1
|
Gao L, Yang WY, Qi H, Sun CJ, Qin XM, Du GH. Unveiling the anti-senescence effects and senescence-associated secretory phenotype (SASP) inhibitory mechanisms of Scutellaria baicalensis Georgi in low glucose-induced astrocytes based on boolean network. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153990. [PMID: 35202958 DOI: 10.1016/j.phymed.2022.153990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Astrocytes senescence has been demonstrated in the aging brain and Alzheimer's disease (AD). Moreover, lower glucose metabolism has been confirmed in the early stage of AD. However, whether low glucose could induce astrocytes senescence remain ambiguous. Studies have shown that the ethanol extracts of Scutellaria baicalensis Georgi (SGE) exert neuroprotective and anti-aging effects, while whether SGE could delay astrocytes senescence was unclear. PURPOSE This study investigated the anti-senescence effect of SGE in low glucose-induced T98G cells and primary astrocytes, and explored the possible mechanisms based on boolean network. METHODS The neuroprotective effects of SGE in low glucose-induced T98G cells were evaluated by measurement of cell viability, LDH, ROS and ATP. The anti-senescence effects of SGE were investigated by detection of senescence-associated β-galactosidase (SA-β-Gal), senescence-associated secretory phenotype (SASP), cell cycle and senescence-related markers. The possible mechanisms of SGE in delaying astrocytes senescence were discovered through integrating transcriptomics with boolean network, and validation experiments were further performed. RESULTS Our results revealed that low glucose could induce astrocytes senescence, and SGE could delay astrocytes senescence by decreasing the staining rate of SA-β-gal, reducing secretions of SASP factors (IL-6, CXCL1, MMP-1), alleviating cell cycle arrest in G0/G1 phase, decreasing the formation of punctate DNA foci and down-regulating the expression of p16INK4A, p21 and γH2A.X. Transcriptomics and further verification results showed that SGE could markedly inhibit the mRNA expression levels of SASP factors (CXCL10, CXCL2, CCL2, IL-6, CXCR4, CCR7). Moreover, C-X-C motif chemokine 10 (CXCL10) was predicted to be the key SASP factor affecting the network stability by using boolean network. Further experiments validated that SGE could markedly reduce CXCL10 level, decrease the secretion of IL-6 and inhibit cell migration in CXCL10 induced primary astrocytes. CONCLUSION In summary, our research unmasks that the anti-senescence effects of SGE were highly correlated with the suppression of SASP secretions, and CXCL10 mediated the SASP inhibition effect of SGE in low glucose-induced astrocytes. Our study highlights that the delay of astrocytes senescence and the inhibition of SASP might be a new mechanism of SGE for alleviating neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| | - Wu-Yan Yang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Hong Qi
- Complex Systems Research Center, Shanxi University, Taiyuan, China
| | - Chang-Jun Sun
- Complex Systems Research Center, Shanxi University, Taiyuan, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guan-Hua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Emdad L, Bhoopathi P, Talukdar S, Pradhan AK, Sarkar D, Wang XY, Das SK, Fisher PB. Recent insights into apoptosis and toxic autophagy: The roles of MDA-7/IL-24, a multidimensional anti-cancer therapeutic. Semin Cancer Biol 2019; 66:140-154. [PMID: 31356866 DOI: 10.1016/j.semcancer.2019.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Apoptosis and autophagy play seminal roles in maintaining organ homeostasis. Apoptosis represents canonical type I programmed cell death. Autophagy is viewed as pro-survival, however, excessive autophagy can promote type II cell death. Defective regulation of these two obligatory cellular pathways is linked to various diseases, including cancer. Biologic or chemotherapeutic agents, which can reprogram cancer cells to undergo apoptosis- or toxic autophagy-mediated cell death, are considered effective tools for treating cancer. Melanoma differentiation associated gene-7 (mda-7) selectively promotes these effects in cancer cells. mda-7 was identified more than two decades ago by subtraction hybridization showing elevated expression during induction of terminal differentiation of metastatic melanoma cells following treatment with recombinant fibroblast interferon and mezerein (a PKC activating agent). MDA-7 was classified as a member of the IL-10 gene family based on its chromosomal location, and the presence of an IL-10 signature motif and a secretory sequence, and re-named interleukin-24 (MDA-7/IL-24). Multiple studies have established MDA-7/IL-24 as a potent anti-cancer agent, which when administered at supra-physiological levels induces growth arrest and cell death through apoptosis and toxic autophagy in a wide variety of tumor cell types, but not in corresponding normal/non-transformed cells. Furthermore, in a phase I/II clinical trial, MDA-7/IL-24 administered by means of a non-replicating adenovirus was well tolerated and displayed significant clinical activity in patients with multiple advanced cancers. This review examines our current comprehension of the role of MDA-7/IL-24 in mediating cancer-specific cell death via apoptosis and toxic autophagy.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
3
|
Saint-Criq V, Villeret B, Bastaert F, Kheir S, Hatton A, Cazes A, Xing Z, Sermet-Gaudelus I, Garcia-Verdugo I, Edelman A, Sallenave JM. Pseudomonas aeruginosa LasB protease impairs innate immunity in mice and humans by targeting a lung epithelial cystic fibrosis transmembrane regulator-IL-6-antimicrobial-repair pathway. Thorax 2017; 73:49-61. [PMID: 28790180 PMCID: PMC5738602 DOI: 10.1136/thoraxjnl-2017-210298] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 11/16/2022]
Abstract
Background Pseudomonas aeruginosa lung infections are a huge problem in ventilator-associated pneumonia, cystic fibrosis (CF) and in chronic obstructive pulmonary disease (COPD) exacerbations. This bacterium secretes virulence factors that may subvert host innate immunity. Objective We evaluated the effect of P. aeruginosa elastase LasB, an important virulence factor secreted by the type II secretion system, on ion transport, innate immune responses and epithelial repair, both in vitro and in vivo. Methods Wild-type (WT) or cystic fibrosis transmembrane conductance regulator (CFTR)-mutated epithelial cells (cell lines and primary cells from patients) were treated with WT or ΔLasB pseudomonas aeruginosa O1 (PAO1) secretomes. The effect of LasB and PAO1 infection was also assessed in vivo in murine models. Results We showed that LasB was the most abundant protein in WT PAO1 secretomes and that it decreased epithelial CFTR expression and activity. In airway epithelial cell lines and primary bronchial epithelial cells, LasB degraded the immune mediators interleukin (IL)-6 and trappin-2, an important epithelial-derived antimicrobial molecule. We further showed that an IL-6/STAT3 signalling pathway was downregulated by LasB, resulting in inhibition of epithelial cell repair. In mice, intranasally instillated LasB induced significant weight loss, inflammation, injury and death. By contrast, we showed that overexpression of IL-6 and trappin-2 protected mice against WT-PAO1-induced death, by upregulating IL-17/IL-22 antimicrobial and repair pathways. Conclusions Our data demonstrate that PAO1 LasB is a major P. aeruginosa secreted factor that modulates ion transport, immune response and tissue repair. Targeting this virulence factor or upregulating protective factors such as IL-6 or antimicrobial molecules such as trappin-2 could be beneficial in P. aeruginosa-infected individuals.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- INSERM U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, Hopital Bichat - Claude-Bernard, Paris, France
| | - Bérengère Villeret
- INSERM U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, Hopital Bichat - Claude-Bernard, Paris, France
| | - Fabien Bastaert
- INSERM U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, Hopital Bichat - Claude-Bernard, Paris, France
| | - Saadé Kheir
- INSERM U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, Hopital Bichat - Claude-Bernard, Paris, France
| | - Aurélie Hatton
- INSERM U1151, Faculté de Médecine, site Necker, Université Paris Descartes, Paris, France
| | - Aurélie Cazes
- INSERM U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, Hopital Bichat - Claude-Bernard, Paris, France
| | - Zhou Xing
- McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | | | - Ignacio Garcia-Verdugo
- INSERM U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, Hopital Bichat - Claude-Bernard, Paris, France
| | - Aleksander Edelman
- INSERM U1151, Faculté de Médecine, site Necker, Université Paris Descartes, Paris, France
| | - Jean-Michel Sallenave
- INSERM U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, Hopital Bichat - Claude-Bernard, Paris, France
| |
Collapse
|
4
|
Mechanism of Action and Applications of Interleukin 24 in Immunotherapy. Int J Mol Sci 2016; 17:ijms17060869. [PMID: 27271601 PMCID: PMC4926403 DOI: 10.3390/ijms17060869] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 12/15/2022] Open
Abstract
Interleukin 24 (IL-24) is an important pleiotropic immunoregulatory cytokine, whose gene is located in human chromosome 1q32-33. IL-24's signaling pathways have diverse biological functions related to cell differentiation, proliferation, development, apoptosis, and inflammation, placing it at the center of an active area of research. IL-24 is well known for its apoptotic effect in cancer cells while having no such effect on normal cells. IL-24 can also be secreted by both immune and non-immune cells. Downstream effects of IL-24, after binding to the IL-20 receptor, can occur dependently or independently of the JAK/STAT signal transduction pathway, which is classically involved in cytokine-mediated activities. After exogenous addition of IL-24, apoptosis is induced in tumor cells independently of the JAK/STAT pathway. We have shown that IL-24 binds to Sigma 1 Receptor and this event induces endoplasmic reticulum stress, calcium mobilization, reactive oxygen species generation, p38MAPK activity, and ceramide production. Here we review IL-24's role in autoimmunity, infectious disease response, wound repair, and vascular disease. Detailed understanding of the pleiotropic roles of IL-24 signaling can assist in the selection of more accurate therapeutic approaches, as well as targeting of appropriate cell types in treatment strategy development, and ultimately achieve desired therapeutic effects.
Collapse
|
5
|
Menezes ME, Shen XN, Das SK, Emdad L, Guo C, Yuan F, Li YJ, Archer MC, Zacksenhaus E, Windle JJ, Subler MA, Ben-David Y, Sarkar D, Wang XY, Fisher PB. MDA-7/IL-24 functions as a tumor suppressor gene in vivo in transgenic mouse models of breast cancer. Oncotarget 2015; 6:36928-42. [PMID: 26474456 PMCID: PMC4741906 DOI: 10.18632/oncotarget.6047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022] Open
Abstract
Melanoma differentiation associated gene-7/Interleukin-24 (MDA-7/IL-24) is a novel member of the IL-10 gene family that selectively induces apoptosis and toxic autophagy in a broad spectrum of human cancers, including breast cancer, without harming normal cells or tissues. The ability to investigate the critical events underlying cancer initiation and progression, as well as the capacity to test the efficacy of novel therapeutics, has been significantly advanced by the development of genetically engineered mice (GEMs) that accurately recapitulate specific human cancers. We utilized three transgenic mouse models to better comprehend the in vivo role of MDA-7/IL-24 in breast cancer. Using the MMTV-PyMT spontaneous mammary tumor model, we confirmed that exogenously introducing MDA-7/IL-24 using a Cancer Terminator Virus caused a reduction in tumor burden and also produced an antitumor "bystander" effect. Next we performed xenograft studies in a newly created MMTV-MDA-7 transgenic model that over-expresses MDA-7/IL-24 in the mammary glands during pregnancy and lactation, and found that MDA-7/IL-24 overexpression delayed tumor growth following orthotopic injection of a murine PDX tumor cell line (mPDX) derived from a tumor formed in an MMTV-PyMT mouse. We also crossed the MMTV-MDA-7 line to MMTV-Erbb2 transgenic mice and found that MDA-7/IL-24 overexpression delayed the onset of mammary tumor development in this model of spontaneous mammary tumorigenesis as well. Finally, we assessed the role of MDA-7/IL-24 in immune regulation, which can potentially contribute to tumor suppression in vivo. Our findings provide further direct in vivo evidence for the role of MDA-7/IL-24 in tumor suppression in breast cancer in immune-competent transgenic mice.
Collapse
Affiliation(s)
- Mitchell E. Menezes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Fang Yuan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - You-Jun Li
- Department of Anatomy, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Michael C. Archer
- Departments of Medical Biophysics, University of Toronto, Ontario, Canada
- Nutritional Sciences, University of Toronto, Ontario, Canada
| | - Eldad Zacksenhaus
- Departments of Medical Biophysics, University of Toronto, Ontario, Canada
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Jolene J. Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Mark A. Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Yaacov Ben-David
- Departments of Medical Biophysics, University of Toronto, Ontario, Canada
- Division of Biology, the Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
6
|
Wang J, Huang C, Wu M, Zhong Q, Yang K, Li M, Zhan X, Wen J, Zhou L, Huang X. MRP8/14 induces autophagy to eliminate intracellular Mycobacterium bovis BCG. J Infect 2014; 70:415-26. [PMID: 25312864 DOI: 10.1016/j.jinf.2014.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/30/2014] [Accepted: 09/15/2014] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To explore the role of myeloid-related protein 8/14 in mycobacterial infection. METHODS The mRNA and protein expression levels of MRP8 or MRP14 were measured by real-time PCR and flow cytometry, respectively. Role of MRP8/14 was tested by overexpression or RNA interference assays. Flow cytometry and colony forming unit were used to test the phagocytosis and the survival of intracellular Mycobacterium bovis BCG (BCG), respectively. Autophagy mediated by MRP8/14 was detected by Western blot and immunofluorescence. The colocalization of BCG phagosomes with autophagosomes or lysosomes was by detected by confocal microscopy. ROS production was detected by flow cytometry. RESULTS MRP8/14 expressions were up-regulated in human monocytic THP1 cells and primary macrophages after mycobacterial challenge. Silencing of MRP8/14 suppressed bacterial killing, but had no influence on the phagocytosis of BCG. Importantly, silencing MRP8/14 decreased autophagy and BCG phagosome maturation in THP1-derived macrophages, thereby increasing the BCG survival. Additionally, we demonstrated that MRP8/14 promoted autophagy in a ROS-dependent manner. CONCLUSIONS The present study revealed a novel role of MRP8/14 in the autophagy-mediated elimination of intracellular BCG by promoting ROS generation, which may provide a promising therapeutic target for tuberculosis and other intracellular bacterial infectious diseases.
Collapse
Affiliation(s)
- Jinli Wang
- Department of Immunology, Institute of Tuberculosis Control, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Department of Laboratory Medicine, Guangzhou First Municipal People's Hospital, Affiliated Hospital of Guangzhou Medical University, Guangzhou 510500, China
| | - Chunyu Huang
- Department of Immunology, Institute of Tuberculosis Control, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen 518045, China
| | - Minhao Wu
- Department of Immunology, Institute of Tuberculosis Control, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Qiu Zhong
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China
| | - Kun Yang
- Department of Immunology, Institute of Tuberculosis Control, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Miao Li
- Department of Immunology, Institute of Tuberculosis Control, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Xiaoxia Zhan
- Department of Immunology, Institute of Tuberculosis Control, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jinsheng Wen
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou 325035, China
| | - Lin Zhou
- Center for Tuberculosis Control of Guangdong Province, Guangzhou 510630, China.
| | - Xi Huang
- Department of Immunology, Institute of Tuberculosis Control, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
7
|
Neznansky A, Blus-Kadosh I, Yerushalmi G, Banin E, Opatowsky Y. The Pseudomonas aeruginosa phosphate transport protein PstS plays a phosphate-independent role in biofilm formation. FASEB J 2014; 28:5223-33. [PMID: 25223609 DOI: 10.1096/fj.14-258293] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pseudomonas aeruginosa (PA) is a primary cause of nosocomial infections. A key element in PA pathogenicity is its ability to form biofilms that withstand eradication by antibiotics and the immune system. Biofilm formation is controlled by phosphate signaling and here we provide evidence that PstS, a subunit of the PA Pst phosphate transporter, has a surprising role in this process. Using X-ray crystallography, we characterized the unique underpinnings of PstS phosphate binding and identified an unusual 15-residue N' loop extension. Structure-based experiments showed that PstS-mediated phosphate uptake and biofilm formation are in fact two distinct functions. Specifically, a point mutation that abrogated phosphate binding did not eliminate biofilm formation; conversely, truncation of the N' loop diminished the ability of PA to form biofilms but had no effect on phosphate binding and uptake. This places PstS at a junction that separately controls phosphate sensing and uptake and the ultrastructure organization of bacteria.
Collapse
Affiliation(s)
- Avi Neznansky
- Mina and Everard Goodman Faculty of Life Sciences and
| | - Inna Blus-Kadosh
- Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Gal Yerushalmi
- Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Ehud Banin
- Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
8
|
Sall KM, Casabona MG, Bordi C, Huber P, de Bentzmann S, Attrée I, Elsen S. A gacS deletion in Pseudomonas aeruginosa cystic fibrosis isolate CHA shapes its virulence. PLoS One 2014; 9:e95936. [PMID: 24780952 PMCID: PMC4004566 DOI: 10.1371/journal.pone.0095936] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/30/2014] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas aeruginosa, a human opportunistic pathogen, is capable of provoking acute and chronic infections that are associated with defined sets of virulence factors. During chronic infections, the bacterium accumulates mutations that silence some and activate other genes. Here we show that the cystic fibrosis isolate CHA exhibits a unique virulence phenotype featuring a mucoid morphology, an active Type III Secretion System (T3SS, hallmark of acute infections), and no Type VI Secretion System (H1-T6SS). This virulence profile is due to a 426 bp deletion in the 3′ end of the gacS gene encoding an essential regulatory protein. The absence of GacS disturbs the Gac/Rsm pathway leading to depletion of the small regulatory RNAs RsmY/RsmZ and, in consequence, to expression of T3SS, while switching off the expression of H1-T6SS and Pel polysaccharides. The CHA isolate also exhibits full ability to swim and twitch, due to active flagellum and Type IVa pili. Thus, unlike the classical scheme of balance between virulence factors, clinical strains may adapt to a local niche by expressing both alginate exopolysaccharide, a hallmark of membrane stress that protects from antibiotic action, host defences and phagocytosis, and efficient T3S machinery that is considered as an aggressive virulence factor.
Collapse
Affiliation(s)
- Khady Mayebine Sall
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- UJF-Grenoble 1, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Maria Guillermina Casabona
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- UJF-Grenoble 1, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Christophe Bordi
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR 7255 CNRS - Aix Marseille University, Marseille, France
| | - Philippe Huber
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- UJF-Grenoble 1, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Sophie de Bentzmann
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR 7255 CNRS - Aix Marseille University, Marseille, France
| | - Ina Attrée
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- UJF-Grenoble 1, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Sylvie Elsen
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- UJF-Grenoble 1, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
- * E-mail:
| |
Collapse
|
9
|
Lucchetti-Miganeh C, Redelberger D, Chambonnier G, Rechenmann F, Elsen S, Bordi C, Jeannot K, Attrée I, Plésiat P, de Bentzmann S. Pseudomonas aeruginosa Genome Evolution in Patients and under the Hospital Environment. Pathogens 2014; 3:309-40. [PMID: 25437802 PMCID: PMC4243448 DOI: 10.3390/pathogens3020309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative environmental species and an opportunistic microorganism, establishing itself in vulnerable patients, such as those with cystic fibrosis (CF) or those hospitalized in intensive care units (ICU). It has become a major cause of nosocomial infections worldwide and a serious threat to Public Health because of overuse and misuse of antibiotics that have selected highly resistant strains against which very few therapeutic options exist. Herein is illustrated the intraclonal evolution of the genome of sequential isolates collected in a single CF patient from the early phase of pulmonary colonization to the fatal outcome. We also examined at the whole genome scale a pair of genotypically-related strains made of a drug susceptible, environmental isolate recovered from an ICU sink and of its multidrug resistant counterpart found to infect an ICU patient. Multiple genetic changes accumulated in the CF isolates over the disease time course including SNPs, deletion events and reduction of whole genome size. The strain isolated from the ICU patient displayed an increase in the genome size of 4.8% with major genetic rearrangements as compared to the initial environmental strain. The annotated genomes are given in free access in an interactive web application WallGene designed to facilitate large-scale comparative analysis and thus allowing investigators to explore homologies and syntenies between P. aeruginosa strains, here PAO1 and the five clinical strains described.
Collapse
Affiliation(s)
| | - David Redelberger
- UMR7255-Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS-Aix Marseille University, Marseille 13402, France.
| | - Gaël Chambonnier
- UMR7255-Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS-Aix Marseille University, Marseille 13402, France.
| | | | - Sylvie Elsen
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble 38054, France.
| | - Christophe Bordi
- UMR7255-Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS-Aix Marseille University, Marseille 13402, France.
| | - Katy Jeannot
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Université de Franche-Comté, Besançon 25030, France.
| | - Ina Attrée
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble 38054, France.
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Université de Franche-Comté, Besançon 25030, France.
| | - Sophie de Bentzmann
- UMR7255-Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS-Aix Marseille University, Marseille 13402, France.
| |
Collapse
|
10
|
MDA-7/IL-24: multifunctional cancer killing cytokine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:127-53. [PMID: 25001534 DOI: 10.1007/978-1-4471-6458-6_6] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
First identified almost two decades ago as a novel gene differentially expressed in human melanoma cells induced to terminally differentiate, MDA-7/IL-24 has since shown great potential as an anti-cancer gene. MDA-7/IL24, a secreted protein of the IL-10 family, functions as a cytokine at normal physiological levels and is expressed in tissues of the immune system. At supra-physiological levels, MDA-7/IL-24 plays a prominent role in inhibiting tumor growth, invasion, metastasis and angiogenesis and was recently shown to target tumor stem/initiating cells for death. Much of the attention focused on MDA-7/IL-24 originated from the fact that it can selectively induce cell death in cancer cells without affecting normal cells. Thus, this gene originally shown to be associated with melanoma cell differentiation has now proven to be a multi-functional protein affecting a broad array of cancers. Moreover, MDA-7/IL-24 has proven efficacious in a Phase I/II clinical trial in humans with multiple advanced cancers. As research in the field progresses, we will unravel more of the functions of MDA-7/IL-24 and define novel ways to utilize MDA-7/IL-24 in the treatment of cancer.
Collapse
|
11
|
Mayer ML, Blohmke CJ, Falsafi R, Fjell CD, Madera L, Turvey SE, Hancock REW. Rescue of Dysfunctional Autophagy Attenuates Hyperinflammatory Responses from Cystic Fibrosis Cells. THE JOURNAL OF IMMUNOLOGY 2012; 190:1227-38. [DOI: 10.4049/jimmunol.1201404] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Whitaker EL, Filippov VA, Duerksen-Hughes PJ. Interleukin 24: Mechanisms and therapeutic potential of an anti-cancer gene. Cytokine Growth Factor Rev 2012; 23:323-31. [DOI: 10.1016/j.cytogfr.2012.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 08/20/2012] [Indexed: 12/18/2022]
|
13
|
John G, Chillappagari S, Rubin BK, Gruenert DC, Henke MO. Reduced surface toll-like receptor-4 expression and absent interferon-γ-inducible protein-10 induction in cystic fibrosis airway cells. Exp Lung Res 2011; 37:319-26. [PMID: 21649525 DOI: 10.3109/01902148.2011.569968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ABSTRACT As part of the innate and adaptive immune system, airway epithelial cells secrete proinflammatory cytokines after activation of Toll-like receptors (TLRs) by pathogens. Nevertheless, cystic fibrosis (CF) airways are chronically infected with Pseudomonas aeruginosa, suggesting a modified immune response in CF. The authors have shown that in CF bronchial epithelial cells, a reduced surface expression of TLR-4 causes a diminished interleukin (IL)-8 and IL-6 response upon lipopolysaccharide (LPS) stimulation. However, there is no information regarding activation of the MyD88 (myeloid differentiation primary response gene 88)-independent TLR-4 signaling pathway by LPS, which results in the activation of adaptive immune responses by secretion of the T cell-recruiting chemokine interferon-γ-inducible protein (IP)-10. Therefore, the authors investigated the induction of IP-10 in CF bronchial epithelial cell line CFBE41o- and its CFTR-corrected isotype under well-differentiating conditions. TLR-4 surface expression was significantly reduced in CFBE41o- by a factor of 2, compared to the CFTR-corrected cells. In CFTR-corrected cells, stimulation with LPS increased IP-10 secretion. Incubating cells with siRNA directed against TLR-4 inhibited the LPS stimulated increase of IP-10 in CFTR-corrected cells. The reduced TLR-4 surface expression in CF cells causes the loss of induction of IP-10 by LPS. This could compromise adaptive immune responses in CF due to a reduced T-cell recruitment.
Collapse
Affiliation(s)
- Gerrit John
- Department of Pulmonary Medicine, Philipps-University Marburg, Marburg, Germany
| | | | | | | | | |
Collapse
|
14
|
Tantibhedhyangkul W, Prachason T, Waywa D, El Filali A, Ghigo E, Thongnoppakhun W, Raoult D, Suputtamongkol Y, Capo C, Limwongse C, Mege JL. Orientia tsutsugamushi stimulates an original gene expression program in monocytes: relationship with gene expression in patients with scrub typhus. PLoS Negl Trop Dis 2011; 5:e1028. [PMID: 21610853 PMCID: PMC3096591 DOI: 10.1371/journal.pntd.0001028] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/22/2011] [Indexed: 12/14/2022] Open
Abstract
Orientia tsutsugamushi is the causal agent of scrub typhus, a public health problem in the Asia-Pacific region and a life-threatening disease. O. tsutsugamushi is an obligate intracellular bacterium that mainly infects endothelial cells. We demonstrated here that O. tsutsugamushi also replicated in monocytes isolated from healthy donors. In addition, O. tsutsugamushi altered the expression of more than 4,500 genes, as demonstrated by microarray analysis. The expression of type I interferon, interferon-stimulated genes and genes associated with the M1 polarization of macrophages was significantly upregulated. O. tsutsugamushi also induced the expression of apoptosis-related genes and promoted cell death in a small percentage of monocytes. Live organisms were indispensable to the type I interferon response and apoptosis and enhanced the expression of M1-associated cytokines. These data were related to the transcriptional changes detected in mononuclear cells isolated from patients with scrub typhus. Here, the microarray analyses revealed the upregulation of 613 genes, which included interferon-related genes, and some features of M1 polarization were observed in these patients, similar to what was observed in O. tsutsugamushi-stimulated monocytes in vitro. This is the first report demonstrating that monocytes are clearly polarized in vitro and ex vivo following exposure to O. tsutsugamushi. These results would improve our understanding of the pathogenesis of scrub typhus, during which interferon-mediated activation of monocytes and their subsequent polarization into an M1 phenotype appear critical. This study may give us a clue of new tools for the diagnosis of patients with scrub typhus.
Collapse
Affiliation(s)
- Wiwit Tantibhedhyangkul
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Centre National de la Recherche Scientifique - Institut de Recherche pour le Développement Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
- Department of Immunology, Mahidol University, Bangkok, Thailand
| | - Thanavadee Prachason
- Division of Molecular Genetics, Department of Research and Development, Mahidol University, Bangkok, Thailand
- Department of Immunology, Mahidol University, Bangkok, Thailand
| | - Duangdao Waywa
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adil El Filali
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Centre National de la Recherche Scientifique - Institut de Recherche pour le Développement Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Eric Ghigo
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Centre National de la Recherche Scientifique - Institut de Recherche pour le Développement Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Wanna Thongnoppakhun
- Division of Molecular Genetics, Department of Research and Development, Mahidol University, Bangkok, Thailand
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Centre National de la Recherche Scientifique - Institut de Recherche pour le Développement Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Yupin Suputtamongkol
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Christian Capo
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Centre National de la Recherche Scientifique - Institut de Recherche pour le Développement Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Chanin Limwongse
- Division of Molecular Genetics, Department of Research and Development, Mahidol University, Bangkok, Thailand
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jean-Louis Mege
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, Centre National de la Recherche Scientifique - Institut de Recherche pour le Développement Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
- * E-mail:
| |
Collapse
|
15
|
Ali M, Lillehoj EP, Park Y, Kyo Y, Kim KC. Analysis of the proteome of human airway epithelial secretions. Proteome Sci 2011; 9:4. [PMID: 21251289 PMCID: PMC3036598 DOI: 10.1186/1477-5956-9-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 01/20/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Airway surface liquid, often referred to as mucus, is a thin layer of fluid covering the luminal surface that plays an important defensive role against foreign particles and chemicals entering the lungs. Airway mucus contains various macromolecules, the most abundant being mucin glycoproteins, which contribute to its defensive function. Airway epithelial cells cultured in vitro secrete mucins and nonmucin proteins from their apical surface that mimics mucus production in vivo. The current study was undertaken to identify the polypeptide constituents of human airway epithelial cell secretions to gain a better understanding of the protein composition of respiratory mucus. RESULTS Fifty-five proteins were identified in the high molecular weight fraction of apical secretions collected from in vitro cultures of well-differentiated primary human airway epithelial cells and isolated under physiological conditions. Among these were MUC1, MUC4, MUC5B, and MUC16 mucins. By proteomic analysis, the nonmucin proteins could be classified as inflammatory, anti-inflammatory, anti-oxidative, and/or anti-microbial. CONCLUSIONS Because the majority of the nonmucin proteins possess molecular weights less than that selected for analysis, it is theoretically possible that they may associate with the high molecular weight and negatively charged mucins to form a highly ordered structural organization that is likely to be important for maintaining the proper defensive function of airway mucus.
Collapse
Affiliation(s)
- Mehboob Ali
- Department of Physiology and Lung Center, Temple University School of Medicine, Philadelphia, PA, USA.,Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 364, Philadelphia, PA 19107, USA
| | - Erik P Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yongsung Park
- Department of Physiology and Lung Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Yoshiyuki Kyo
- Department of Physiology and Lung Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - K Chul Kim
- Department of Physiology and Lung Center, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
16
|
Coxiella burnetii, the agent of Q fever, replicates within trophoblasts and induces a unique transcriptional response. PLoS One 2010; 5:e15315. [PMID: 21179488 PMCID: PMC3001886 DOI: 10.1371/journal.pone.0015315] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/08/2010] [Indexed: 01/27/2023] Open
Abstract
Q fever is a zoonosis caused by Coxiella burnetii, an obligate intracellular bacterium typically found in myeloid cells. The infection is a source of severe obstetrical complications in humans and cattle and can undergo chronic evolution in a minority of pregnant women. Because C. burnetii is found in the placentas of aborted fetuses, we investigated the possibility that it could infect trophoblasts. Here, we show that C. burnetii infected and replicated in BeWo trophoblasts within phagolysosomes. Using pangenomic microarrays, we found that C. burnetii induced a specific transcriptomic program. This program was associated with the modulation of inflammatory responses that were shared with inflammatory agonists, such as TNF, and more specific responses involving genes related to pregnancy development, including EGR-1 and NDGR1. In addition, C. burnetii stimulated gene networks organized around the IL-6 and IL-13 pathways, which both modulate STAT3. Taken together, these results revealed that trophoblasts represent a protective niche for C. burnetii. The activation program induced by C. burnetii in trophoblasts may allow bacterial replication but seems unable to interfere with the development of normal pregnancy. Such pathophysiologocal processes should require the activation of immune placental cells associated with trophoblasts.
Collapse
|
17
|
Sex-related differences in gene expression following Coxiella burnetii infection in mice: potential role of circadian rhythm. PLoS One 2010; 5:e12190. [PMID: 20730052 PMCID: PMC2921390 DOI: 10.1371/journal.pone.0012190] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/22/2010] [Indexed: 12/20/2022] Open
Abstract
Background Q fever, a zoonosis due to Coxiella burnetii infection, exhibits sexual dimorphism; men are affected more frequently and severely than women for a given exposure. Here we explore whether the severity of C. burnetii infection in mice is related to differences in male and female gene expression profiles. Methodology/Principal Findings Mice were infected with C. burnetii for 24 hours, and gene expression was measured in liver cells using microarrays. Multiclass analysis identified 2,777 probes for which expression was specifically modulated by C. burnetti infection. Only 14% of the modulated genes were sex-independent, and the remaining 86% were differentially expressed in males and females. Castration of males and females showed that sex hormones were responsible for more than 60% of the observed gene modulation, and this reduction was most pronounced in males. Using functional annotation of modulated genes, we identified four clusters enriched in males that were related to cell-cell adhesion, signal transduction, defensins and cytokine/Jak-Stat pathways. Up-regulation of the IL-10 and Stat-3 genes may account for the high susceptibility of men with Q fever to C. burnetii infection and autoantibody production. Two clusters were identified in females, including the circadian rhythm pathway, which consists of positive (Clock, Arntl) and negative (Per) limbs of a feedback loop. We found that Clock and Arntl were down-modulated whereas Per was up-regulated; these changes may be associated with efficient bacterial elimination in females but not in males, in which an exacerbated host response would be prominent. Conclusion This large-scale study revealed for the first time that circadian rhythm plays a major role in the anti-infectious response of mice, and it provides a new basis for elucidating the role of sexual dimorphism in human infections.
Collapse
|
18
|
Giraud C, Bernard C, Ruer S, De Bentzmann S. Biological 'glue' and 'Velcro': molecular tools for adhesion and biofilm formation in the hairy and gluey bug Pseudomonas aeruginosa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:343-358. [PMID: 23766107 DOI: 10.1111/j.1758-2229.2009.00070.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pseudomonas aeruginosa contains an extraordinarily large number of loci encoding systems facilitating a communal lifestyle and binding to supports of various natures. These P. aeruginosa systems are reviewed here and may be categorized as classical or non-classical systems. They highlight the panoply of strategies that this hairy and gluey bacterium has developed for dealing with the diverse environments with which it is faced during various types of infection, involving complex regulatory networks that have not yet been fully elucidated but several aspects of which are discussed here.
Collapse
Affiliation(s)
- Caroline Giraud
- UPR9027-CNRS-IFR88 Institut de Microbiologie de la Méditerrannée, 31 Chemin Joseph Aiguier, 13402 Marseille cédex 20, France
| | | | | | | |
Collapse
|
19
|
Abstract
Type VI secretion systems (T6SS) are macromolecular, transenvelope machines encoded within the genomes of most Gram-negative bacteria, including plant, animal, and human pathogens, as well as soil and environmental isolates. T6SS are involved in a broad variety of functions: from pathogenesis to biofilm formation and stress sensing. This large array of functions is reflected by a vast diversity of regulatory mechanisms: repression by histone-like proteins and regulation by quorum sensing, transcriptional factors, two-component systems, alternative sigma factors, or small regulatory RNAs. Finally, T6SS may be produced in an inactive state and are turned on through the action of a posttranslational cascade involving phosphorylation and subunit recruitment. The current data reviewed here highlight how T6SS have been integrated into existing regulatory networks and how the expression of the T6SS loci is precisely modulated to adapt T6SS production to the specific needs of individual bacteria.
Collapse
|
20
|
Benoit M, Thuny F, Le Priol Y, Lepidi H, Bastonero S, Casalta JP, Collart F, Capo C, Raoult D, Mege JL. The transcriptional programme of human heart valves reveals the natural history of infective endocarditis. PLoS One 2010; 5:e8939. [PMID: 20126625 PMCID: PMC2812508 DOI: 10.1371/journal.pone.0008939] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/10/2010] [Indexed: 02/06/2023] Open
Abstract
Infective endocarditis (IE) is an infectious disease that is mainly caused by Staphylococcus aureus and Streptococcus sp. It usually leads to valvular destruction and vegetation formation. Its pathophysiology is badly understood and likely involves immune and coagulation systems with close interactions with the microorganism. Our objective was to evaluate host response by comparing transcriptional profiles of cardiac valves from IE patients with controls. Hierarchical clustering revealed a signature of IE consisting of 146 genes. Among the 89 up-regulated genes, we identified two genes strongly associated with IE: metalloproteinase 12 (MMP-12) and aquaporin-9, a member of the aquaglyceroporin membrane channel family. The up-regulation of MMP-12 gene is strengthened by the down-modulation of the gene encoding its inhibitor TIMP3. In addition, MMP-12 was expressed in macrophages infiltrating EI valves. We also found that aquaporin-9 was expressed in endothelial cells lining neo-vessel lumen, suggesting that aquaporin-9 might be associated with neovascularization of infected valves leading to tissue oedema secondary to the inflammatory process. The Gene Ontology annotation and the resulting functional classification showed that most up-regulated genes account for recruitment of inflammatory cells in vegetations, angiogenesis and remodelling of endocardium tissue. A network analysis confirmed the involvement of molecules related to the remodelling of endocardium tissue and angiogenesis in IE. It also evidenced the role of caspases, especially that of caspase-9 and intrinsic apoptotic pathway in IE. Based on this study we propose a scenario for the natural history of IE in humans. Some parameters identified in this work could become tools for measuring the disease activity and should be tested as biomarkers for diagnosis or prognosis assessment in future studies.
Collapse
Affiliation(s)
- Marie Benoit
- Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Franck Thuny
- Service de Cardiologie, Hôpital de la Timone, Marseille, France
| | - Yannick Le Priol
- Relation Hôte-Parasites, Pharmacologie et Thérapeutique, Institut de Médecine Tropicale du Service de Santé des Armées, Marseille, France
| | - Hubert Lepidi
- Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Sonia Bastonero
- Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Jean-Paul Casalta
- Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Frédéric Collart
- Service de Chirurgie Cardiaque, Hôpital de la Timone, Marseille, France
| | - Christian Capo
- Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - Jean-Louis Mege
- Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6236, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| |
Collapse
|
21
|
Mimoun M, Coste TC, Lebacq J, Lebecque P, Wallemacq P, Leal T, Armand M. Increased tissue arachidonic acid and reduced linoleic acid in a mouse model of cystic fibrosis are reversed by supplemental glycerophospholipids enriched in docosahexaenoic acid. J Nutr 2009; 139:2358-64. [PMID: 19828687 DOI: 10.3945/jn.109.110999] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An imbalance in (n-6)/(n-3) PUFA has been reported in cystic fibrosis (CF) patients. Glycerophospholipids enriched in docosahexaenoic acid (GPL-DHA) have been shown to regulate the (n-6)/(n-3) fatty acid ratio in the elderly. Here, we tested the effect of GPL-DHA supplementation on PUFA status in F508del homozygous CF mice. GPL-DHA liposomes were administrated by gavage (60 mg DHA/kg daily, i.e. at maximum 1.4 mg DHA/d) to 1.5-mo-old CF mice (CF+DHA) and their corresponding wild-type (WT) homozygous littermates (WT+DHA) for 6 wk. The PUFA status of different tissues was determined by GC and compared with control groups (CF and WT). There was an alteration in the (n-6) PUFA pathway in several CF-target organs in CF compared with WT mice, as evidenced by a higher level of arachidonic acid (AA) in membrane phospholipids or whole tissue (21 and 39% in duodenum-jejunum, 32 and 38% in ileum, and 19 and 43% in pancreas). Elevated AA levels were associated with lower linoleic acid (LA) and higher dihomo-gamma-linolenic acid levels. No DHA deficiency was observed. GPL-DHA treatment resulted in different PUFA composition changes depending on the tissue (increase in LA, decrease in elevated AA, DHA increase, increase in (n-6)/(n-3) fatty acid ratio). However, the DHA/AA ratio consistently increased in all tissues in CF+DHA and WT+DHA mice. Our study demonstrates the effectiveness of an original oral DHA formulation in counter-balancing the abnormal (n-6) fatty acid metabolism in organs of CF mice when administrated at a low dose and highlights the potential of the use of GPL-DHA as nutritherapy for CF patients.
Collapse
Affiliation(s)
- Myriam Mimoun
- INSERM, U 476 Nutrition Humaine et Lipides, Marseille, France
| | | | | | | | | | | | | |
Collapse
|