1
|
Xiang S, Craig KC, Luo X, Welch DL, Ferreira RB, Lawrence HR, Lawrence NJ, Reed DR, Alexandrow MG. Identification of ATP-Competitive Human CMG Helicase Inhibitors for Cancer Intervention that Disrupt CMG-Replisome Function. Mol Cancer Ther 2024; 23:1568-1585. [PMID: 38982858 PMCID: PMC11532780 DOI: 10.1158/1535-7163.mct-23-0904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/25/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
The human CMG helicase (Cdc45-MCM-GINS) is a novel target for anticancer therapy. Tumor-specific weaknesses in the CMG are caused by oncogene-driven changes that adversely affect CMG function, and CMG activity is required for recovery from replicative stresses such as chemotherapy. Herein, we developed an orthogonal biochemical screening approach and identified CMG inhibitors (CMGi) that inhibit ATPase and helicase activities in an ATP-competitive manner at low micromolar concentrations. Structure-activity information, in silico docking, and testing with synthetic chemical compounds indicate that CMGi require specific chemical elements and occupy ATP-binding sites and channels within minichromosome maintenance (MCM) subunits leading to the ATP clefts, which are likely used for ATP/ADP ingress or egress. CMGi are therefore MCM complex inhibitors (MCMi). Biologic testing shows that CMGi/MCMi inhibit cell growth and DNA replication using multiple molecular mechanisms distinct from other chemotherapy agents. CMGi/MCMi block helicase assembly steps that require ATP binding/hydrolysis by the MCM complex, specifically MCM ring assembly on DNA and GINS recruitment to DNA-loaded MCM hexamers. During the S-phase, inhibition of MCM ATP binding/hydrolysis by CMGi/MCMi causes a "reverse allosteric" dissociation of Cdc45/GINS from the CMG that destabilizes replisome components Ctf4, Mcm10, and DNA polymerase-α, -δ, and -ε, resulting in DNA damage. CMGi/MCMi display selective toxicity toward multiple solid tumor cell types with K-Ras mutations, targeting the CMG and inducing DNA damage, Parp cleavage, and loss of viability. This new class of CMGi/MCMi provides a basis for small chemical development of CMG helicase-targeted anticancer compounds with distinct mechanisms of action.
Collapse
Affiliation(s)
- Shengyan Xiang
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, Florida
- Molecular Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kendall C. Craig
- Molecular Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, Florida
- Drug Discovery Department, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Xingju Luo
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, Florida
- Molecular Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Darcy L. Welch
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Individualized Cancer Management, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Renan B. Ferreira
- Drug Discovery Department, Moffitt Cancer Center and Research Institute, Tampa, Florida
- Chemical Biology Core Facility, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Harshani R. Lawrence
- Drug Discovery Department, Moffitt Cancer Center and Research Institute, Tampa, Florida
- Chemical Biology Core Facility, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nicholas J. Lawrence
- Drug Discovery Department, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Damon R. Reed
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Individualized Cancer Management, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mark G. Alexandrow
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, Florida
- Molecular Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
2
|
Fu QM, Fang Z, Ren L, Wu QS, Zhang JB, Liu QP, Tan LT, Weng QB. Partial Alleviation of Homologous Superinfection Exclusion of SeMNPV Latently Infected Cells by G1 Phase Infection and G2/M Phase Arrest. Viruses 2024; 16:736. [PMID: 38793618 PMCID: PMC11126141 DOI: 10.3390/v16050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viral infection can regulate the cell cycle, thereby promoting viral replication. Hijacking and altering the cell cycle are important for the virus to establish and maintain a latent infection. Previously, Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV)-latently infected P8-Se301-C1 cells, which grew more slowly than Se301 cells and interfered with homologous SeMNNPV superinfection, were established. However, the effects of latent and superinfection with baculoviruses on cell cycle progression remain unknown. In this study, the cell cycle profiles of P8-Se301-C1 cells and SeMNPV or Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-infected P8-Se301-C1 cells were characterized by flow cytometry. The results showed that replication-related genes MCM4, PCNA, and BAF were down-regulated (p < 0.05) in P8-Se301-C1 cells, and the S phase of P8-Se301-C1 cells was longer than that of Se301 cells. P8-Se301-C1 cells infected with SeMNPV did not arrest in the G2/M phase or affect the expression of Cyclin B and cyclin-dependent kinase 1 (CDK1). Furthermore, when P8-Se301-C1 cells were infected with SeMNPV after synchronized treatment with hydroxyurea and nocodazole, light microscopy and qRT-PCR analysis showed that, compared with unsynchronized cells and S and G2/M phase cells, SeMNPV-infected P8-Se301-C1 cells in G1 phase induced G2/M phase arrest, and the amount of virus adsorption and intracellular viral DNA replication were significantly increased (p < 0.05). In addition, budded virus (BV) production and occlusion body (OB)-containing cells were both increased at 120 h post-infection (p < 0.05). The expression of Cyclin B and CDK1 was significantly down-regulated at 48 h post-infection (p < 0.05). Finally, the arrest of SeMNPV-infected G1 phase cells in the G2/M phase increased BV production (p < 0.05) and the number of OB-containing cells. In conclusion, G1 phase infection and G2/M arrest are favorable to SeMNPV proliferation in P8-Se301-C1 cells, thereby alleviating the homologous superinfection exclusion. The results contribute to a better understanding of the relationship between baculoviruses and insect cell cycle progression and regulation.
Collapse
Affiliation(s)
- Qi-Ming Fu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Zheng Fang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Lou Ren
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Qing-Shan Wu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Jun-Bo Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Qiu-Ping Liu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Lei-Tao Tan
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Qing-Bei Weng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| |
Collapse
|
3
|
Xiang S, Luo X, Welch D, Reed DR, Alexandrow MG. Identification of Selective ATP-Competitive CMG Helicase Inhibitors for Cancer Intervention that Disrupt CMG-Replisome Function. RESEARCH SQUARE 2023:rs.3.rs-3182731. [PMID: 37609279 PMCID: PMC10441460 DOI: 10.21203/rs.3.rs-3182731/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The human CMG helicase (Cdc45-MCM-GINS) is a novel target for anti-cancer therapy due to tumor-specific weaknesses in CMG function induced by oncogenic changes and the need for CMG function during recovery from replicative stresses such as chemotherapy. Here, we developed an orthogonal biochemical screening approach and identified selective CMG inhibitors (CMGi) that inhibit ATPase and helicase activities in an ATP-competitive manner at low micromolar concentrations. Structure-activity information and in silico docking indicate that CMGi occupy ATP binding sites and channels within MCM subunits leading to the ATP clefts, which are likely used for ATP/ADP ingress or egress. CMGi inhibit cell growth and DNA replication using multiple molecular mechanisms. CMGi block helicase assembly steps that require ATP binding/hydrolysis by the MCM complex, specifically MCM ring assembly on DNA and GINS recruitment to DNA-loaded MCM hexamers. During S-phase, inhibition of MCM ATP binding/hydrolysis by CMGi causes a 'reverse allosteric' dissociation of Cdc45/GINS from the CMG that destabilizes the replisome and disrupts interactions with Ctf4, Mcm10, and DNA polymerase-α, -δ, -ε, resulting in DNA damage. These novel CMGi are selectively toxic toward tumor cells and define a new class of CMG helicase-targeted anti-cancer compounds with distinct mechanisms of action.
Collapse
Affiliation(s)
- Shengyan Xiang
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
- Molecular Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Xingju Luo
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
- Molecular Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Darcy Welch
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
- Department of Individualized Cancer Management, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Damon R. Reed
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
- Department of Individualized Cancer Management, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Mark G. Alexandrow
- Cancer Biology and Evolution Program, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
- Molecular Oncology Department, Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| |
Collapse
|
4
|
The CMG helicase and cancer: a tumor "engine" and weakness with missing mutations. Oncogene 2023; 42:473-490. [PMID: 36522488 PMCID: PMC9948756 DOI: 10.1038/s41388-022-02572-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The replicative Cdc45-MCM-GINS (CMG) helicase is a large protein complex that functions in the DNA melting and unwinding steps as a component of replisomes during DNA replication in mammalian cells. Although the CMG performs this important role in cell growth, the CMG is not a simple bystander in cell cycle events. Components of the CMG, specifically the MCM precursors, are also involved in maintaining genomic stability by regulating DNA replication fork speeds, facilitating recovery from replicative stresses, and preventing consequential DNA damage. Given these important functions, MCM/CMG complexes are highly regulated by growth factors such as TGF-ß1 and by signaling factors such as Myc, Cyclin E, and the retinoblastoma protein. Mismanagement of MCM/CMG complexes when these signaling mediators are deregulated, and in the absence of the tumor suppressor protein p53, leads to increased genomic instability and is a contributor to tumorigenic transformation and tumor heterogeneity. The goal of this review is to provide insight into the mechanisms and dynamics by which the CMG is regulated during its assembly and activation in mammalian genomes, and how errors in CMG regulation due to oncogenic changes promote tumorigenesis. Finally, and most importantly, we highlight the emerging understanding of the CMG helicase as an exploitable vulnerability and novel target for therapeutic intervention in cancer.
Collapse
|
5
|
Ellison V, Annor GK, Freedman C, Xiao G, Lundine D, Freulich E, Prives C, Bargonetti J. Frame-shift mediated reduction of gain-of-function p53 R273H and deletion of the R273H C-terminus in breast cancer cells result in replication-stress sensitivity. Oncotarget 2021; 12:1128-1146. [PMID: 34136083 PMCID: PMC8202772 DOI: 10.18632/oncotarget.27975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/15/2021] [Indexed: 11/25/2022] Open
Abstract
We recently documented that gain-of-function (GOF) mutant p53 (mtp53) R273H in triple negative breast cancer (TNBC) cells interacts with replicating DNA and PARP1. The missense R273H GOF mtp53 has a mutated central DNA binding domain that renders it unable to bind specifically to DNA, but maintains the capacity to interact tightly with chromatin. Both the C-terminal domain (CTD) and oligomerization domain (OD) of GOF mtp53 proteins are intact and it is unclear whether these regions of mtp53 are responsible for chromatin-based DNA replication activities. We generated MDA-MB-468 cells with CRISPR-Cas9 edited versions of the CTD and OD regions of mtp53 R273H. These included a frame-shift mtp53 R273Hfs387, which depleted mtp53 protein expression; mtp53 R273HΔ381-388, which had a small deletion within the CTD; and mtp53 R273HΔ347-393, which had both the OD and CTD regions truncated. The mtp53 R273HΔ347-393 existed exclusively as monomers and disrupted the chromatin interaction of mtp53 R273H. The CRISPR variants proliferated more slowly than the parental cells and mt53 R273Hfs387 showed the most extreme phenotype. We uncovered that after thymidine-induced G1/S synchronization, but not hydroxyurea or aphidicholin, R273Hfs387 cells displayed impairment of S-phase progression while both R273HΔ347-393 and R273HΔ381-388 displayed only moderate impairment. Moreover, reduced chromatin interaction of MCM2 and PCNA in mtp53 depleted R273Hfs387 cells post thymidine-synchronization revealed delayed kinetics of replisome assembly underscoring the slow S-phase progression. Taken together our findings show that the CTD and OD domains of mtp53 R273H play critical roles in mutant p53 GOF that pertain to processes associated with DNA replication.
Collapse
Affiliation(s)
- Viola Ellison
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - George K. Annor
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
- The Graduate Center Biology and Biochemistry Programs, City University of New York, New York, NY, USA
| | - Clara Freedman
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Gu Xiao
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Devon Lundine
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
- The Graduate Center Biology and Biochemistry Programs, City University of New York, New York, NY, USA
| | - Elzbieta Freulich
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jill Bargonetti
- The Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
- The Graduate Center Biology and Biochemistry Programs, City University of New York, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
6
|
Reed DR, Alexandrow MG. Myc and the Replicative CMG Helicase: The Creation and Destruction of Cancer: Myc Over-Activation of CMG Helicases Drives Tumorigenesis and Creates a Vulnerability in CMGs for Therapeutic Intervention. Bioessays 2020; 42:e1900218. [PMID: 32080866 PMCID: PMC8223603 DOI: 10.1002/bies.201900218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/23/2020] [Indexed: 12/27/2022]
Abstract
Myc-driven tumorigenesis involves a non-transcriptional role for Myc in over-activating replicative Cdc45-MCM-GINS (CMG) helicases. Excessive stimulation of CMG helicases by Myc mismanages CMG function by diminishing the number of reserve CMGs necessary for fidelity of DNA replication and recovery from replicative stresses. One potential outcome of these events is the creation of DNA damage that alters genomic structure/function, thereby acting as a driver for tumorigenesis and tumor heterogeneity. Intriguingly, another potential outcome of this Myc-induced CMG helicase over-activation is the creation of a vulnerability in cancer whereby tumor cells specifically lack enough unused reserve CMG helicases to recover from fork-stalling drugs commonly used in chemotherapy. This review provides molecular and clinical support for this provocative hypothesis that excessive activation of CMG helicases by Myc may not only drive tumorigenesis, but also confer an exploitable "reserve CMG helicase vulnerability" that supports developing innovative CMG-focused therapeutic approaches for cancer management.
Collapse
Affiliation(s)
- Damon R Reed
- Department of Interdisciplinary Cancer Management, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mark G Alexandrow
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| |
Collapse
|
7
|
Nepon-Sixt BS, Bryant VL, Alexandrow MG. Myc-driven chromatin accessibility regulates Cdc45 assembly into CMG helicases. Commun Biol 2019; 2:110. [PMID: 30911685 PMCID: PMC6430796 DOI: 10.1038/s42003-019-0353-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/07/2019] [Indexed: 01/08/2023] Open
Abstract
Myc-driven tumorigenesis involves a non-transcriptional role for Myc in over-activating replication origins. We show here that the mechanism underlying this process involves a direct role for Myc in activation of Cdc45-MCM-GINS (CMG) helicases at Myc-targeted sites. Myc induces decondensation of higher-order chromatin at targeted sites and is required for chromatin access at a chromosomal origin. Myc-driven chromatin accessibility promotes Cdc45/GINS recruitment to resident MCMs, and activation of CMGs. Myc-Box II, which is necessary for Myc-driven transformation, is required for Myc-induced chromatin accessibility, Cdc45/GINS recruitment, and replication stimulation. Myc interactors GCN5, Tip60, and TRRAP are essential for chromatin unfolding and recruitment of Cdc45, and co-expression of GCN5 or Tip60 with MBII-deficient Myc rescues these events and promotes CMG activation. Finally, Myc and Cdc45 interact and physiologic conditions for CMG assembly require the functions of Myc, MBII, and GCN5 for Cdc45 recruitment and initiation of DNA replication.
Collapse
Affiliation(s)
- Brook S. Nepon-Sixt
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612 USA
| | - Victoria L. Bryant
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612 USA
- University of South Florida Cancer Biology PhD Program, Tampa, FL 33612 USA
- Present Address: AT Still University School of Osteopathic Medicine 27 5850 E Still Circle, Mesa, AZ 85206 USA
| | - Mark G. Alexandrow
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612 USA
- University of South Florida Cancer Biology PhD Program, Tampa, FL 33612 USA
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW There has been an increasing interest in using complementary and alternative medicine (CAM) approaches to treat cancer. It is therefore relevant and timely to determine if CAM biomarkers can be identified and developed to guide cancer diagnosis and treatment. Herein, we review the status of cancer biomarkers in CAM research and treatment to stimulate further research in this area. RECENT FINDINGS Studies on promising anti-cancer natural products, such as PHY906, honokiol, bryostatin-1, and sulforaphane have demonstrated the existence of potential cancer biomarker(s). Additional studies are required to further develop and ultimately validate these biomarkers that can predict clinical activity of the anti-cancer natural products used alone or in combination with chemotherapeutic agents. A systematic approach is needed to identify and develop CAM treatment associated biomarkers and to define their role in facilitating clinical decision-making. The expectation is to use these biomarkers in determining potential options for CAM treatment, examining treatment effects and toxicity and/or clinical efficacy in patients with cancer.
Collapse
Affiliation(s)
- Aniruddha Ganguly
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at the National Institutes of Health, 9609 Medical Center Drive, Rm. 4-W438, Rockville, MD, 20850, USA.
| | - David Frank
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Nagi Kumar
- H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL, 33612, USA
| | - Yung-Chi Cheng
- Department of Pharmacology, Developmental Therapeutics Program, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Edward Chu
- Department of Medicine, Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15232, USA
| |
Collapse
|
9
|
Nepon-Sixt BS, Alexandrow MG. TGFβ1 Cell Cycle Arrest Is Mediated by Inhibition of MCM Assembly in Rb-Deficient Conditions. Mol Cancer Res 2018; 17:277-288. [PMID: 30257992 DOI: 10.1158/1541-7786.mcr-18-0558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/01/2018] [Accepted: 09/06/2018] [Indexed: 01/14/2023]
Abstract
Transforming growth factor β1 (TGFβ1) is a potent inhibitor of cell growth that targets gene-regulatory events, but also inhibits the function of CDC45-MCM-GINS helicases (CMG; MCM, Mini-Chromosome Maintenance; GINS, Go-Ichi-Ni-San) through multiple mechanisms to achieve cell-cycle arrest. Early in G1, TGFβ1 blocks MCM subunit expression and suppresses Myc and Cyclin E/Cdk2 activity required for CMG assembly, should MCMs be expressed. Once CMGs are assembled in late-G1, TGFβ1 blocks CMG activation using a direct mechanism involving the retinoblastoma (Rb) tumor suppressor. Here, in cells lacking Rb, TGFβ1 does not suppress Myc, Cyclin E/Cdk2 activity, or MCM expression, yet growth arrest remains intact and Smad2/3/4-dependent. Such arrest occurs due to inhibition of MCM hexamer assembly by TGFβ1, which is not seen when Rb is present and MCM subunit expression is normally blocked by TGFβ1. Loss of Smad expression prevents TGFβ1 suppression of MCM assembly. Mechanistically, TGFβ1 blocks a Cyclin E-Mcm7 molecular interaction required for MCM hexamer assembly upstream of CDC10-dependent transcript-1 (CDT1) function. Accordingly, overexpression of CDT1 with an intact MCM-binding domain abrogates TGFβ1 arrest and rescues MCM assembly. The ability of CDT1 to restore MCM assembly and allow S-phase entry indicates that, in the absence of Rb and other canonical mediators, TGFβ1 relies on inhibition of Cyclin E-MCM7 and MCM assembly to achieve cell cycle arrest. IMPLICATIONS: These results demonstrate that the MCM assembly process is a pivotal target of TGFβ1 in eliciting cell cycle arrest, and provide evidence for a novel oncogenic role for CDT1 in abrogating TGFβ1 inhibition of MCM assembly.
Collapse
Affiliation(s)
- Brook S Nepon-Sixt
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mark G Alexandrow
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
10
|
Håland TW, Boye E, Stokke T, Grallert B, Syljuåsen RG. Simultaneous measurement of passage through the restriction point and MCM loading in single cells. Nucleic Acids Res 2015; 43:e150. [PMID: 26250117 PMCID: PMC4678840 DOI: 10.1093/nar/gkv744] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/12/2015] [Indexed: 12/14/2022] Open
Abstract
Passage through the Retinoblastoma protein (RB1)-dependent restriction point and the loading of minichromosome maintenance proteins (MCMs) are two crucial events in G1-phase that help maintain genome integrity. Deregulation of these processes can cause uncontrolled proliferation and cancer development. Both events have been extensively characterized individually, but their relative timing and inter-dependence remain less clear. Here, we describe a novel method to simultaneously measure MCM loading and passage through the restriction point. We exploit that the RB1 protein is anchored in G1-phase but is released when hyper-phosphorylated at the restriction point. After extracting cells with salt and detergent before fixation we can simultaneously measure, by flow cytometry, the loading of MCMs onto chromatin and RB1 binding to determine the order of the two events in individual cells. We have used this method to examine the relative timing of the two events in human cells. Whereas in BJ fibroblasts released from G0-phase MCM loading started mainly after the restriction point, in a significant fraction of exponentially growing BJ and U2OS osteosarcoma cells MCMs were loaded in G1-phase with RB1 anchored, demonstrating that MCM loading can also start before the restriction point. These results were supported by measurements in synchronized U2OS cells.
Collapse
Affiliation(s)
- T W Håland
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - E Boye
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - T Stokke
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway
| | - B Grallert
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway
| | - R G Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway
| |
Collapse
|
11
|
Bryant VL, Elias RM, McCarthy SM, Yeatman TJ, Alexandrow MG. Suppression of Reserve MCM Complexes Chemosensitizes to Gemcitabine and 5-Fluorouracil. Mol Cancer Res 2015; 13:1296-305. [PMID: 26063742 DOI: 10.1158/1541-7786.mcr-14-0464] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 05/31/2015] [Indexed: 12/29/2022]
Abstract
UNLABELLED Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer and is very difficult to treat with conventional chemotherapeutic regimens. Gemcitabine and 5-fluorouracil are used in the management of PDAC and act by indirectly blocking replicative forks. However, these drugs are not highly effective at suppressing disease progression, indicating a need for the development of innovative therapeutic approaches. Recent studies indicate that suppression of the MCM helicase may provide a novel means to sensitize cancer cells to chemotherapeutic agents that inhibit replicative fork progression. Mammalian cells assemble more MCM complexes on DNA than are required to start S-phase. The excess MCM complexes function as backup initiation sites under conditions of replicative stress. The current study provides definitive evidence that cosuppression of the excess/backup MCM complexes sensitizes PDAC tumor lines to both gemcitabine and 5-FU, leading to increased loss of proliferative capacity compared with drugs alone. This occurs because reduced MCM levels prevent efficient recovery of DNA replication in tumor cells exposed to drug. PDAC tumor cells are more sensitive to MCM loss in the presence of gemcitabine than are nontumor, immortalized epithelial cells. Similarly, colon tumor cells are rendered less viable when cosuppression of MCM complexes occurs during exposure to the crosslinking agent oxaliplatin or topoisomerase inhibitor etoposide. IMPLICATIONS These studies demonstrate that suppressing the backup complement of MCM complexes provides an effective sensitizing approach with the potential to increase the therapeutic index of drugs used in the clinical management of PDAC and other cancers.
Collapse
Affiliation(s)
- Victoria L Bryant
- University of South Florida Cancer Biology Graduate Program, Moffitt Cancer Center, Tampa, Florida. Molecular Oncology Department, Moffitt Cancer Center, Tampa, Florida
| | - Roy M Elias
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, Florida
| | | | - Timothy J Yeatman
- Gibbs Cancer Center and Research Institute, Spartanburg, South Carolina
| | - Mark G Alexandrow
- University of South Florida Cancer Biology Graduate Program, Moffitt Cancer Center, Tampa, Florida. Molecular Oncology Department, Moffitt Cancer Center, Tampa, Florida.
| |
Collapse
|
12
|
Kedracka-Krok S, Jankowska U, Elas M, Sowa U, Swakon J, Cierniak A, Olko P, Romanowska-Dixon B, Urbanska K. Proteomic analysis of proton beam irradiated human melanoma cells. PLoS One 2014; 9:e84621. [PMID: 24392146 PMCID: PMC3879347 DOI: 10.1371/journal.pone.0084621] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/26/2013] [Indexed: 12/19/2022] Open
Abstract
Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy) of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times) change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i) DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH), (ii) cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70), (iii) cell metabolism (TIM, GAPDH, VCP), and (iv) cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B). A substantial decrease (2.3 x) was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma.
Collapse
Affiliation(s)
- Sylwia Kedracka-Krok
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
| | - Urszula Jankowska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
| | - Martyna Elas
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Urszula Sowa
- Institute of Nuclear Physics, PAS, Kraków, Poland
| | - Jan Swakon
- Institute of Nuclear Physics, PAS, Kraków, Poland
| | - Agnieszka Cierniak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Pawel Olko
- Institute of Nuclear Physics, PAS, Kraków, Poland
| | - Bozena Romanowska-Dixon
- Department of Ophthalmology and Ophthalmic Oncology, Jagiellonian University Medical College, Kraków, Poland
| | - Krystyna Urbanska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
13
|
Abstract
Multiple studies from independent groups find evidence for signal transducer and activator of transcription 3 (Stat3) activation in nearly 50% of lung cancers, suggesting a functional role for this target in subsets of lung cancer. On the basis of the existing evidence, we hypothesized that bioavailable curcuminoid complex may modulate lung carcinogenesis, primarily by inhibiting Stat3 activation. With the safety of this being botanically well established, the objective of these studies was to test our hypothesis in vitro and in vivo in an effort to inform the design of a phase II chemoprevention trial in former smokers. We treated non-tumor-derived, normal (but immortalized) human bronchial epithelial cells (AALE) (Lundberg et al., 2002; Pillai et al., 2011) and lung adenocarcinoma-derived cells (H441) with bioactive curcumin C3 complex. Asynchronous cells in each case were treated with curcumin for 24 h, followed by immunoblotting for Stat3 and activated Stat3-P, prior signal of which was used for normalization. We also completed a preclinical trial in which 12 mice were randomly divided into three groups and subjected to 3 days or 9 days of curcumin intraperitoneal injections, followed by analysis of lung tissues for Stat3-P changes and growth suppressive effects of the curcumin. The growth suppressive effects were measured using Cyclin D1 and the replicative helicase subunit, Mcm2, as surrogates for the proliferative capacity of the tissues. In-vitro studies with curcuminoid complex demonstrated that the activity of Stat3 in both normal bronchoepithelial cells and lung cancer-derived cells is sensitive to curcumin exposure. In a dose-dependent manner, curcumin treatment resulted in significant suppression of Stat3 phosphorylation and reduction in the proliferative capacity of both cell types. In the preclinical trial with rodent models, curcumin reduced Stat3-P and the proliferative markers CycD1 and Mcm2 in mice lung tissues in vivo. These culture and preclinical studies indicate that the activity of the Stat3 pathway can be suppressed by curcumin treatment, concomitant with a reduction in cell proliferation, supporting our hypothesis that inhibition of the Stat3 pathway represents at least one important mechanism by which curcumin elicits its effects on the bronchoepithelium. These data provide a rationale for the use of curcumin as a promising chemopreventive agent in high-risk populations such as former smokers.
Collapse
|
14
|
Yu Y, Song C, Zhang Q, DiMaggio PA, Garcia BA, York A, Carey MF, Grunstein M. Histone H3 lysine 56 methylation regulates DNA replication through its interaction with PCNA. Mol Cell 2012; 46:7-17. [PMID: 22387026 DOI: 10.1016/j.molcel.2012.01.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/28/2011] [Accepted: 01/17/2012] [Indexed: 11/28/2022]
Abstract
Histone modifications play important roles in regulating DNA-based biological processes. Of the modified sites, histone H3 lysine 56 (H3K56) is unique in that it lies within the globular core domain near the entry-exit sites of the nucleosomal DNA superhelix and its acetylation state in yeast is a marker for newly synthesized histones in transcription, DNA repair, and DNA replication. We now report the presence of H3K56 monomethylation (H3K56me1) in mammalian cells and find that the histone lysine methytransferase G9a/KMT1C is required for H3K56me1 both in vivo and in vitro. We also find that disruption of G9a or H3K56 impairs DNA replication. Furthermore, H3K56me1 associates with the replication processivity factor PCNA primarily in G1 phase of the cell cycle and, directly, in vitro. These results find H3K56me1 in mammals and indicate a role for H3K56me1 as a chromatin docking site for PCNA prior to its function in DNA replication.
Collapse
Affiliation(s)
- Yongxin Yu
- Molecular Biology Institute and Department of Biological Chemistry, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Korzelius J, The I, Ruijtenberg S, Portegijs V, Xu H, Horvitz HR, van den Heuvel S. C. elegans MCM-4 is a general DNA replication and checkpoint component with an epidermis-specific requirement for growth and viability. Dev Biol 2011; 350:358-69. [PMID: 21146520 PMCID: PMC3322639 DOI: 10.1016/j.ydbio.2010.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/29/2010] [Accepted: 12/01/2010] [Indexed: 11/22/2022]
Abstract
DNA replication and its connection to M phase restraint are studied extensively at the level of single cells but rarely in the context of a developing animal. C. elegans lin-6 mutants lack DNA synthesis in postembryonic somatic cell lineages, while entry into mitosis continues. These mutants grow slowly and either die during larval development or develop into sterile adults. We found that lin-6 corresponds to mcm-4 and encodes an evolutionarily conserved component of the MCM2-7 pre-RC and replicative helicase complex. The MCM-4 protein is expressed in all dividing cells during embryonic and postembryonic development and associates with chromatin in late anaphase. Induction of cell cycle entry and differentiation continues in developing mcm-4 larvae, even in cells that went through abortive division. In contrast to somatic cells in mcm-4 mutants, the gonad continues DNA replication and cell division until late larval development. Expression of MCM-4 in the epidermis (also known as hypodermis) is sufficient to rescue the growth retardation and lethality of mcm-4 mutants. While the somatic gonad and germline show substantial ability to cope with lack of zygotic mcm-4 function, mcm-4 is specifically required in the epidermis for growth and survival of the whole organism. Thus, C. elegans mcm-4 has conserved functions in DNA replication and replication checkpoint control but also shows unexpected tissue-specific requirements.
Collapse
Affiliation(s)
- Jerome Korzelius
- Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Inge The
- Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Suzan Ruijtenberg
- Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Vincent Portegijs
- Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Huihong Xu
- Department of Pathology and Laboratory Medicine. Boston University School of Medicine and Boston Medical Center. 670 Albany Street, Boston MA, USA
| | - H. Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge MA, United States of America
| | - Sander van den Heuvel
- Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
16
|
Wong PG, Glozak MA, Cao TV, Vaziri C, Seto E, Alexandrow M. Chromatin unfolding by Cdt1 regulates MCM loading via opposing functions of HBO1 and HDAC11-geminin. Cell Cycle 2010; 9:4351-63. [PMID: 20980834 DOI: 10.4161/cc.9.21.13596] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The efficiency of metazoan origins of DNA replication is known to be enhanced by histone acetylation near origins. Although this correlates with increased MCM recruitment, the mechanism by which such acetylation regulates MCM loading is unknown. We show here that Cdt1 induces large-scale chromatin decondensation that is required for MCM recruitment. This process occurs in G₁, is suppressed by Geminin, and requires HBO1 HAT activity and histone H4 modifications. HDAC11, which binds Cdt1 and replication origins during S-phase, potently inhibits Cdt1-induced chromatin unfolding and re-replication, suppresses MCM loading and binds Cdt1 more efficiently in the presence of Geminin. We also demonstrate that chromatin at endogenous origins is more accessible in G₁ relative to S-phase. These results provide evidence that histone acetylation promotes MCM loading via enhanced chromatin accessibility. This process is regulated positively by Cdt1 and HBO1 in G₁ and repressed by Geminin-HDAC11 association with Cdt1 in S-phase, and represents a novel form of replication licensing control.
Collapse
Affiliation(s)
- Philip G Wong
- Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | | | | |
Collapse
|
17
|
Tsai TC, Lin W, Yang SH, Cheng WTK, Cheng EH, Lee MS, Chong KY, Chen CM. Granzyme G is expressed in the two-cell stage mouse embryo and is required for the maternal-zygotic transition. BMC DEVELOPMENTAL BIOLOGY 2010; 10:88. [PMID: 20704734 PMCID: PMC2930601 DOI: 10.1186/1471-213x-10-88] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 08/12/2010] [Indexed: 12/17/2022]
Abstract
Background Detailed knowledge of the molecular and cellular mechanisms that direct spatial and temporal gene expression in pre-implantation embryos is critical for understanding the control of the maternal-zygotic transition and cell differentiation in early embryonic development. In this study, twenty-three clones, expressed at different stages of early mouse development, were identified using differential display reverse transcription polymerase chain reaction (DDRT-PCR). One of these clones, which is expressed in 2-cell stage embryos at 48 hr post-hCG injection, shows a perfect sequence homology to the gene encoding the granzyme G protein. The granzyme family members are serine proteases that are present in the secretory granules of cytolytic T lymphocytes. However, the pattern of granzyme G expression and its function in early mouse embryos are entirely unknown. Results Upon the introduction of an antisense morpholino (2 mM) against granzyme G to knock-down endogenous gene function, all embryos were arrested at the 2- to 4-cell stages of egg cleavage, and the de novo synthesis of zygotic RNAs was decreased. The embryonic survival rate was dramatically decreased at the late 2-cell stage when serine protease-specific inhibitors, 0.1 mM 3,4-dichloroisocoumarin (3,4-DCI), and 2 mM phenyl methanesulphonyl fluoride (PMSF), were added to the in vitro embryonic culture medium. Survival was not affected by the addition of 0.5 mM EDTA, a metalloproteinase inhibitor. Conclusion We characterized for the first time the expression and function of granzyme G during early stage embryogenesis. Our data suggest that granzyme G is an important factor in early mouse embryonic development and may play a novel role in the elimination of maternal proteins and the triggering of zygotic gene expression during the maternal-zygotic transition.
Collapse
Affiliation(s)
- Tung-Chou Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Borghi L, Gutzat R, Fütterer J, Laizet Y, Hennig L, Gruissem W. Arabidopsis RETINOBLASTOMA-RELATED is required for stem cell maintenance, cell differentiation, and lateral organ production. THE PLANT CELL 2010; 22:1792-811. [PMID: 20525851 PMCID: PMC2910961 DOI: 10.1105/tpc.110.074591] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/27/2010] [Accepted: 05/19/2010] [Indexed: 05/18/2023]
Abstract
Several genes involved in the regulation of postembryonic organ initiation and growth have been identified. However, it remains largely unclear how developmental cues connect to the cell cycle. RETINOBLASTOMA RELATED (RBR) is a plant homolog of the tumor suppressor Retinoblastoma (pRb), which is a key regulator of the cell cycle. Using inducible RNA interference (RNAi) against Arabidopsis thaliana RBR (RBRi), we reduced RBR expression levels at different stages of plant development. Conditional reduction or loss of RBR function disrupted cell division patterns, promoted context-dependent cell proliferation, and negatively influenced establishment of cell differentiation. Several lineages of toti- and pluripotent cells, including shoot apical meristem stem cells, meristemoid mother cells, and procambial cells, failed to produce appropriately differentiated cells. Meristem activity was altered, leading to a disruption of the CLAVATA-WUSCHEL feedback loop and inhibition of lateral organ formation. Release of RBR from RNAi downregulation restored meristem activity. Gene profiling analyses soon after RBRi induction revealed that a change in RBR homeostasis is perceived as a stress, even before genes regulated by RBR-E2F become deregulated. The results establish RBR as a key cell cycle regulator required for coordination of cell division, differentiation, and cell homeostasis.
Collapse
|
19
|
Frisa PS, Jacobberger JW. Cytometry of chromatin bound Mcm6 and PCNA identifies two states in G1 that are separated functionally by the G1 restriction point. BMC Cell Biol 2010; 11:26. [PMID: 20398392 PMCID: PMC2882901 DOI: 10.1186/1471-2121-11-26] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 04/16/2010] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cytometric measurements of DNA content and chromatin-bound Mcm2 have demonstrated bimodal patterns of expression in G1. These patterns, the replication licensing function of Mcm proteins, and a correlation between Mcm loading and cell cycle commitment for cells re-entering the cell cycle, led us to test the idea that cells expressing a defined high level of chromatin-bound Mcm6 in G1 are committed--i.e., past the G1 restriction point. We developed a cell-based assay for tightly-bound PCNA (PCNA*) and Mcm6 (Mcm6*), DNA content, and a mitotic marker to clearly define G1, S, G2, and M phases of the cell cycle. hTERT-BJ1, hTERT-RPE-1, and Molt4 cells were extracted with Triton X-100 followed by methanol fixation, stained with antibodies and DAPI, then measured by cytometry. RESULTS Bivariate analysis of cytometric data demonstrated complex patterns with distinct clustering for all combinations of the 4 variables. In G1, cells clustered in two groups characterized by low and high Mcm6* expression. Serum starvation and release experiments showed that residence in the high group was in late G1, just prior to S phase. Kinetic experiments, employing serum withdrawal, and stathmokinetic analysis with aphidicolin, mimosine or nocodazole demonstrated that cells with high levels of Mcm6* cycled with the committed phases of the cell cycle (S, G2, and M). CONCLUSIONS A multivariate assay for Mcm6*, PCNA*, DNA content, and a mitotic marker provides analysis capable of estimating the fraction of pre and post-restriction point G1 cells and supports the idea that there are at least two states in G1 defined by levels of chromatin bound Mcm proteins.
Collapse
Affiliation(s)
- Phyllis S Frisa
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
20
|
|
21
|
Cell cycle arrest by transforming growth factor beta1 near G1/S is mediated by acute abrogation of prereplication complex activation involving an Rb-MCM interaction. Mol Cell Biol 2009; 30:845-56. [PMID: 19948884 DOI: 10.1128/mcb.01152-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Understanding inhibitory mechanisms of transforming growth factor beta1 (TGF-beta1) has provided insight into cell cycle regulation and how TGF-beta1 sensitivity is lost during tumorigenesis. We show here that TGF-beta1 utilizes a previously unknown mechanism targeting the function of prereplication complexes (pre-RCs) to acutely block S-phase entry when added to cells in late G(1), after most G(1) events have occurred. TGF-beta1 treatment in early G(1) suppresses Myc and CycE-Cdk2 and blocks pre-RC assembly. However, TGF-beta1 treatment in late G(1) acutely blocks S-phase entry by inhibiting activation of fully assembled pre-RCs, with arrest occurring prior to the helicase unwinding step at G(1)/S. This acute block by TGF-beta1 requires the function of Rb in late G(1) but does not involve Myc/CycE-Cdk2 suppression or transcriptional control. Instead, Rb mediates TGF-beta1 late-G(1) arrest by targeting the MCM helicase. Rb binds the MCM complex during late G(1) via a direct interaction with Mcm7, and TGF-beta1 blocks their dissociation at G(1)/S. Loss of Rb or overexpression of Mcm7 or its Rb-binding domain alone abrogates late-G(1) arrest by TGF-beta1. These results demonstrate that TGF-beta1 acutely blocks entry into S phase by inhibiting pre-RC activation and suggest a novel role for Rb in mediating this effect of TGF-beta1 through direct interaction with and control of the MCM helicase.
Collapse
|