1
|
Guo CC, Xu HE, Ma X. ARID3a from the ARID family: structure, role in autoimmune diseases and drug discovery. Acta Pharmacol Sin 2023; 44:2139-2150. [PMID: 37488425 PMCID: PMC10618457 DOI: 10.1038/s41401-023-01134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023]
Abstract
The AT-rich interaction domain (ARID) family of DNA-binding proteins is a group of transcription factors and chromatin regulators with a highly conserved ARID domain that recognizes specific AT-rich DNA sequences. Dysfunction of ARID family members has been implicated in various human diseases including cancers and intellectual disability. Among them, ARID3a has gained increasing attention due to its potential involvement in autoimmunity. In this article we provide an overview of the ARID family, focusing on the structure and biological functions of ARID3a. It explores the role of ARID3a in autoreactive B cells and its contribution to autoimmune diseases such as systemic lupus erythematosus and primary biliary cholangitis. Furthermore, we also discuss the potential for drug discovery targeting ARID3a and present a plan for future research in this field.
Collapse
Affiliation(s)
- Cheng-Cen Guo
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiong Ma
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| |
Collapse
|
2
|
Khedgikar V, Abbruzzese G, Mathavan K, Szydlo H, Cousin H, Alfandari D. Dual control of pcdh8l/PCNS expression and function in Xenopus laevis neural crest cells by adam13/33 via the transcription factors tfap2α and arid3a. eLife 2017; 6:26898. [PMID: 28829038 PMCID: PMC5601995 DOI: 10.7554/elife.26898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/21/2017] [Indexed: 01/11/2023] Open
Abstract
Adam13/33 is a cell surface metalloprotease critical for cranial neural crest (CNC) cell migration. It can cleave multiple substrates including itself, fibronectin, ephrinB, cadherin-11, pcdh8 and pcdh8l (this work). Cleavage of cadherin-11 produces an extracellular fragment that promotes CNC migration. In addition, the adam13 cytoplasmic domain is cleaved by gamma secretase, translocates into the nucleus and regulates multiple genes. Here, we show that adam13 interacts with the arid3a/dril1/Bright transcription factor. This interaction promotes a proteolytic cleavage of arid3a and its translocation to the nucleus where it regulates another transcription factor: tfap2α. Tfap2α in turn activates multiple genes including the protocadherin pcdh8l (PCNS). The proteolytic activity of adam13 is critical for the release of arid3a from the plasma membrane while the cytoplasmic domain appears critical for the cleavage of arid3a. In addition to this transcriptional control of pcdh8l, adam13 cleaves pcdh8l generating an extracellular fragment that also regulates cell migration.
Collapse
Affiliation(s)
- Vikram Khedgikar
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Genevieve Abbruzzese
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Ketan Mathavan
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States.,Molecular and Cellular Biology graduate program, University of Massachusetts, Amherst, United States
| | - Hannah Szydlo
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Helene Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, United States.,Molecular and Cellular Biology graduate program, University of Massachusetts, Amherst, United States
| |
Collapse
|
3
|
Abstract
Covalent linkage to members of the small ubiquitin-like (SUMO) family of proteins is an important mechanism by which the functions of many cellular proteins are regulated. Sumoylation has roles in the control of protein stability, activity and localization, and is involved in the regulation of transcription, gene expression, chromatin structure, nuclear transport and RNA metabolism. Sumoylation is also linked, both positively and negatively, with the replication of many different viruses both in terms of modification of viral proteins and modulation of sumoylated cellular proteins that influence the efficiency of infection. One prominent example of the latter is the widespread reduction in the levels of cellular sumoylated species induced by herpes simplex virus type 1 (HSV-1) ubiquitin ligase ICP0. This activity correlates with relief from intrinsic immunity antiviral defence mechanisms. Previous work has shown that ICP0 is selective in substrate choice, with some sumoylated proteins such the promyelocytic leukemia protein PML being extremely sensitive, while RanGAP is completely resistant. Here we present a comprehensive proteomic analysis of changes in the cellular SUMO2 proteome during HSV-1 infection. Amongst the 877 potentially sumoylated species detected, we identified 124 whose abundance was decreased by a factor of 3 or more by the virus, several of which were validated by western blot and expression analysis. We found many previously undescribed substrates of ICP0 whose degradation occurs by a range of mechanisms, influenced or not by sumoylation and/or the SUMO2 interaction motif within ICP0. Many of these proteins are known or are predicted to be involved in the regulation of transcription, chromatin assembly or modification. These results present novel insights into mechanisms and host cell proteins that might influence the efficiency of HSV-1 infection. Proteins are subject to many types of modification that regulate their functions and which are applied after their initial synthesis in the cell. One such modification is known as sumoylation, the covalent linkage of a small ubiquitin-like protein to a wide variety of substrate proteins. Sumoylation is involved in the regulation of many cellular pathways, including transcription, DNA repair, chromatin modification and defence to viral infections. Several viruses have connections with sumoylation, either through modification of their own proteins or in changing the sumoylation status of cellular proteins in ways that may be beneficial for infection. Herpes simplex virus type 1 (HSV-1) causes a widespread reduction in uncharacterized sumoylated cellular protein species, an effect that is caused by one of its key regulatory proteins (ICP0), which also induces the degradation of a number of repressive cellular proteins and thereby stimulates efficient infection. This study describes a comprehensive analysis of cellular proteins whose sumoylation status is altered by HSV-1 infection. Of 877 putative cellular sumoylation substrates, we found 124 whose sumoylation status reduces at least three-fold during infection. We validated the behavior of several such proteins and identified amongst them several novel targets of ICP0 activity with predicted repressive properties.
Collapse
|
4
|
Ratliff ML, Templeton TD, Ward JM, Webb CF. The Bright Side of Hematopoiesis: Regulatory Roles of ARID3a/Bright in Human and Mouse Hematopoiesis. Front Immunol 2014; 5:113. [PMID: 24678314 PMCID: PMC3958700 DOI: 10.3389/fimmu.2014.00113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/04/2014] [Indexed: 12/12/2022] Open
Abstract
ARID3a/Bright is a DNA-binding protein that was originally discovered for its ability to increase immunoglobulin transcription in antigen-activated B cells. It interacts with DNA as a dimer through its ARID, or A/T-rich interacting domain. In association with other proteins, ARID3a increased transcription of the immunoglobulin heavy chain and led to improved chromatin accessibility of the heavy chain enhancer. Constitutive expression of ARID3a in B lineage cells resulted in autoantibody production, suggesting its regulation is important. Abnormal ARID3a expression has also been associated with increased proliferative capacity and malignancy. Roles for ARID3a in addition to interactions with the immunoglobulin locus were suggested by transgenic and knockout mouse models. Over-expression of ARID3a resulted in skewing of mature B cell subsets and altered gene expression patterns of follicular B cells, whereas loss of function resulted in loss of B1 lineage B cells and defects in hematopoiesis. More recent studies showed that loss of ARID3a in adult somatic cells promoted developmental plasticity, alterations in gene expression patterns, and lineage fate decisions. Together, these data suggest new regulatory roles for ARID3a. The genes influenced by ARID3a are likely to play pivotal roles in lineage decisions, highlighting the importance of this understudied transcription factor.
Collapse
Affiliation(s)
- Michelle L Ratliff
- Immunobiology and Cancer Research, Oklahoma Medical Research Foundation , Oklahoma City, OK , USA
| | - Troy D Templeton
- Department of Cell Biology, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA
| | - Julie M Ward
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA
| | - Carol F Webb
- Immunobiology and Cancer Research, Oklahoma Medical Research Foundation , Oklahoma City, OK , USA ; Department of Cell Biology, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA ; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center , Oklahoma City, OK , USA
| |
Collapse
|
5
|
Characterization of a new ARID family transcription factor (Brightlike/ARID3C) that co-activates Bright/ARID3A-mediated immunoglobulin gene transcription. Mol Immunol 2011; 49:260-72. [PMID: 21955986 DOI: 10.1016/j.molimm.2011.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 08/27/2011] [Indexed: 11/21/2022]
Abstract
Two members, Bright/ARID3A and Bdp/ARID3B, of the ARID (AT-Rich Interaction Domain) transcription family are distinguished by their ability to specifically bind to DNA and to self-associate via a second domain, REKLES. Bright and Bdp positively regulate immunoglobulin heavy chain gene (IgH) transcription by binding to AT-rich motifs within Matrix Associating Regions (MARs) residing within a subset of V(H) promoters and the Eμ intronic enhancer. In addition, REKLES provides Bright nuclear export function, and a small pool of Bright is directed to plasma membrane sub-domains/lipid rafts where it associates with and modulates signaling of the B cell antigen receptor (BCR). Here, we characterize a third, highly conserved, physically condensed ARID3 locus, Brightlike/ARID3C. Brightlike encodes two alternatively spliced, SUMO-I-modified isoforms that include or exclude (Δ6) the REKLES-encoding exon 6. Brightlike transcripts and proteins are expressed preferentially within B lineage lymphocytes and coordinate with highest Bright expression in activated follicular B cells. Brightlike, but not BrightlikeΔ6, undergoes nuclear-cytoplasmic shuttling with a fraction localizing within lipid rafts following BCR stimulation. Brightlike, but not BrightlikeΔ6, associates with Bright in solution, at common DNA binding sites in vitro, and is enriched at Bright binding sites in chromatin. Although possessing little transactivation capacity of its own, Brightlike significantly co-activates Bright-dependent IgH transcription with maximal activity mediated by the unsumoylated form. In sum, this report introduces Brightlike as an additional functional member of the family of ARID proteins, which should be considered in regulatory circuits, previously ascribed to be mediated by Bright.
Collapse
|
6
|
Fukuyo Y, Horikoshi N, Ishov AM, Silverstein SJ, Nakajima T. The herpes simplex virus immediate-early ubiquitin ligase ICP0 induces degradation of the ICP0 repressor protein E2FBP1. J Virol 2011; 85:3356-66. [PMID: 21248039 PMCID: PMC3067832 DOI: 10.1128/jvi.02105-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 01/07/2011] [Indexed: 01/14/2023] Open
Abstract
E2FBP1/hDRIL1, a DNA-binding A/T-rich interaction domain (ARID) family transcription factor, is expressed ubiquitously in human tissues and plays an essential role in maintaining the proliferation potential of passage-limited human fibroblasts by dissociating promyelocytic leukemia nuclear bodies (PML-NBs). This effect on PML-NBs is similar to that of viral immediate-early gene products, such as infected cellular protein 0 (ICP0) from human herpes simplex virus 1 (HSV-1), which also disrupts PML-NBs to override the intrinsic cellular defense. Here we report that E2FBP1 inhibits accumulation of ICP0 RNA and, at the same time, is degraded via ICP0's herpes ubiquitin ligase 2 (HUL-2) activity upon HSV-1 infection. These reciprocal regulatory roles of ICP0 and E2FBP1 are linked in an ARID-dependent fashion. Our results suggest that E2FBP1 functions as an intrinsic cellular defense factor in spite of its PML-NB dissociation function.
Collapse
Affiliation(s)
- Yayoi Fukuyo
- California Pacific Medical Center Research Institute, 475 Brannan Street, Suite 220, San Francisco, California 94107, Section of Bacterial Pathogenesis, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan, Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 323 Harry Hines Blvd., Dallas, Texas 75390-8807, University of Florida College of Medicine Cancer Center, P.O. Box 103633, Gainesville, Florida 32610, Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 W. 168th St., New York, New York 10032
| | - Nobuo Horikoshi
- California Pacific Medical Center Research Institute, 475 Brannan Street, Suite 220, San Francisco, California 94107, Section of Bacterial Pathogenesis, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan, Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 323 Harry Hines Blvd., Dallas, Texas 75390-8807, University of Florida College of Medicine Cancer Center, P.O. Box 103633, Gainesville, Florida 32610, Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 W. 168th St., New York, New York 10032
| | - Alexander M. Ishov
- California Pacific Medical Center Research Institute, 475 Brannan Street, Suite 220, San Francisco, California 94107, Section of Bacterial Pathogenesis, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan, Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 323 Harry Hines Blvd., Dallas, Texas 75390-8807, University of Florida College of Medicine Cancer Center, P.O. Box 103633, Gainesville, Florida 32610, Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 W. 168th St., New York, New York 10032
| | - Saul J. Silverstein
- California Pacific Medical Center Research Institute, 475 Brannan Street, Suite 220, San Francisco, California 94107, Section of Bacterial Pathogenesis, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan, Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 323 Harry Hines Blvd., Dallas, Texas 75390-8807, University of Florida College of Medicine Cancer Center, P.O. Box 103633, Gainesville, Florida 32610, Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 W. 168th St., New York, New York 10032
| | - Takuma Nakajima
- California Pacific Medical Center Research Institute, 475 Brannan Street, Suite 220, San Francisco, California 94107, Section of Bacterial Pathogenesis, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan, Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, 323 Harry Hines Blvd., Dallas, Texas 75390-8807, University of Florida College of Medicine Cancer Center, P.O. Box 103633, Gainesville, Florida 32610, Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, 701 W. 168th St., New York, New York 10032
| |
Collapse
|
7
|
Liu G, Huang YJ, Xiao R, Wang D, Acton TB, Montelione GT. Solution NMR structure of the ARID domain of human AT-rich interactive domain-containing protein 3A: a human cancer protein interaction network target. Proteins 2010; 78:2170-5. [PMID: 20455271 PMCID: PMC2869213 DOI: 10.1002/prot.22718] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The AT-rich interactive domain (ARID) of human AT-rich interactive domain-containing protein 3A (ARID3A) has been selected for structural characterization by Northeast Structural Genomics Consortium (residues 218-351 NESG ID HR4394C) as part of our Human Cancer Protein Interaction Network (HCPIN) project. Protein ARID3A belongs to the ARID family DNA-binding protein and is known to play important roles in embryonic patterning, cell lineage gene regulation, and cell cycle control, chromatin remodeling and transcriptional regulations. The solution NMR structure of ARID3A ARID domain consists of eight α-helices α0-α7 and a short β hairpin. Helix α0 and α1 form a V shape, helix α2-α4 and helix α5-α7 form two U shapes, and the V and two U shapes packed orthogonal to each other. The NMR structure of the ARID domain of human ARID3A reported here provides a structural basis for elucidating the regulatory mechanisms of ARID3A function, and the molecular mechanism of ARID3A interactions with DNA. It also has potential value in future drug discovery and design.
Collapse
Affiliation(s)
- Gaohua Liu
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium (NESG), Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Yuanpeng J. Huang
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium (NESG), Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium (NESG), Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Dongyan Wang
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium (NESG), Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Thomas B. Acton
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium (NESG), Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Gaetano T. Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium (NESG), Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
- Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854
| |
Collapse
|
8
|
Sumoylation of the Epstein-Barr virus BZLF1 protein inhibits its transcriptional activity and is regulated by the virus-encoded protein kinase. J Virol 2010; 84:4383-94. [PMID: 20181712 DOI: 10.1128/jvi.02369-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Epstein-Barr virus (EBV) immediate-early protein BZLF1 (Z) mediates the switch between latent and lytic EBV infection. Z not only activates early lytic viral gene transcription but also plays a direct role in lytic viral genome replication. Although a small fraction of Z is known to be sumoylated, the effects of this posttranslational modification on various different Z functions have not been well defined. In this report, we show that only the lysine at amino acid residue 12 is required for the sumoylation of Z, and that Z can be sumoylated by SUMO isoforms 1, 2, and 3. We also demonstrate that the sumo-defective Z mutants ZK12A and ZK12R have enhanced transcriptional activity. The sumoylated and nonsumoylated forms of Z were found to have a similar cellular location, both being localized primarily within the nuclear matrix. The Z sumo-defective mutants were, however, partially defective for disrupting promyelocytic leukemia (PML) bodies compared to the ability of wild-type Z. In addition, we show that lytic viral genome replication does not require the sumoylation of Z, although a Z mutant altered at both amino acids 12 and 13 is replication defective. Furthermore, we show that the sumoylation of Z is greatly increased (from less than 1 to about 11%) in lytically induced 293 cells infected with an EBV mutant virus deleted for the EBV-encoded protein kinase (EBV-PK) compared to that of 293 cells infected with wild-type EBV, and that the overexpression of EBV-PK leads to the reduced sumoylation of Z in EBV-negative cells. Our results suggest that the sumoylation of Z helps to promote viral latency, and that EBV-PK inhibits Z sumoylation during viral reactivation.
Collapse
|