variants for identifying clinically meaningful subtypes of hypertensive patients. We studied 575 African American (AA) and 612 Caucasian hypertensive participants enrolled in the Hypertension Genetic Epidemiology Network (HyperGEN) study and analyzed each race-based group separately. All study participants underwent GWAS (Genome-Wide Association Studies) and echocardiography. We applied a variety of statistical methods and filtering criteria, including generalized linear models, F statistics, burden tests, deleterious variant filtering, and others to select the most informative hypertension-related genetic variants. We performed an unsupervised learning algorithm non-negative matrix factorization (NMF) to identify hypertension subtypes with similar genetic characteristics. Kruskal–Wallis tests were used to demonstrate the clinical meaningfulness of genetic-based hypertension subtypes. Two subgroups were identified for both African American and Caucasian HyperGEN participants. In both AAs and Caucasians, indices of cardiac mechanics differed significantly by hypertension subtypes. African Americans tend to have more genetic variants compared to Caucasians; therefore, using genetic information to distinguish the disease subtypes for this group of people is relatively challenging, but we were able to identify two subtypes whose cardiac mechanics have statistically different distributions using the proposed process. The research gives a promising direction in using statistical methods to select genetic information and identify subgroups of diseases, which may inform the development and trial of novel targeted therapies.
Collapse
|
5
|
Klevstig M, Arif M, Mannila M, Svedlund S, Mardani I, Ståhlman M, Andersson L, Lindbom M, Miljanovic A, Franco-Cereceda A, Eriksson P, Jeppsson A, Gan LM, Levin M, Mardinoglu A, Ehrenborg E, Borén J. Cardiac expression of the microsomal triglyceride transport protein protects the heart function during ischemia. J Mol Cell Cardiol 2019; 137:1-8. [PMID: 31533023 DOI: 10.1016/j.yjmcc.2019.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022]
Abstract
AIMS The microsomal triglyceride transport protein (MTTP) is critical for assembly and secretion of apolipoprotein B (apoB)-containing lipoproteins and is most abundant in the liver and intestine. Surprisingly, MTTP is also expressed in the heart. Here we tested the functional relevance of cardiac MTTP expression. MATERIALS AND METHODS We combined clinical studies, advanced expression analysis of human heart biopsies and analyses in genetically modified mice lacking cardiac expression of the MTTP-A isoform of MTTP. RESULTS Our results indicate that lower cardiac MTTP expression in humans is associated with structural and perfusion abnormalities in patients with ischemic heart disease. MTTP-A deficiency in mice heart does not affect total MTTP expression, activity or lipid concentration in the heart. Despite this, MTTP-A deficient mice displayed impaired cardiac function after a myocardial infarction. Expression analysis of MTTP indicates that MTTP expression is linked to cardiac function and responses in the heart. CONCLUSIONS Our results indicate that MTTP may play an important role for the heart function in conjunction to ischemic events.
Collapse
Affiliation(s)
- Martina Klevstig
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Muhammad Arif
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Maria Mannila
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Sara Svedlund
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ismena Mardani
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Linda Andersson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin Lindbom
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Azra Miljanovic
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Franco-Cereceda
- Department of Cardiothoracic Surgery and Anaesthesia, Karolinska University Hospital, Stockholm, Sweden
| | - Per Eriksson
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Li-Ming Gan
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden; Cardiovascular, Renal and Metabolism IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Mölndal, Sweden
| | - Malin Levin
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ewa Ehrenborg
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
6
|
Bartels ED, Guo S, Kousholt BS, Larsen JR, Hasenkam JM, Burnett J, Nielsen LB, Ashina M, Goetze JP. High doses of ANP and BNP exacerbate lipolysis in humans and the lipolytic effect of BNP is associated with cardiac triglyceride content in pigs. Peptides 2019; 112:43-47. [PMID: 30508635 DOI: 10.1016/j.peptides.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Drugs facilitating the cardioprotective effects of natriuretic peptides are introduced in heart failure treatment. ANP and BNP also stimulate lipolysis and increase circulating concentrations of free fatty acids (FFAs); an aspect, however, thought to be confined to primates. We examined the lipolytic effect of natriuretic peptide infusion in healthy young men and evaluated the effect in a porcine model of myocardial ischemia and reperfusion. Six young healthy normotensive men underwent infusion with ANP, BNP, or CNP for 20 min. Blood samples were collected before, during, and after infusion for measurement of FFAs. In a porcine model of myocardial ischemia and reperfusion, animals were infused for 3 h with either BNP (n = 7) or saline (n = 5). Blood samples were collected throughout the infusion period, and cardiac tissue was obtained after infusion for lipid analysis. In humans, ANP infusion dose-dependently increased the FFA concentration in plasma 2.5-10-fold (baseline vs. 0.05 μg/kg/min P < 0.002) and with BNP 1.6-3.5-fold (P = 0.001, baseline vs. 0.02 μg/kg/min) 30 min after initiation of infusion. Infusion of CNP did not affect plasma FFA. In pigs, BNP infusion induced a 3.5-fold increase in plasma FFA (P < 0.0001), which remained elevated throughout the infusion period. Triglyceride content in porcine right cardiac ventricle tissue increased ∼5.5 fold in animals infused with BNP (P = 0.02). Natriuretic peptide infusion has similar lipolytic activity in human and pig. Our data suggest that short-term infusion increases the cardiac lipid content, and that the pig is a suitable model for studies of long-term effects mediated by natriuretic peptides.
Collapse
Affiliation(s)
- Emil D Bartels
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Song Guo
- Department of Neurology and Danish Headache Center, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte S Kousholt
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jens R Larsen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - J Michael Hasenkam
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - John Burnett
- Department of Cardiorenal physiology (Mayo Clinic, Rochester, MN, USA
| | - Lars B Nielsen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Copenhagen University, Denmark; Aarhus University, Denmark
| | - Messoud Ashina
- Department of Neurology and Danish Headache Center, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen University, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Cardiorenal physiology (Mayo Clinic, Rochester, MN, USA; Copenhagen University, Denmark
| |
Collapse
|
7
|
Liu Y, Conlon DM, Bi X, Slovik KJ, Shi J, Edelstein HI, Millar JS, Javaheri A, Cuchel M, Pashos EE, Iqbal J, Hussain MM, Hegele RA, Yang W, Duncan SA, Rader DJ, Morrisey EE. Lack of MTTP Activity in Pluripotent Stem Cell-Derived Hepatocytes and Cardiomyocytes Abolishes apoB Secretion and Increases Cell Stress. Cell Rep 2018; 19:1456-1466. [PMID: 28514664 DOI: 10.1016/j.celrep.2017.04.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/22/2017] [Accepted: 04/21/2017] [Indexed: 01/26/2023] Open
Abstract
Abetalipoproteinemia (ABL) is an inherited disorder of lipoprotein metabolism resulting from mutations in microsomal triglyceride transfer protein (MTTP). In addition to expression in the liver and intestine, MTTP is expressed in cardiomyocytes, and cardiomyopathy has been reported in several ABL cases. Using induced pluripotent stem cells (iPSCs) generated from an ABL patient homozygous for a missense mutation (MTTPR46G), we show that human hepatocytes and cardiomyocytes exhibit defects associated with ABL disease, including loss of apolipoprotein B (apoB) secretion and intracellular accumulation of lipids. MTTPR46G iPSC-derived cardiomyocytes failed to secrete apoB, accumulated intracellular lipids, and displayed increased cell death, suggesting intrinsic defects in lipid metabolism due to loss of MTTP function. Importantly, these phenotypes were reversed after the correction of the MTTPR46G mutation by CRISPR/Cas9 gene editing. Together, these data reveal clear cellular defects in iPSC-derived hepatocytes and cardiomyocytes lacking MTTP activity, including a cardiomyocyte-specific regulated stress response to elevated lipids.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donna M Conlon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xin Bi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine J Slovik
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianting Shi
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hailey I Edelstein
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John S Millar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Javaheri
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Cuchel
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evanthia E Pashos
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, State University of New York Downstate Medicine Center, Brooklyn, NY 11203, USA
| | - M Mahmood Hussain
- Department of Cell Biology and Pediatrics, State University of New York Downstate Medicine Center, Brooklyn, NY 11203, USA
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Wenli Yang
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Lipid metabolism and signaling in cardiac lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1513-24. [PMID: 26924249 DOI: 10.1016/j.bbalip.2016.02.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 01/01/2023]
Abstract
The heart balances uptake, metabolism and oxidation of fatty acids (FAs) to maintain ATP production, membrane biosynthesis and lipid signaling. Under conditions where FA uptake outpaces FA oxidation and FA sequestration as triacylglycerols in lipid droplets, toxic FA metabolites such as ceramides, diacylglycerols, long-chain acyl-CoAs, and acylcarnitines can accumulate in cardiomyocytes and cause cardiomyopathy. Moreover, studies using mutant mice have shown that dysregulation of enzymes involved in triacylglycerol, phospholipid, and sphingolipid metabolism in the heart can lead to the excess deposition of toxic lipid species that adversely affect cardiomyocyte function. This review summarizes our current understanding of lipid uptake, metabolism and signaling pathways that have been implicated in the development of lipotoxic cardiomyopathy under conditions including obesity, diabetes, aging, and myocardial ischemia-reperfusion. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
|
9
|
Bakillah A, Hussain MM. Mice subjected to aP2-Cre mediated ablation of microsomal triglyceride transfer protein are resistant to high fat diet induced obesity. Nutr Metab (Lond) 2016; 13:1. [PMID: 26752997 PMCID: PMC4706691 DOI: 10.1186/s12986-016-0061-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/03/2016] [Indexed: 02/06/2023] Open
Abstract
Background Microsomal triglyceride transfer protein (MTP) is essential for the assembly of lipoproteins. MTP has been shown on the surface of lipid droplets of adipocytes; however its function in adipose tissue is not well defined. We hypothesized that MTP may play critical role in adipose lipid droplet formation and expansion. Methods Plasmids mediated overexpression and siRNA mediated knockdown of Mttp gene were performed in 3T3-L1 pre-adipocytes to evaluate the effects of MTP on cell differentiation and triglyceride accumulation. Adipose-specific knockdown of MTP was achieved in mice bybreeding MTP floxed (Mttpfl/fl) mice with aP2-Cre recombinase transgenic mice. Adipose-specific MTP deficient (A-Mttp-/-) mice were fed 60 % high-fat diet (HFD), and the effects of MTP knockdown on body weight, body fat composition, plasma and tissues lipid composition, glucose metabolism, lipogenesis and intestinal absorption was studied. Lipids were measured in total fasting plasma and size fractionated plasma using colorimetric assays. Gene expression was investigated by Real-Time quantitative PCR. All data was assessed using t-test, ANOVA. Results MTP expression increased during early differentiation in 3T3-L1 cells, and declined later. The increases in MTP expression preceded PPARγ expression. MTP overexpression enhanced lipid droplets formation, and knockdown attenuated cellular lipid accumulation. These studies indicated that MTP positively affects adipogenesis. The ablation of the Mttp gene using aP2-Cre (A-Mttp-/-) in mice resulted in a lean phenotype when fed a HFD. These mice had reduced white adipose tissue compared with wild-type Mttpfl/fl mice. The adipose tissue of A-Mttp-/- mice had increased number of smaller size adipocytes and less macrophage infiltration. Further, these mice were protected from HFD-induced fatty liver. The A-Mttp-/- mice had moderate increase in plasma triglyceride, but normal cholesterol, glucose and insulin levels. Gene expression analysis showed that the adipose tissue of the A-Mttp-/- mice had significantly lower mRNA levels of PPARγ and its downstream targets. Conclusion These data suggest that MTP might modulate adipogenesis by influencing PPARγ expression, and play a role in the accretion of lipids to form larger lipid droplets. Thus, agents that inactivate adipose MTP may be useful anti-obesity drugs.
Collapse
Affiliation(s)
- Ahmed Bakillah
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA ; Department of Pediatrics, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA ; Department of Pediatrics, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203 USA ; VA New York Harbor Healthcare System, Brooklyn, NY 11209 USA
| |
Collapse
|
10
|
Bartels ED, Ploug T, Størling J, Mandrup-Poulsen T, Nielsen LB. Skeletal muscle apolipoprotein B expression reduces muscular triglyceride accumulation. Scand J Clin Lab Invest 2014; 74:351-7. [DOI: 10.3109/00365513.2014.893446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Wensley I, Salaveria K, Bulmer AC, Donner DG, du Toit EF. Myocardial structure, function and ischaemic tolerance in a rodent model of obesity with insulin resistance. Exp Physiol 2013; 98:1552-64. [PMID: 23851919 DOI: 10.1113/expphysiol.2013.074948] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Obesity and its comorbidities (dyslipidaemia, insulin resistance and hypertension) that together constitute the metabolic syndrome are all risk factors for ischaemic heart disease. Although obesity has been reported to be an independent risk factor for congestive heart failure, whether obesity-induced heart failure develops in the absence of increased afterload (induced by hypertension) is not clear. We have previously shown that obesity with insulin resistance decreases myocardial tolerance to ischaemia-reperfusion, but the mechanism for this decreased tolerance remains unclear. We hypothesize that obesity with insulin resistance induces adverse cardiac remodelling and pump dysfunction, as well as adverse changes in myocardial prosurvival reperfusion injury salvage kinase (RISK) pathway signalling to reduce myocardial tolerance to ischaemia-reperfusion. Wistar rats were fed an obesogenic (obese group) or a standard rat chow diet (control group) for 32 weeks. Echocardiography was performed over the 32 weeks before isolated Langendorff-perfused hearts were subjected to 40 min coronary artery ligation followed by reperfusion, and functional recovery (rate-pressure product), infarct size and RISK pathway function were assessed (Western blot analysis). Obesity with insulin resistance increased myocardial lipid accumulation but had no effect on in vivo or ex vivo left ventricular structure/function. Hearts from obese rats had lower reperfusion rate-pressure products (13115 ± 562 beats min(-1) mmHg for obese rats versus 17781 ± 1109 beats min(-1) mmHg for control rats, P < 0.05) and larger infarcts (36.3 ± 5.6% of area at risk in obese rats versus 14.1 ± 2.8% of area at risk in control rats, P < 0.01) compared with control hearts. These changes were associated with reductions in RISK pathway function, with 30-50 and 40-60% reductions in Akt and glycogen synthase kinase 3 beta (GSK-3β) expression and phosphorylation, respectively, in obese rat hearts compared with control hearts. Total endothelial nitric oxide synthase expression was reduced by 25% in obese rats. We conclude that obesity with insulin resistance had no effect on basal cardiac structure or function but decreased myocardial tolerance to ischaemia-reperfusion. This reduction in ischaemic tolerance was likely to be due to compromised RISK pathway function in obese, insulin-resistant animals.
Collapse
Affiliation(s)
- I Wensley
- E. F. du Toit: School of Medical Science, Griffith University, Southport, QLD 4222, Australia.
| | | | | | | | | |
Collapse
|
12
|
Rider OJ, Cox P, Tyler D, Clarke K, Neubauer S. Myocardial substrate metabolism in obesity. Int J Obes (Lond) 2013; 37:972-9. [PMID: 23069666 DOI: 10.1038/ijo.2012.170] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/29/2012] [Accepted: 09/02/2012] [Indexed: 12/28/2022]
Abstract
Obesity is linked to a wide variety of cardiac changes, from subclinical diastolic dysfunction to end-stage systolic heart failure. Obesity causes changes in cardiac metabolism, which make ATP production and utilization less efficient, producing functional consequences that are linked to the increased rate of heart failure in this population. As a result of the increases in circulating fatty acids and insulin resistance that accompanies excess fat storage, several of the proteins and genes that are responsible for fatty acid uptake and metabolism are upregulated, and the metabolic machinery responsible for glucose utilization and oxidation are inhibited. The resultant increase in fatty acid metabolism, and the inherent alterations in the proteins of the electron transport chain used to create the gradient needed to drive mitochondrial ATP production, results in a decrease in efficiency of cardiac work and a relative increase in oxygen usage. These changes in cardiac mitochondrial metabolism are potential therapeutic targets for the treatment and prevention of obesity-related heart failure.
Collapse
Affiliation(s)
- O J Rider
- Department of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | |
Collapse
|
13
|
Cai Q, Li B, Yu F, Lu W, Zhang Z, Yin M, Gao H. Investigation of the Protective Effects of Phlorizin on Diabetic Cardiomyopathy in db/db Mice by Quantitative Proteomics. J Diabetes Res 2013; 2013:263845. [PMID: 23671862 PMCID: PMC3647560 DOI: 10.1155/2013/263845] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/14/2022] Open
Abstract
Patients with diabetes often develop hypertension and atherosclerosis leading to cardiovascular disease. However, some diabetic patients develop heart failure without hypertension and coronary artery disease, a process termed diabetic cardiomyopathy. Phlorizin has been reported to be effective as an antioxidant in treating diabetes mellitus, but little is known about its cardioprotective effects on diabetic cardiomyopathy. In this study, we investigated the role of phlorizin in preventing diabetic cardiomyopathy in db/db mice. We found that phlorizin significantly decreased body weight gain and the levels of serum fasting blood glucose (FBG), triglycerides (TG), total cholesterol (TC), and advanced glycation end products (AGEs). Morphologic observations showed that normal myocardial structure was better preserved after phlorizin treatment. Using isobaric tag for relative and absolute quantitation (iTRAQ) proteomics, we identified differentially expressed proteins involved in cardiac lipid metabolism, mitochondrial function, and cardiomyopathy, suggesting that phlorizin may prevent the development of diabetic cardiomyopathy by regulating the expression of key proteins in these processes. We used ingenuity pathway analysis (IPA) to generate an interaction network to map the pathways containing these proteins. Our findings provide important information about the mechanism of diabetic cardiomyopathy and also suggest that phlorizin may be a novel therapeutic approach for the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Qian Cai
- Key laboratory of Cardiovascular Proteomics, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, China
- Department of Geriatrics, Qi-Lu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Baoying Li
- Key laboratory of Cardiovascular Proteomics, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, China
- Department of Geriatrics, Qi-Lu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Fei Yu
- Key laboratory of Cardiovascular Proteomics, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, China
- Department of Geriatrics, Qi-Lu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Weida Lu
- Key laboratory of Cardiovascular Proteomics, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, China
- Department of Geriatrics, Qi-Lu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Zhen Zhang
- Key laboratory of Cardiovascular Proteomics, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, China
- Department of Geriatrics, Qi-Lu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Mei Yin
- Key laboratory of Cardiovascular Proteomics, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, China
- Department of Geriatrics, Qi-Lu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Haiqing Gao
- Key laboratory of Cardiovascular Proteomics, Qi-Lu Hospital of Shandong University, Jinan, Shandong 250012, China
- Department of Geriatrics, Qi-Lu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012, China
- *Haiqing Gao:
| |
Collapse
|
14
|
Kok BPC, Brindley DN. Myocardial fatty acid metabolism and lipotoxicity in the setting of insulin resistance. Heart Fail Clin 2012; 8:643-61. [PMID: 22999246 DOI: 10.1016/j.hfc.2012.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Management of diabetes and insulin resistance in the setting of cardiovascular disease has become an important issue in an increasingly obese society. Besides the development of hypertension and buildup of atherosclerotic plaques, the derangement of fatty acid and lipid metabolism in the heart plays an important role in promoting cardiac dysfunction and oxidative stress. This review discusses the mechanisms by which metabolic inflexibility in the use of fatty acids as the preferred cardiac substrate in diabetes produces detrimental effects on mechanical efficiency, mitochondrial function, and recovery from ischemia. Lipid accumulation and the consequences of toxic lipid metabolites are also discussed.
Collapse
Affiliation(s)
- Bernard P C Kok
- Signal Transduction Research Group, Department of Biochemistry, School of Translational Medicine, University of Alberta, 11207 87th Avenue, Edmonton, Alberta, Canada
| | | |
Collapse
|
15
|
Myocardial triacylglycerol metabolism. J Mol Cell Cardiol 2012; 55:101-10. [PMID: 22789525 DOI: 10.1016/j.yjmcc.2012.06.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/22/2012] [Accepted: 06/28/2012] [Indexed: 11/22/2022]
Abstract
Myocardial triacylglycerol (TAG) constitutes a highly dynamic fatty acid (FA) storage pool that can be used for an energy reserve in the cardiomyocyte. However, derangements in myocardial TAG metabolism and accumulation are commonly associated with cardiac disease, suggesting an important role of intramyocardial TAG turnover in the regulation of cardiac function. In cardiomyocytes, TAG is synthesized by acyltransferases and phosphatases at the sarcoplasmic reticulum and mitochondrial membrane and then packaged into cytosolic lipid droplets for temporary storage or into lipoproteins for secretion. A complex interplay among lipases, lipase regulatory proteins, and lipid droplet scaffold proteins leads to the controlled release of FAs from the cardiac TAG pool for subsequent mitochondrial β-oxidation and energy production. With the identification and characterization of proteins involved in myocardial TAG metabolism as well as the identification of the importance of cardiac TAG turnover, it is now evident that adequate regulation of myocardial TAG metabolism is critical for both cardiac energy metabolism and function. In this article, we review the current understanding of myocardial TAG metabolism and discuss the potential role of myocardial TAG turnover in cardiac health and disease. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
|
16
|
Lehner R, Lian J, Quiroga AD. Lumenal lipid metabolism: implications for lipoprotein assembly. Arterioscler Thromb Vasc Biol 2012; 32:1087-93. [PMID: 22517367 DOI: 10.1161/atvbaha.111.241497] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overproduction of apolipoprotein B (apoB)-containing lipoproteins by the liver and the intestine is 1 of the hallmarks of insulin resistance and type 2 diabetes and a well-established risk factor of cardiovascular disease. The assembly of apoB lipoproteins is regulated by the availability of lipids that form the neutral lipid core (triacylglycerol and cholesteryl ester) and the limiting lipoprotein monolayer (phospholipids and cholesterol). Although tremendous advances have been made over the past decade toward understanding neutral lipid and phospholipid biosynthesis and neutral lipid storage in cytosolic lipid droplets (LDs), little is known about the mechanisms that govern the transfer of lipids to the lumen of the endoplasmic reticulum for apoB lipidation. ApoB-synthesizing organs can deposit synthesized neutral lipids into at least 3 different types of LDs, each decorated with a subset of specific proteins: perilipin-decorated cytosolic LDs, and 2 types of LDs formed in the lumen of the endoplasmic reticulum, the secretion-destined LDs containing apoB, and resident lumenal LDs coated with microsomal triglyceride transfer protein and exchangeable apolipoproteins. This brief review will address the current knowledge of lumenal lipid metabolism in the context of apoB assembly and lipid storage.
Collapse
Affiliation(s)
- Richard Lehner
- Department of Pediatrics and Cell Biology, Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
17
|
Abstract
Intestinal lipid transport plays a central role in fat homeostasis. Here we review the pathways regulating intestinal absorption and delivery of dietary and biliary lipid substrates, principally long-chain fatty acid, cholesterol, and other sterols. We discuss the regulation and functions of CD36 in fatty acid absorption, NPC1L1 in cholesterol absorption, as well as other lipid transporters including FATP4 and SRB1. We discuss the pathways of intestinal sterol efflux via ABCG5/G8 and ABCA1 as well as the role of the small intestine in high-density lipoprotein (HDL) biogenesis and reverse cholesterol transport. We review the pathways and genetic regulation of chylomicron assembly, the role of dominant restriction points such as microsomal triglyceride transfer protein and apolipoprotein B, and the role of CD36, l-FABP, and other proteins in formation of the prechylomicron complex. We will summarize current concepts of regulated lipoprotein secretion (including HDL and chylomicron pathways) and include lessons learned from families with genetic mutations in dominant pathways (i.e., abetalipoproteinemia, chylomicron retention disease, and familial hypobetalipoproteinemia). Finally, we will provide an integrative view of intestinal lipid homeostasis through recent findings on the role of lipid flux and fatty acid signaling via diverse receptor pathways in regulating absorption and production of satiety factors.
Collapse
Affiliation(s)
- Nada A Abumrad
- Center for Human Nutrition and Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
18
|
Abstract
The heart has both the greatest caloric needs and the most robust oxidation of fatty acids (FAs). Under pathological conditions such as obesity and type 2 diabetes, cardiac uptake and oxidation are not balanced and hearts accumulate lipid potentially leading to cardiac lipotoxicity. We will first review the pathways utilized by the heart to acquire FAs from the circulation and to store triglyceride intracellularly. Then we will describe mouse models in which excess lipid accumulation causes heart dysfunction and experiments performed to alleviate this toxicity. Finally, the known relationships between heart lipid metabolism and dysfunction in humans will be summarized.
Collapse
Affiliation(s)
- Ira J Goldberg
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
19
|
Hussain MM, Rava P, Walsh M, Rana M, Iqbal J. Multiple functions of microsomal triglyceride transfer protein. Nutr Metab (Lond) 2012; 9:14. [PMID: 22353470 PMCID: PMC3337244 DOI: 10.1186/1743-7075-9-14] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/21/2012] [Indexed: 02/08/2023] Open
Abstract
Microsomal triglyceride transfer protein (MTP) was first identified as a major cellular protein capable of transferring neutral lipids between membrane vesicles. Its role as an essential chaperone for the biosynthesis of apolipoprotein B (apoB)-containing triglyceride-rich lipoproteins was established after the realization that abetalipoproteinemia patients carry mutations in the MTTP gene resulting in the loss of its lipid transfer activity. Now it is known that it also plays a role in the biosynthesis of CD1, glycolipid presenting molecules, as well as in the regulation of cholesterol ester biosynthesis. In this review, we will provide a historical perspective about the identification, purification and characterization of MTP, describe methods used to measure its lipid transfer activity, and discuss tissue expression and function. Finally, we will review the role MTP plays in the assembly of apoB-lipoprotein, the regulation of cholesterol ester synthesis, biosynthesis of CD1 proteins and propagation of hepatitis C virus. We will also provide a brief overview about the clinical potentials of MTP inhibition.
Collapse
Affiliation(s)
- M Mahmood Hussain
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Paul Rava
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Meghan Walsh
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Muhammad Rana
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
20
|
Abstract
Type 2 diabetes and obesity are associated with systemic inflammation, generalized enlargement of fat depots, and uncontrolled release of fatty acids (FA) into the circulation. These features support the occurrence of cardiac adiposity, which is characterized by an increase in intramyocardial triglyceride content and an enlargement of the volume of fat surrounding the heart and vessels. Both events may initially serve as protective mechanisms to portion energy, but their excessive expansion can lead to myocardial damage and heart disease. FA overload promotes FA oxidation and the accumulation of triglycerides and metabolic intermediates, which can impair calcium signaling, β-oxidation, and glucose utilization. This leads to damaged mitochondrial function and increased production of reactive oxygen species, pro-apoptotic, and inflammatory molecules, and finally to myocardial inflammation and dysfunction. Triglyceride accumulation is associated with left ventricular hypertrophy and dysfunction. The enlargement of epicardial fat in patients with metabolic disorders, and coronary artery disease, is associated with the release of proinflammatory and proatherogenic cytokines to the subtending tissues. In this review, we examine the evidence supporting a causal relationship linking FA overload and cardiac dysfunction. Also, we disentangle the separate roles of FA oxidation and triglyceride accumulation in causing cardiac damage. Finally, we focus on the mechanisms of inflammation development in the fatty heart, before summarizing the available evidence in humans. Current literature confirms the dual (protective and detrimental) role of cardiac fat, and suggests prospective studies to establish the pathogenetic (when and how) and possible prognostic value of this potential biomarker in humans.
Collapse
Affiliation(s)
- Maria A Guzzardi
- Institute of Clinical Physiology, National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | | |
Collapse
|
21
|
Pulakat L, DeMarco VG, Ardhanari S, Chockalingam A, Gul R, Whaley-Connell A, Sowers JR. Adaptive mechanisms to compensate for overnutrition-induced cardiovascular abnormalities. Am J Physiol Regul Integr Comp Physiol 2011; 301:R885-95. [PMID: 21813874 DOI: 10.1152/ajpregu.00316.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In conditions of overnutrition, cardiac cells must cope with a multitude of extracellular signals generated by changes in nutrient load (glucose, amino acids, and lipids) and the hormonal milieu [increased insulin (INS), ANG II, and adverse cytokine/adipokine profile]. Herein, we review the diverse compensatory/adaptive mechanisms that counter the deleterious effects of excess nutrients and growth factors. We largely focus the discussion on evidence obtained from Zucker obese (ZO) and Zucker diabetic fatty (ZDF) rats, which are useful models to evaluate adaptive and maladaptive metabolic, structural, and functional cardiac remodeling. One adaptive mechanism present in the INS-resistant ZO, but absent in the diabetic ZDF heart, involves an interaction between the nutrient sensor kinase mammalian target of rapamycin complex 1 (mTORC1) and ANG II-type 2 receptor (AT2R). Recent evidence supports a cardioprotective role for the AT2R; for example, suppression of AT2R activation interferes with antihypertrophic/antifibrotic effects of AT1R blockade, and AT2R agonism improves cardiac structure and function. We propose a scenario, whereby mTORC1-signaling-mediated increase in AT2R expression in the INS-resistant ZO heart is a cardioprotective adaptation to overnutrition. In contrast to the ZO rat, heart tissues of ZDF rats do not show activation of mTORC1. We posit that such a lack of activation of the mTOR↔AT2R integrative pathway in cardiac tissue under conditions of obesity-induced diabetes may be a metabolic switch associated with INS deficiency and clinical diabetes.
Collapse
Affiliation(s)
- Lakshmi Pulakat
- University of Missouri School of Medicine, Department of Internal Medicine, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Hussain MM, Nijstad N, Franceschini L. Regulation of microsomal triglyceride transfer protein. ACTA ACUST UNITED AC 2011; 6:293-303. [PMID: 21808658 DOI: 10.2217/clp.11.21] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microsomal triglyceride transfer protein (MTP) facilitates the transport of dietary and endogenous fat by the intestine and liver by assisting in the assembly and secretion of triglyceride-rich apolipoprotein B-containing lipoproteins. Higher concentrations of apolipoprotein B lipoproteins predispose individuals to various cardiovascular and metabolic diseases such as atherosclerosis, diabetes, obesity and the metabolic syndrome. These can potentially be avoided by reducing MTP activity. In this article, we discuss regulation of MTP during development, cellular differentiation and diurnal variation. Furthermore, we focus on the regulation of MTP that occurs at transcriptional, post-transcriptional and post-translational levels. Transcriptional regulation of MTP depends on a few highly conserved cis-elements in the promoter. Several transcription factors that bind to these elements and either increase or decrease MTP expression have been identified. Additionally, MTP is regulated by macronutrients, hormones and other factors. This article will address the many ways in which MTP is regulated and advance the idea that reducing MTP levels, rather than its inhibition, might be an option to lower plasma lipids.
Collapse
Affiliation(s)
- M Mahmood Hussain
- Departments of Cell Biology and Pediatrics, The State University of New York, Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
23
|
Bartels ED, Nielsen JM, Bisgaard LS, Goetze JP, Nielsen LB. Decreased expression of natriuretic peptides associated with lipid accumulation in cardiac ventricle of obese mice. Endocrinology 2010; 151:5218-25. [PMID: 20844006 DOI: 10.1210/en.2010-0355] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasma B-type natriuretic peptide (BNP) and proBNP are established markers of cardiac dysfunction. Even though obesity increases the risk of cardiovascular disease, obese individuals have reduced plasma concentrations of natriuretic peptides. The underlying mechanism is not established. We used cultured cardiomyocytes and three different mouse models to examine the impact of obesity and cardiac lipid accumulation on cardiac natriuretic peptide expression. The cardiac ventricular expression of atrial natriuretic peptide (ANP) and BNP mRNA and ANP peptide was decreased 36-72% in obese ob/ob, db/db, and fat-fed C57BL/6 mice as compared with their respective controls. The db/db and ob/ob mice displayed impaired cardiac function, whereas the fat-fed mice had almost normal cardiac function. Moreover, the ventricular expression of hypertrophic genes (α- and β-myosin heavy chain and α-actin) and natriuretic peptide receptor genes were not consistently altered by obesity across the three mouse models. In contrast, cardiac ventricular triglycerides were similarly increased by 60-115% in all three obese mouse models and incubation with oleic acid caused triglyceride accumulation and an approximately 35% (P < 0.005) depression of ANP mRNA expression in cultured HL-1 atrial myocytes. The data suggest that obesity and altered cardiac lipid metabolism are associated with reduced production of ANP and BNP in the cardiac ventricles in the setting of normal as well as impaired cardiac function.
Collapse
Affiliation(s)
- Emil Daniel Bartels
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
24
|
Brindley DN, Kok BPC, Kienesberger PC, Lehner R, Dyck JRB. Shedding light on the enigma of myocardial lipotoxicity: the involvement of known and putative regulators of fatty acid storage and mobilization. Am J Physiol Endocrinol Metab 2010; 298:E897-908. [PMID: 20103741 DOI: 10.1152/ajpendo.00509.2009] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Excessive fatty acid (FA) uptake by cardiac myocytes is often associated with adverse changes in cardiac function. This is especially evident in diabetic individuals, where increased intramyocardial triacylglycerol (TG) resulting from the exposure to high levels of circulating FA has been proposed to be a major contributor to diabetic cardiomyopathy. At present, our knowledge of how the heart regulates FA storage in TG and the hydrolysis of this TG is limited. This review concentrates on what is known about TG turnover within the heart and how this is likely to be regulated by extrapolating results from other tissues. We also assess the evidence as to whether increased TG accumulation protects against FA-induced lipotoxicity through limiting the accumulations of ceramides and diacylglycerols versus whether it is a maladaptive response that contributes to cardiac dysfunction.
Collapse
Affiliation(s)
- David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | | | | | | | | |
Collapse
|
25
|
Krzystanek M, Pedersen TX, Bartels ED, Kjaehr J, Straarup EM, Nielsen LB. Expression of apolipoprotein B in the kidney attenuates renal lipid accumulation. J Biol Chem 2010; 285:10583-90. [PMID: 20103594 DOI: 10.1074/jbc.m109.078006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ability to produce apolipoprotein (apo) B-containing lipoproteins enables hepatocytes, enterocytes, and cardiomyocytes to export triglycerides. In this study, we examined secretion of apoB-containing lipoproteins from mouse kidney and its putative impact on triglyceride accumulation in the tubular epithelium. Mouse kidney expressed both the apoB and microsomal triglyceride transfer protein genes, which permit lipoprotein formation. To examine de novo lipoprotein secretion, kidneys from human apoB-transgenic mice were minced and placed in medium with (35)S-amino acids. Upon sucrose gradient ultracentrifugation of the labeled medium, fractions were analyzed by apoB immunoprecipitation. (35)S-Labeled apoB100 was recovered in approximately 1.03-1.04 g/ml lipoproteins (i.e. similar to the density of plasma low density lipoproteins). Immunohistochemistry of kidney sections suggested that apoB mainly is produced by tubular epithelial cells. ApoB expression in the kidney cortex was reduced approximately 90% in vivo by treating wild type mice with apoB-antisense locked nucleic acid oligonucleotide. Inhibition of apoB expression increased fasting-induced triglyceride accumulation in the kidney cortex by 20-25% (p = 0.008). Cholesterol stores were unaffected. Treatment with control oligonucleotides with 1 or 4 mismatching base pairs affected neither the triglyceride nor the cholesterol content of the kidney cortex. The results suggest that mammalian kidney secretes apoB100-containing lipoproteins. One biological effect may be to dampen excess storage of triglycerides in proximal tubule cells.
Collapse
Affiliation(s)
- Marcin Krzystanek
- Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen
| | | | | | | | | | | |
Collapse
|
26
|
Wende AR, Abel ED. Lipotoxicity in the heart. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1801:311-9. [PMID: 19818871 DOI: 10.1016/j.bbalip.2009.09.023] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 09/23/2009] [Accepted: 09/28/2009] [Indexed: 02/07/2023]
Abstract
Obesity and insulin resistance are associated with ectopic lipid deposition in multiple tissues, including the heart. Excess lipid may be stored as triglycerides, but are also shunted into non-oxidative pathways that disrupt normal cellular signaling leading to organ dysfunction and in some cases apoptosis, a process termed lipotoxicity. Various pathophysiological mechanisms have been proposed to lead to lipotoxic tissue injury, which might vary by cell type. Specific mechanisms by which lipotoxicity alter cardiac structure and function are incompletely understood, but are beginning to be elucidated. This review will focus on mechanisms that have been proposed to lead to lipotoxic injury in the heart and will review the state of knowledge regarding potential causes and correlates of increased myocardial lipid content in animal models and humans. We will seek to highlight those areas where additional research is warranted.
Collapse
Affiliation(s)
- Adam R Wende
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, University of Utah, School of Medicine, Salt Lake City, UT 84112, USA
| | | |
Collapse
|