1
|
Bhandari A, Seguin A, Rothenfluh A. Synaptic Mechanisms of Ethanol Tolerance and Neuroplasticity: Insights from Invertebrate Models. Int J Mol Sci 2024; 25:6838. [PMID: 38999947 PMCID: PMC11241699 DOI: 10.3390/ijms25136838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
Alcohol tolerance is a neuroadaptive response that leads to a reduction in the effects of alcohol caused by previous exposure. Tolerance plays a critical role in the development of alcohol use disorder (AUD) because it leads to the escalation of drinking and dependence. Understanding the molecular mechanisms underlying alcohol tolerance is therefore important for the development of effective therapeutics and for understanding addiction in general. This review explores the molecular basis of alcohol tolerance in invertebrate models, Drosophila and C. elegans, focusing on synaptic transmission. Both organisms exhibit biphasic responses to ethanol and develop tolerance similar to that of mammals. Furthermore, the availability of several genetic tools makes them a great candidate to study the molecular basis of ethanol response. Studies in invertebrate models show that tolerance involves conserved changes in the neurotransmitter systems, ion channels, and synaptic proteins. These neuroadaptive changes lead to a change in neuronal excitability, most likely to compensate for the enhanced inhibition by ethanol.
Collapse
Affiliation(s)
- Aakriti Bhandari
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexandra Seguin
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Frank CA, James TD, Müller M. Homeostatic control of Drosophila neuromuscular junction function. Synapse 2019; 74:e22133. [PMID: 31556149 PMCID: PMC6817395 DOI: 10.1002/syn.22133] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023]
Abstract
The ability to adapt to changing internal and external conditions is a key feature of biological systems. Homeostasis refers to a regulatory process that stabilizes dynamic systems to counteract perturbations. In the nervous system, homeostatic mechanisms control neuronal excitability, neurotransmitter release, neurotransmitter receptors, and neural circuit function. The neuromuscular junction (NMJ) of Drosophila melanogaster has provided a wealth of molecular information about how synapses implement homeostatic forms of synaptic plasticity, with a focus on the transsynaptic, homeostatic modulation of neurotransmitter release. This review examines some of the recent findings from the Drosophila NMJ and highlights questions the field will ponder in coming years.
Collapse
Affiliation(s)
- C Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Programs in Neuroscience, Genetics, and Molecular Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Thomas D James
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| | - Martin Müller
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Bosse KE, Chiu VM, Lloyd SC, Conti AC. Neonatal alcohol exposure augments voluntary ethanol intake in the absence of potentiated anxiety-like behavior induced by chronic intermittent ethanol vapor exposure. Alcohol 2019; 79:17-24. [PMID: 30385201 DOI: 10.1016/j.alcohol.2018.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/12/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022]
Abstract
Individuals fetally exposed to alcohol have a disproportionate risk for developing lifetime alcohol dependence, an association that may be confounded by the presence of comorbid conditions, such as anxiety. Anxiety is also observed following fetal alcohol exposure and is known to exacerbate ethanol consumption, highlighting the utility of animal models to assess this relationship. The present study evaluated the impact of third-trimester equivalent ethanol exposure on ethanol consumption and anxiety-like, marble burying behavior in adult, male C57BL/6 mice following exposure to chronic intermittent ethanol vapor, proposed to model dependence. Neonatal mice (P5-6, 2.5-3.0 g) were administered one injection of saline or ethanol (2.5 g/kg, subcutaneously [s.c.]). Pre-vapor marble burying and limited-access two-bottle choice ethanol intake (15% v/v, 2 h) were comparable in adults (8 weeks of age) across neonatal treatment groups. Five consecutive drinking sessions were repeated 72 h after each weekly ethanol vapor exposure procedure for a total of five vapor/drinking cycles. Consistent with prior research, an increase in voluntary ethanol drinking was observed in vapor-exposed, neonatal saline-treated mice throughout the study starting after the second vapor cycle compared to both air-exposed control groups. In neonatal ethanol-treated mice, this increase in ethanol intake and preference following vapor exposure was accelerated, being observed after the first vapor cycle, and observed at an augmented level compared to vapor-exposed, neonatal saline-treated mice and air controls for both neonatal conditions. Conversely, marble burying was enhanced equivalently in vapor-exposed mice from either neonatal treatment group relative to their respective air-exposed controls. These data recapitulate clinical observations of enhanced sensitivity for alcohol dependence following developmental alcohol exposure, which may reflect enhanced motivational drive rather than potentiated negative affect. The present model will facilitate the future exploration of mechanisms that underlie increased risk for alcohol use after early developmental exposure.
Collapse
Affiliation(s)
- K E Bosse
- Research & Development Service, John D. Dingell VA Medical Center, 4646 John R St., Detroit, MI, 48201, United States; Department of Neurosurgery, Wayne State University School of Medicine, 4160 John R St., Detroit, MI, 48201, United States
| | - V M Chiu
- Research & Development Service, John D. Dingell VA Medical Center, 4646 John R St., Detroit, MI, 48201, United States; Department of Neurosurgery, Wayne State University School of Medicine, 4160 John R St., Detroit, MI, 48201, United States
| | - S C Lloyd
- Research & Development Service, John D. Dingell VA Medical Center, 4646 John R St., Detroit, MI, 48201, United States; Department of Neurosurgery, Wayne State University School of Medicine, 4160 John R St., Detroit, MI, 48201, United States
| | - A C Conti
- Research & Development Service, John D. Dingell VA Medical Center, 4646 John R St., Detroit, MI, 48201, United States; Department of Neurosurgery, Wayne State University School of Medicine, 4160 John R St., Detroit, MI, 48201, United States.
| |
Collapse
|
4
|
Bogenpohl JW, Smith ML, Farris SP, Dumur CI, Lopez MF, Becker HC, Grant KA, Miles MF. Cross-Species Co-analysis of Prefrontal Cortex Chronic Ethanol Transcriptome Responses in Mice and Monkeys. Front Mol Neurosci 2019; 12:197. [PMID: 31456662 PMCID: PMC6701453 DOI: 10.3389/fnmol.2019.00197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Despite recent extensive genomic and genetic studies on behavioral responses to ethanol, relatively few new therapeutic targets for the treatment of alcohol use disorder have been validated. Here, we describe a cross-species genomic approach focused on identifying gene networks associated with chronic ethanol consumption. To identify brain mechanisms underlying a chronic ethanol consumption phenotype highly relevant to human alcohol use disorder, and to elucidate potential future therapeutic targets, we conducted a genomic study in a non-human primate model of chronic open-access ethanol consumption. Microarray analysis of RNA expression in anterior cingulate and subgenual cortices from rhesus macaques was performed across multiple cohorts of animals. Gene networks correlating with ethanol consumption or showing enrichment for ethanol-regulated genes were identified, as were major ethanol-related hub genes within these networks. A subsequent consensus module analysis was used to co-analyze monkey data with expression data from a chronic intermittent ethanol vapor-exposure and consumption model in C57BL/6J mice. Ethanol-related gene networks conserved between primates and rodents were enriched for genes involved in discrete biological functions, including; myelination, synaptic transmission, chromatin modification, Golgi apparatus function, translation, cellular respiration, and RNA processing. The myelin-related network, in particular, showed strong correlations with ethanol consumption behavior and displayed marked network reorganization between control and ethanol-drinking animals. Further bioinformatics analysis revealed that these networks also showed highly significant overlap with other ethanol-regulated gene sets. Altogether, these studies provide robust primate and rodent cross-species validation of gene networks associated with chronic ethanol consumption. Our results also suggest potential novel focal points for future therapeutic interventions in alcohol use disorder.
Collapse
Affiliation(s)
- James W Bogenpohl
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA, United States
| | - Maren L Smith
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - Sean P Farris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States
| | - Catherine I Dumur
- Aurora Diagnostics-Sonic Healthcare, Bernhardt Laboratories, Jacksonville, FL, United States
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Howard C Becker
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Kathleen A Grant
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States.,Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Michael F Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States.,Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States.,VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
5
|
Bosse KE, Ghoddoussi F, Eapen AT, Charlton JL, Susick LL, Desai K, Berkowitz BA, Perrine SA, Conti AC. Calcium/calmodulin-stimulated adenylyl cyclases 1 and 8 regulate reward-related brain activity and ethanol consumption. Brain Imaging Behav 2019; 13:396-407. [PMID: 29594872 PMCID: PMC6202255 DOI: 10.1007/s11682-018-9856-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Evidence suggests a predictive link between elevated basal activity within reward-related networks (e.g., cortico-basal ganglia-thalamic networks) and vulnerability for alcoholism. Both calcium channel function and cyclic adenosine monophosphate (cAMP)/protein kinase A-mediated signaling are critical modulators of reward neurocircuitry and reward-related behaviors. Calcium/calmodulin-stimulated adenylyl cyclases (AC) 1 and 8 are sensitive to activity-dependent increases in intracellular calcium and catalyze cAMP production. Therefore, we hypothesized AC1 and 8 regulate brain activity in reward regions of the cortico-basal ganglia-thalamic circuit and that this regulatory influence predicts voluntary ethanol drinking responses. This hypothesis was evaluated by manganese-enhanced magnetic resonance imaging and chronic, intermittent ethanol access procedures. Ethanol-naïve mice with genetic deletion of both AC1 and 8 (DKO mice) exhibited bilateral reductions in baseline activity within cortico-basal ganglia-thalamic regions associated with reward processing compared to wild-type controls (WT, C57BL/6 mice). Significant activity changes were not evident in regions either outside of the cortico-basal ganglia-thalamic network or within the network that are not associated with reward processing. Parallel studies demonstrated that reward network hypoactivity in DKO mice predicted a significant attenuation in consumption and preference levels to escalating ethanol concentrations (12, 20 and 30%) compared to WT mice, an effect that was maintained over extended access (14 sessions) to 20% ethanol. Summarizing, these data support a contribution of AC1 and 8 in cortico-basal ganglia-thalamic activity and the predictive value of this regulatory influence on ethanol drinking behavior, which merits the future evaluation of calcium-stimulated ACs in the neural processes that engender vulnerability to maladaptive alcohol drinking.
Collapse
Affiliation(s)
- Kelly E Bosse
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Farhad Ghoddoussi
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ajay T Eapen
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jennifer L Charlton
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Laura L Susick
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kirt Desai
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alana C Conti
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA.
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Neurosurgery, Wayne State University, 4646 John R St., Detroit, MI, 48201, USA.
| |
Collapse
|
6
|
Bosse KE, Oginsky MF, Susick LL, Ramalingam S, Ferrario CR, Conti AC. Adenylyl Cyclase 1 Is Required for Ethanol-Induced Locomotor Sensitization and Associated Increases in NMDA Receptor Phosphorylation and Function in the Dorsal Medial Striatum. J Pharmacol Exp Ther 2017; 363:148-155. [PMID: 28838956 PMCID: PMC5625283 DOI: 10.1124/jpet.117.242321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/08/2017] [Indexed: 11/30/2022] Open
Abstract
Neuroadaptive responses to chronic ethanol, such as behavioral sensitization, are associated with N-methyl-D-aspartate receptor (NMDAR) recruitment. Ethanol enhances GluN2B-containing NMDAR function and phosphorylation (Tyr-1472) of the GluN2B-NMDAR subunit in the dorsal medial striatum (DMS) through a protein kinase A (PKA)-dependent pathway. Ethanol-induced phosphorylation of PKA substrates is partially mediated by calcium-stimulated adenylyl cyclase 1 (AC1), which is enriched in the dorsal striatum. As such, AC1 is poised as an upstream modulator of ethanol-induced DMS neuroadaptations that promote drug responding, and thus represents a therapeutic target. Our hypothesis is that loss of AC1 activity will prevent ethanol-induced locomotor sensitization and associated DMS GluN2B-NMDAR adaptations. We evaluated AC1's contribution to ethanol-evoked locomotor responses and DMS GluN2B-NMDAR phosphorylation and function using AC1 knockout (AC1KO) mice. Results were mechanistically validated with the AC1 inhibitor, NB001. Acute ethanol (2.0 g/kg) locomotor responses in AC1KO and wild-type (WT) mice pretreated with NB001 (10 mg/kg) were comparable to WT ethanol controls. However, repeated ethanol treatment (10 days, 2.5 g/kg) failed to produce sensitization in AC1KO or NB001 pretreated mice, as observed in WT ethanol controls, following challenge exposure (2.0 g/kg). Repeated exposure to ethanol in the sensitization procedure significantly increased pTyr-1472 GluN2B levels and GluN2B-containing NMDAR transmission in the DMS of WT mice. Loss of AC1 signaling impaired ethanol-induced increases in DMS pGluN2B levels and NMDAR-mediated transmission. Together, these data support a critical and specific role for AC1 in striatal signaling that mediates ethanol-induced behavioral sensitization, and identify GluN2B-containing NMDARs as an important AC1 target.
Collapse
Affiliation(s)
- Kelly E Bosse
- Research & Development, John D. Dingell VA Medical Center, Detroit, Michigan (K.E.B., L.L.S., S.R., A.C.C.); Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan (K.E.B., L.L.S., S.R., A.C.C.); and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (M.F.O., C.R.F.)
| | - Max F Oginsky
- Research & Development, John D. Dingell VA Medical Center, Detroit, Michigan (K.E.B., L.L.S., S.R., A.C.C.); Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan (K.E.B., L.L.S., S.R., A.C.C.); and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (M.F.O., C.R.F.)
| | - Laura L Susick
- Research & Development, John D. Dingell VA Medical Center, Detroit, Michigan (K.E.B., L.L.S., S.R., A.C.C.); Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan (K.E.B., L.L.S., S.R., A.C.C.); and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (M.F.O., C.R.F.)
| | - Sailesh Ramalingam
- Research & Development, John D. Dingell VA Medical Center, Detroit, Michigan (K.E.B., L.L.S., S.R., A.C.C.); Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan (K.E.B., L.L.S., S.R., A.C.C.); and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (M.F.O., C.R.F.)
| | - Carrie R Ferrario
- Research & Development, John D. Dingell VA Medical Center, Detroit, Michigan (K.E.B., L.L.S., S.R., A.C.C.); Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan (K.E.B., L.L.S., S.R., A.C.C.); and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (M.F.O., C.R.F.)
| | - Alana C Conti
- Research & Development, John D. Dingell VA Medical Center, Detroit, Michigan (K.E.B., L.L.S., S.R., A.C.C.); Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan (K.E.B., L.L.S., S.R., A.C.C.); and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (M.F.O., C.R.F.)
| |
Collapse
|
7
|
Ethanol Stimulates Locomotion via a G αs-Signaling Pathway in IL2 Neurons in Caenorhabditis elegans. Genetics 2017; 207:1023-1039. [PMID: 28951527 PMCID: PMC5676223 DOI: 10.1534/genetics.117.300119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/23/2017] [Indexed: 01/21/2023] Open
Abstract
Alcohol abuse is among the top causes of preventable death, generating considerable financial, health, and societal burdens. Paradoxically, alcohol... Alcohol is a potent pharmacological agent when consumed acutely at sufficient quantities and repeated overuse can lead to addiction and deleterious effects on health. Alcohol is thought to modulate neuronal function through low-affinity interactions with proteins, in particular with membrane channels and receptors. Paradoxically, alcohol acts as both a stimulant and a sedative. The exact molecular mechanisms for the acute effects of ethanol on neurons, as either a stimulant or a sedative, however remain unclear. We investigated the role that the heat shock transcription factor HSF-1 played in determining a stimulatory phenotype of Caenorhabditis elegans in response to physiologically relevant concentrations of ethanol (17 mM; 0.1% v/v). Using genetic techniques, we demonstrate that either RNA interference of hsf-1 or use of an hsf-1(sy441) mutant lacked the enhancement of locomotion in response to acute ethanol exposure evident in wild-type animals. We identify that the requirement for HSF-1 in this phenotype was IL2 neuron-specific and required the downstream expression of the α-crystallin ortholog HSP-16.48. Using a combination of pharmacology, optogenetics, and phenotypic analyses we determine that ethanol activates a Gαs-cAMP-protein kinase A signaling pathway in IL2 neurons to stimulate nematode locomotion. We further implicate the phosphorylation of a specific serine residue (Ser322) on the synaptic protein UNC-18 as an end point for the Gαs-dependent signaling pathway. These findings establish and characterize a distinct neurosensory cell signaling pathway that determines the stimulatory action of ethanol and identifies HSP-16.48 and HSF-1 as novel regulators of this pathway.
Collapse
|
8
|
Caruso JP, Susick LL, Charlton JL, Henson EL, Conti AC. Region-specific disruption of synapsin phosphorylation following ethanol administration in brain-injured mice. Brain Circ 2016; 2:183-188. [PMID: 30276296 PMCID: PMC6126228 DOI: 10.4103/2394-8108.195284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 11/11/2022] Open
Abstract
Introduction: Civilians and military personnel develop a range of physical and psychosocial impairments following traumatic brain injury (TBI), including alcohol abuse. As a consequence, increased rates of alcohol misuse magnify TBI-induced pathologies and impede rehabilitation efforts. Therefore, a developed understanding of the mechanisms that foster susceptibility of the injured brain to alcohol sensitivity and the response of the injured brain to alcohol is imperative for the treatment of TBI patients. Alcohol sensitivity has been demonstrated to be increased following experimental TBI and, in additional studies, regulated by presynaptic vesicle release mechanisms, including synapsin phosphorylation. Materials and Methods: Mice were exposed to controlled midline impact of the intact skull and assessed for cortical, hippocampal, and striatal expression of phosphorylated synapsin I and II in response to high-dose ethanol exposure administered 14 days following injury, a time point at which injured mice demonstrate increased sedation after ethanol exposure. Results and Discussion: Immunoblot quantitation revealed that TBI alone, compared to sham controls, significantly increased phosphorylated synapsin I and II protein expression in the striatum. In sham controls, ethanol administration significantly increased phosphorylated synapsin I and II protein expression compared to saline-treated sham controls; however, no significant increase in ethanol-induced phosphorylated synapsin I and II protein expression was observed in the striatum of injured mice compared to saline-treated TBI controls. A similar expression pattern was observed in the cortex although restricted to increases in phosphorylated synapsin II. Conclusion: These data show that increased phosphorylated synapsin expression in the injured striatum may reflect a compensatory neuroplastic response to TBI which is proposed to occur as a result of a compromised presynaptic response of the injured brain to high-dose ethanol. These results offer a mechanistic basis for the altered ethanol sensitivity observed following experimental TBI and contribute to our understanding of alcohol action in the injured brain.
Collapse
Affiliation(s)
- James P Caruso
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Laura L Susick
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jennifer L Charlton
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Emily L Henson
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Alana C Conti
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
9
|
Vithanarachchi SM, Foley CD, Trimpin S, Ewing JR, Ali MM, Allen MJ. Myelin-targeted, texaphyrin-based multimodal imaging agent for magnetic resonance and optical imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:492-505. [PMID: 27596704 DOI: 10.1002/cmmi.1711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/18/2016] [Accepted: 08/01/2016] [Indexed: 12/15/2022]
Abstract
Reliable methods of imaging myelin are essential to investigate the causes of demyelination and to study drugs that promote remyelination. Myelin-specific compounds can be developed into imaging probes to detect myelin with various imaging techniques. The development of multimodal myelin-specific imaging probes enables the use of orthogonal imaging techniques to accurately visualize myelin content and validate experimental results. Here, we describe the synthesis and application of multimodal myelin-specific imaging agents for light microscopy and magnetic resonance imaging. The imaging agents were synthesized by incorporating the structural features of luxol fast blue MBS, a myelin-specific histological stain, into texaphyrins coordinated to GdIII . These new complexes demonstrated absorption of visible light, emission of near-IR light, and relaxivity values greater than clinically approved contrast agents for magnetic resonance imaging. These properties enable the use of optical imaging and magnetic resonance imaging for visualization of myelin. We performed section- and en block-staining of ex vivo mouse brains to investigate the specificity for myelin of the new compounds. Images obtained from light microscopy and magnetic resonance imaging demonstrate that our complexes are retained in white matter structures and enable detection of myelin. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sashiprabha M Vithanarachchi
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, 48202, MI, USA.,Department of Chemistry, University of Colombo, Colombo 03, Sri Lanka
| | - Casey D Foley
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, 48202, MI, USA
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, 48202, MI, USA
| | - James R Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Meser M Ali
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, 48202, MI, USA
| |
Collapse
|
10
|
Baliño P, Ledesma JC, Aragon CMG. Role of phosphodiesterase-4 on ethanol elicited locomotion and narcosis. Neuropharmacology 2015; 101:271-8. [PMID: 26449868 DOI: 10.1016/j.neuropharm.2015.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/27/2022]
Abstract
The cAMP signaling pathway has emerged as an important modulator of the pharmacological effects of ethanol. In this respect, the cAMP-dependent protein kinase has been shown to play an important role in the modulation of several ethanol-induced behavioral actions. Cellular levels of cAMP are maintained by the activity of adenylyl cyclases and phosphodiesterases. In the present work we have focused on ascertaining the role of PDE4 in mediating the neurobehavioral effects of ethanol. For this purpose, we have used the selective PDE4 inhibitor Ro 20-1724. This compound has been proven to enhance cellular cAMP response by PDE4 blockade and can be administered systemically. Swiss mice were injected intraperitoneally (i.p.) with Ro 20-1724 (0-5 mg/kg; i.p.) at different time intervals before ethanol (0-4 g/kg; i.p.) administration. Immediately after the ethanol injection, locomotor activity, loss of righting reflex, PKA footprint and enzymatic activity were assessed. Pretreatment with Ro 20-1724 increased ethanol-induced locomotor stimulation in a dose-dependent manner. Doses that increased locomotor stimulation did not modify basal locomotion or the suppression of motor activity produced by high doses of this alcohol. Ro 20-1724 did not alter the locomotor activation produced by amphetamine or cocaine. The time of loss of righting reflex evoked by ethanol was increased after pretreatment with Ro 20-1724. This effect was selective for the narcotic effects of ethanol since Ro 20-1724 did not affect pentobarbital-induced narcotic effects. Moreover, Ro 20-1724 administration increased the PKA footprint and enzymatic activity response elicited by ethanol. These data provide further evidence of the key role of the cAMP signaling pathway in the central effects of ethanol.
Collapse
Affiliation(s)
- Pablo Baliño
- Área de Psicobiología, Universtitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Juan Carlos Ledesma
- Área de Psicobiología, Universtitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Carlos M G Aragon
- Área de Psicobiología, Universtitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
11
|
Bosse KE, Charlton JL, Susick LL, Newman B, Eagle AL, Mathews TA, Perrine SA, Conti AC. Deficits in behavioral sensitization and dopaminergic responses to methamphetamine in adenylyl cyclase 1/8-deficient mice. J Neurochem 2015; 135:1218-31. [PMID: 26146906 PMCID: PMC5049486 DOI: 10.1111/jnc.13235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/18/2015] [Accepted: 06/30/2015] [Indexed: 01/22/2023]
Abstract
The cAMP/protein kinase A pathway regulates methamphetamine (METH)-induced neuroplasticity underlying behavioral sensitization. We hypothesize that adenylyl cyclases (AC) 1/8 mediate these neuroplastic events and associated striatal dopamine regulation. Locomotor responses to METH (1 and 5 mg/kg) and striatal dopamine function were evaluated in mice lacking AC 1/8 (DKO) and wild-type (WT) mice. Only 5 mg/kg METH induced an acute locomotor response in DKO mice, which was significantly attenuated versus WT controls. DKO mice showed a marked attenuation in the development and expression of METH-induced behavioral sensitization across doses relative to WT controls. While basal and acute METH (5 mg/kg)-evoked accumbal dialysate dopamine levels were similar between genotypes, saline-treated DKO mice showed elevated tissue content of dopamine and homovanillic acid in the dorsal striatum (DS), reflecting dysregulated dopamine homeostasis and/or metabolism. Significant reductions in DS dopamine levels were observed in METH-sensitized DKO mice compared to saline-treated controls, an effect not observed in WT mice. Notably, saline-treated DKO mice had significantly increased phosphorylated Dopamine- and cAMP-regulated phosphoprotein levels, which were not further augmented following METH sensitization, as observed in WT mice. These data indicate that AC 1/8 are critical to mechanisms subserving drug-induced behavioral sensitization and mediate nigrostriatal pathway METH sensitivity. Calcium/calmodulin-stimulated adenylyl cyclase (AC) isoforms 1 and 8 were studied for their involvement in the adaptive neurobehavioral responses to methamphetamine. AC 1/8 double knockout (DKO) mice showed heightened basal locomotor activity and dorsal striatal dopamine responsivity. Conversely, methamphetamine-induced locomotor activity was attenuated in DKO mice, accompanied by reductions in dopamine and HVA content and impaired DARPP-32 activation. These findings indicate AC 1/8 signaling regulates the sensitivity of the nigrostriatal pathway subserving stimulant and neuroadaptive sensitizing effects of methamphetamine. 3-MT, 3-methoxytyramine; Ca(2+), calcium; CaM, calmodulin; cdk5; cyclin-dependent kinase 5; DA, dopamine; DARPP-32, dopamine- and cAMP-regulated phosphoprotein; D1R, dopamine D1 receptor; HVA, homovanillic acid; PKA, protein kinase A.
Collapse
Affiliation(s)
- Kelly E Bosse
- Research & Development, John D. Dingell VA Medical Center, Detroit, Michigan, USA.,Department of Neurosurgery, Wayne State University, Detroit, Michigan, USA
| | - Jennifer L Charlton
- Research & Development, John D. Dingell VA Medical Center, Detroit, Michigan, USA.,Department of Neurosurgery, Wayne State University, Detroit, Michigan, USA
| | - Laura L Susick
- Research & Development, John D. Dingell VA Medical Center, Detroit, Michigan, USA.,Department of Neurosurgery, Wayne State University, Detroit, Michigan, USA
| | - Brooke Newman
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Andrew L Eagle
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Tiffany A Mathews
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Alana C Conti
- Research & Development, John D. Dingell VA Medical Center, Detroit, Michigan, USA.,Department of Neurosurgery, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
12
|
Cheng Q, Yakel JL. Activation of α7 nicotinic acetylcholine receptors increases intracellular cAMP levels via activation of AC1 in hippocampal neurons. Neuropharmacology 2015; 95:405-14. [PMID: 25937212 DOI: 10.1016/j.neuropharm.2015.04.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/13/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022]
Abstract
The activation of α7 nAChRs has been shown to improve hippocampal-dependent learning and memory. However, the molecular mechanism of α7 nAChRs' action remains elusive. We previously reported that activation of α7 nAChRs induced a prolonged enhancement of glutamatergic synaptic transmission in a PKA-dependent manner. Here, we investigated any connection between the activation of the α7 nAChR and cAMP signaling in hippocampal neurons. To address this question, we employed a FRET-based biosensor to measure the intracellular cAMP levels directly via live cell imaging. We found that application of the α7 nAChR-selective agonist choline, in the presence of the α7 nAChR positive allosteric modulator PNU-120596, induced a significant change in emission ratio of F535/F470, which indicated an increase in intracellular cAMP levels. This choline-induced increase was abolished by the α7 nAChR antagonist MLA and the calcium chelator BAPTA, suggesting that the cAMP increase depends on the α7 nAChR activation and subsequent intracellular calcium rise. The selective AC1 inhibitor CB-6673567 and siRNA-mediated deletion of AC1 both blocked the choline-induced cAMP increase, suggesting that calcium-dependent AC1 is required for choline's action. Furthermore, α7 nAChR activation stimulated the phosphorylation of synapsin, which serves as a downstream effector to regulate neurotransmitter release. Our findings provide the first direct evidence to link activation of α7 nAChRs to a cAMP rise via AC1, which defines a new signaling pathway employed by α7 nAChRs. Our study sheds light into potential molecular mechanisms of the positive cognitive actions of α7 nAChR agonists and development of therapeutic treatments for cognitive impairments.
Collapse
Affiliation(s)
- Qing Cheng
- Neurobiology Laboratory, NIEHS / NIH, 111 T.W. Alexander Dr., Durham, NC 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, NIEHS / NIH, 111 T.W. Alexander Dr., Durham, NC 27709, USA.
| |
Collapse
|
13
|
Campos CA, Ritter RC. NMDA-type glutamate receptors participate in reduction of food intake following hindbrain melanocortin receptor activation. Am J Physiol Regul Integr Comp Physiol 2015; 308:R1-9. [PMID: 25394828 PMCID: PMC4281681 DOI: 10.1152/ajpregu.00388.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023]
Abstract
Hindbrain injection of a melanocortin-3/4 receptor agonist, MTII, reduces food intake primarily by reducing meal size. Our previously reported results indicate that N-methyl-D-aspartate-type glutamate receptors (NMDAR) in the nucleus of the solitary tract (NTS) play an important role in the control of meal size and food intake. Therefore, we hypothesized that activation of NTS NMDARs contribute to reduction of food intake in response to fourth ventricle or NTS injection of MTII. We found that coinjection of a competitive NMDAR antagonist (d-CPP-ene) with MTII into the fourth ventricle or directly into the NTS of adult male rats attenuated MTII-induced reduction of food intake. Hindbrain NMDAR antagonism also attenuated MTII-induced ERK1/2 phosphorylation in NTS neurons and prevented synapsin I phosphorylation in central vagal afferent endings, both of which are cellular mechanisms previously shown to participate in hindbrain melanocortinergic reduction of food intake. Together, our results indicate that NMDAR activation significantly contributes to reduction of food intake following hindbrain melanocortin receptor activation, and it participates in melanocortinergic signaling in NTS neural circuits that mediate reduction of food intake.
Collapse
Affiliation(s)
- Carlos A Campos
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Robert C Ritter
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington
| |
Collapse
|
14
|
Baliño P, Ledesma JC, Aragon CMG. Role of CA2+/calmodulin on ethanol neurobehavioral effects. Psychopharmacology (Berl) 2014; 231:4611-21. [PMID: 24853690 DOI: 10.1007/s00213-014-3610-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 04/29/2014] [Indexed: 01/13/2023]
Abstract
RATIONALE The cAMP-dependent protein kinase A (PKA) signaling transduction pathway has been shown to play an important role in the modulation of several ethanol-induced behaviors. Different studies have demonstrated intracellular calcium (Ca(2+))-dependent activation of the PKA cascade after ethanol administration. Thus, the cAMP cascade mediator Ca(2+)-dependent calmodulin (CaM) has been strongly implicated in the central effects of ethanol. OBJECTIVES In this study, we assessed the role of the CaM inhibitor W7 on ethanol-induced stimulation, ethanol intake, and ethanol-induced activation of PKA. METHODS Swiss mice were pretreated with W7 (0-10 mg/kg) 30 min before ethanol (0-3.75 g/kg) administration. Immediately, animals were placed during 20 min in an open-field chamber. Ethanol (10 %, v/v) intake in 2 h was assessed using a limited access paradigm. Experiments with caffeine (0-15 mg/kg), cocaine (0-4 mg/kg), and saccharine (0.1 %, w/v) were designed to compare their results to those obtained with ethanol. Western blot was assayed 45 min after ethanol administration. RESULTS Results showed that pretreatment with W7, reduced selectively in a dose-dependent fashion ethanol-induced locomotor stimulation and ethanol intake. The ethanol-induced activation of PKA was also prevented by W7 administration. CONCLUSIONS These results demonstrate that CaM inhibition resulted in a selective reduction of ethanol-stimulating effects and ethanol intake. The PKA activation induced by ethanol was blocked after the CaM blockade with W7. These results provide further evidence of the key role of cellular Ca(2+)-dependent pathways on the central effects of ethanol.
Collapse
Affiliation(s)
- Pablo Baliño
- Área de Psicobiología, Universtitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain,
| | | | | |
Collapse
|
15
|
Lowing JL, Susick LL, Caruso JP, Provenzano AM, Raghupathi R, Conti AC. Experimental traumatic brain injury alters ethanol consumption and sensitivity. J Neurotrauma 2014; 31:1700-10. [PMID: 24934382 DOI: 10.1089/neu.2013.3286] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Altered alcohol consumption patterns after traumatic brain injury (TBI) can lead to significant impairments in TBI recovery. Few preclinical models have been used to examine alcohol use across distinct phases of the post-injury period, leaving mechanistic questions unanswered. To address this, the aim of this study was to describe the histological and behavioral outcomes of a noncontusive closed-head TBI in the mouse, after which sensitivity to and consumption of alcohol were quantified, in addition to dopaminergic signaling markers. We hypothesized that TBI would alter alcohol consumption patterns and related signal transduction pathways that were congruent to clinical observations. After midline impact to the skull, latency to right after injury, motor deficits, traumatic axonal injury, and reactive astrogliosis were evaluated in C57BL/6J mice. Amyloid precursor protein (APP) accumulation was observed in white matter tracts at 6, 24, and 72 h post-TBI. Increased intensity of glial fibrillary acidic protein (GFAP) immunoreactivity was observed by 24 h, primarily under the impact site and in the nucleus accumbens, a striatal subregion, as early as 72 h, persisting to 7 days, after TBI. At 14 days post-TBI, when mice were tested for ethanol sensitivity after acute high-dose ethanol (4 g/kg, intraperitoneally), brain-injured mice exhibited increased sedation time compared with uninjured mice, which was accompanied by deficits in striatal dopamine- and cAMP-regulated neuronal phosphoprotein, 32 kDa (DARPP-32) phosphorylation. At 17 days post-TBI, ethanol intake was assessed using the Drinking-in-the-Dark paradigm. Intake across 7 days of consumption was significantly reduced in TBI mice compared with sham controls, paralleling the reduction in alcohol consumption observed clinically in the initial post-injury period. These data demonstrate that TBI increases sensitivity to ethanol-induced sedation and affects downstream signaling mediators of striatal dopaminergic neurotransmission while altering ethanol consumption. Examining TBI effects on ethanol responsitivity will improve our understanding of alcohol use post-TBI in humans.
Collapse
Affiliation(s)
- Jennifer L Lowing
- 1 John D. Dingell VA Medical Center, Wayne State University School of Medicine , Detroit, Michigan
| | | | | | | | | | | |
Collapse
|
16
|
Susick LL, Lowing JL, Bosse KE, Hildebrandt CC, Chrumka AC, Conti AC. Adenylyl cylases 1 and 8 mediate select striatal-dependent behaviors and sensitivity to ethanol stimulation in the adolescent period following acute neonatal ethanol exposure. Behav Brain Res 2014; 269:66-74. [PMID: 24769171 DOI: 10.1016/j.bbr.2014.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/15/2014] [Accepted: 04/18/2014] [Indexed: 01/05/2023]
Abstract
Neonatal alcohol exposure in rodents causes dramatic neurodegenerative effects throughout the developing nervous system, particularly in the striatum, acutely after exposure. These acute neurodegenerative effects are augmented in mice lacking adenylyl cyclases 1 and 8 (AC1/8) as neonatal mice with a genetic deletion of both AC isoforms (DKO) have increased vulnerability to ethanol-induced striatal neurotoxicity compared to wild type (WT) controls. While neonatal ethanol exposure is known to negatively impact cognitive behaviors, such as executive functioning and working memory in adolescent and adult animals, the threshold of ethanol exposure required to impinge upon developmental behaviors in mice has not been extensively examined. Therefore, the purpose of this study was to determine the behavioral effects of neonatal ethanol exposure using various striatal-dependent developmental benchmarks and to assess the impact of AC1/8 deletion on this developmental progression. WT and DKO mice were treated with 2.5 g/kg ethanol or saline on postnatal day (P)6 and later subjected to the wire suspension, negative geotaxis, postural reflex, grid hang, tail suspension and accelerating rotarod tests at various time points. At P30, mice were evaluated for their hypnotic responses to 4.0 g/kg ethanol by using the loss of righting reflex assay and ethanol-induced stimulation of locomotor activity after 2.0 g/kg ethanol. Ethanol exposure significantly impaired DKO performance in the negative geotaxis test while genetic deletion of AC1/8 alone increased grid hang time and decreased immobility time in the tail suspension test with a concomitant increase in hindlimb clasping behavior. Locomotor stimulation was significantly increased in animals that received ethanol as neonates, peaking significantly in ethanol-treated DKO mice compared to ethanol-treated WT controls, while sedation duration following high-dose ethanol challenge was unaffected. These data indicate that the maturational parameters examined in the current study may not be sensitive enough to detect effects of a single ethanol exposure during the brain growth spurt period. Genetic deletion of AC1/8 reveals a role for these cylases in attenuating ethanol-induced behavioral effects in the neonatally-exposed adolescent.
Collapse
Affiliation(s)
- Laura L Susick
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | - Jennifer L Lowing
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | - Kelly E Bosse
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | - Clara C Hildebrandt
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | - Alexandria C Chrumka
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | - Alana C Conti
- John D. Dingell VA Medical Center and Department of Neurosurgery, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
17
|
Susick LL, Lowing JL, Provenzano AM, Hildebrandt CC, Conti AC. Postnatal ethanol exposure simplifies the dendritic morphology of medium spiny neurons independently of adenylyl cyclase 1 and 8 activity in mice. Alcohol Clin Exp Res 2014; 38:1339-46. [PMID: 24655226 DOI: 10.1111/acer.12383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 01/14/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fetal exposure to alcohol can have multiple deleterious effects, including learning disorders and behavioral and executive functioning abnormalities, collectively termed fetal alcohol spectrum disorders. Neonatal mice lacking both calcium-/calmodulin-stimulated adenylyl cyclases (ACs) 1 and 8 demonstrate increased vulnerability to ethanol (EtOH)-induced neurotoxicity in the striatum compared with wild-type (WT) controls. However, the developmental impact on surviving neurons is still unclear. METHODS WT and AC1/8 double knockout (DKO) mice were administered 1 dose of EtOH (2.5 g/kg) between postnatal days 5 to 7 (P5-7). At P30, brains were removed and processed for Golgi-Cox staining. Medium spiny neurons (MSNs) from the caudate putamen were analyzed for changes in dendritic complexity; number of branches, branch points and terminals, total and average dendritic length; spine density and soma size. RESULTS EtOH significantly reduced the dendritic complexity and soma size in surviving MSNs regardless of genotype without affecting spine density. In the absence of EtOH, genetic deletion of AC1/8 reduced the dendritic complexity, number of branch points, spine density, and soma size of MSNs compared with WT controls. CONCLUSIONS These data indicate that neonatal exposure to a single dose of EtOH is sufficient to cause long-term alterations in the dendritic complexity of MSNs and that this outcome is not altered by the functional status of AC1 and AC8. Therefore, although deletion of AC1/8 demonstrates a role for the ACs in normal morphologic development and EtOH-induced neurodegeneration, loss of AC1/8 activity does not exacerbate the effects of EtOH on dendritic morphology or spine density.
Collapse
Affiliation(s)
- Laura L Susick
- John D. Dingell VA Medical Center, Detroit, Michigan; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| | | | | | | | | |
Collapse
|
18
|
Baliño P, Ledesma JC, Aragon CMG. In vivo study of ethanol-activated brain protein kinase A: manipulations of Ca2+ distribution and flux. Alcohol Clin Exp Res 2013; 38:629-40. [PMID: 24117724 DOI: 10.1111/acer.12289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/21/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND The cAMP-dependent protein kinase (PKA) signaling transduction pathway has been shown to play an important role in the modulation of several ethanol (EtOH)-induced behavioral actions. In vivo, short-term exposure to EtOH up-regulates the cAMP-signaling cascade. Interestingly, different Ca(2+) -dependent cAMP-PKA cascade mediators play a critical role in the neurobehavioral response to EtOH, being of special relevance to the Ca(2+) -dependent adenylyl cyclases 1 and 8. We hypothesize an intracellular PKA activation elicited by EtOH administration, which may be regulated by a Ca(2+) -dependent mechanism as an early cellular response. Thus, the present work aims to explore the role of Ca(2+) (internal and external) on the EtOH-activated PKA cascade. METHODS Swiss male mice received an intraperitoneal injection of EtOH (0 or 4 g/kg), and brains were dissected following a temporal pattern (7, 15, 30, 45, 90, or 120 minutes). Either the enzymatic PKA activity or its fingerprint was analyzed on different brain areas (cortex, hypothalamus, hippocampus, and striatum). To explore the role of Ca(2+) on the EtOH-activated PKA cascade, mice were pretreated with diltiazem (0 or 20 mg/kg), dantrolene (0 or 5 mg/kg), or 3,7-Dimethyl-1-(2-propynyl)xanthine (0 or 1 mg/kg) 30 minutes before EtOH (4 g/kg) administration. After 45 minutes of EtOH administration, brains were removed and dissected to measure the PKA activity or its fingerprint. RESULTS Results from these experiments showed an EtOH-dependent activation of PKA in different brain areas. Manipulations involving a disruption of intracellular Ca(2+) release from the endoplasmic reticulum resulted in a decreased EtOH-induced activation of PKA. On the contrary, extracellular-to-cytoplasm Ca(2+) manipulations did not prevent the PKA activation by EtOH. CONCLUSIONS Altogether, these results show the critical role of stored Ca(2+) as an intracellular mediator of different neurobiological actions of EtOH and provide further evidence of a possible new target for EtOH within the central nervous system.
Collapse
Affiliation(s)
- Pablo Baliño
- Area de Psicobiologia, Universitat Jaume I, Castellón, Spain
| | | | | |
Collapse
|
19
|
Soluble adenylyl cyclase activity is necessary for retinal ganglion cell survival and axon growth. J Neurosci 2012; 32:7734-44. [PMID: 22649251 DOI: 10.1523/jneurosci.5288-11.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
cAMP is a critical second messenger mediating activity-dependent neuronal survival and neurite growth. We investigated the expression and function of the soluble adenylyl cyclase (sAC, ADCY10) in CNS retinal ganglion cells (RGCs). We found sAC protein expressed in multiple RGC compartments including the nucleus, cytoplasm and axons. sAC activation increased cAMP above the level seen with transmembrane adenylate cyclase (tmAC) activation. Electrical activity and bicarbonate, both physiologic sAC activators, significantly increased survival and axon growth, whereas pharmacologic or siRNA-mediated sAC inhibition dramatically decreased RGC survival and axon growth in vitro, and survival in vivo. Conversely, RGC survival and axon growth were unaltered in RGCs from AC1/AC8 double knock-out mice or after specifically inhibiting tmACs. These data identify a novel sAC-mediated cAMP signaling pathway regulating RGC survival and axon growth, and suggest new neuroprotective or regenerative strategies based on sAC modulation.
Collapse
|
20
|
Conti AC, Lowing JL, Susick LL, Bowen SE. Investigation of calcium-stimulated adenylyl cyclases 1 and 8 on toluene and ethanol neurobehavioral actions. Neurotoxicol Teratol 2012; 34:481-8. [PMID: 22789433 DOI: 10.1016/j.ntt.2012.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 06/25/2012] [Accepted: 06/29/2012] [Indexed: 11/26/2022]
Abstract
The abused inhalant toluene has potent behavioral effects, but only recently has progress been made in understanding the molecular pathways that mediate the action of toluene in the brain. Toluene and ethanol induce similar behavioral effects and share some targets including NMDA and GABA receptors. In studies examining neuronal actions of ethanol, mice lacking the calcium-stimulated adenylyl cyclases (ACs), AC1 and AC8 (DKO), show increased sedation durations and impaired protein kinase A (PKA) phosphorylation following acute ethanol treatment. Therefore, using DKO mice, we compared the neurobehavioral responses following toluene exposure to that of ethanol exposure to determine if these abused substances share molecular mechanisms of action. In the present study, acute sensitivity to toluene- or ethanol-induced changes in locomotor activity was evaluated in DKO and wild type (WT) mice. Mice were exposed to toluene vapor (0, 500, 1000, 2000, 6000, or 8000ppm) for 30min in static exposure chambers equipped with activity monitors. Both WT and DKO mice demonstrated increased ambulatory distance during exposure to a 2000-ppm concentration of toluene compared to respective air-exposed (0ppm) controls. Significant increases in locomotor activity were also observed during an air-only recovery period following toluene exposure in WT and DKO mice that had been exposed to 2000ppm of toluene compared to respective air controls. Sedative effects of toluene were equivalent in WT and DKO mice, both during exposure and afterwards during recovery. Although no significant differences in locomotor activity were detected in DKO compared to WT mice at individual doses tested, a significant main effect of toluene was achieved, with DKO mice demonstrating a generalized reduction in locomotor activity during the post-toluene recovery period compared to WT mice (when analyzing all doses collectively). For comparison to toluene, additional WT and DKO mice were treated with 1.0 or 2.0g/kg ethanol (i.p.) and monitored for locomotor activation. In WT mice, both doses of ethanol increased distance traveled compared to saline controls. Conversely, DKO mice demonstrated no increase in locomotor activation at 1.0g/kg, with significantly reduced distances traveled at both doses compared to ethanol-treated WT mice. These behavioral activity results suggest that acute effects of ethanol and toluene are distinct in the mechanisms by which they induce acute sedating effects with respect to AC1 and AC8 activity, but may be similar in the mechanisms subserving locomotor stimulation.
Collapse
Affiliation(s)
- Alana C Conti
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
21
|
Tarragon E, Baliño P, Aragon CMG. Dantrolene blockade of ryanodine receptor impairs ethanol-induced behavioral stimulation, ethanol intake and loss of righting reflex. Behav Brain Res 2012; 233:554-62. [PMID: 22677274 DOI: 10.1016/j.bbr.2012.05.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/22/2012] [Accepted: 05/26/2012] [Indexed: 12/21/2022]
Abstract
Calcium has been characterized as one of the most ubiquitous, universal and versatile intracellular signals. Among other substances with the ability to alter intracellular calcium levels, ethanol has been described as particularly relevant because of its social and economic impact. Ethanol effects on calcium distribution and flux in vitro have been widely studied, showing that acute ethanol administration can modulate intracellular calcium concentrations in a dose dependent manner. Intracellular calcium released from the endoplasmic reticulum plays a determinant role in several cellular processes. In this study, we aim to assess the effect of dantrolene, a ryanodine receptor antagonist, on three different ethanol-elicited behaviors: locomotor activity, loss of righting reflex and ethanol intake. Mice were challenged with an injection of dantrolene (0-5 mg/kg, i.p.) 30 min before ethanol (0-4 g/kg, i.p.) administration. Animals were immediately placed in an open field cylinder to monitor distance travelled horizontally or in a V-shaped trough to measure righting reflex recovery time. For ethanol intake, dantrolene (0-5mg/kg, i.p.) was administered 30 min before ethanol (20%, v/v) exposure, following a drinking in the dark paradigm. Our results showed that dantrolene selectively reduces ethanol-induced stimulation, loss of righting reflex, and ethanol intake in a dose dependent manner. Together, these data suggest that intracellular calcium released from the endoplasmic reticulum may play a critical role in behavioral effects caused by ethanol, and point to a calcium-dependent pathway as a possible cellular mechanism of action for ethanol.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Area de Psicobiologia, Universitat Jaume I, 12071 Castellón, Spain
| | | | | |
Collapse
|
22
|
Skiteva OI, Lapteva VI, Balezina OP. Role of Stored Calcium in the Regulation of Neurotransmitter Quantum Size. Bull Exp Biol Med 2012; 152:392-6. [DOI: 10.1007/s10517-012-1536-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Intracellular calcium chelation with BAPTA-AM modulates ethanol-induced behavioral effects in mice. Exp Neurol 2012; 234:446-53. [PMID: 22306018 DOI: 10.1016/j.expneurol.2012.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 11/23/2022]
Abstract
Calcium (Ca(2+)) has been characterized as one of the most ubiquitous, universal and versatile intracellular signaling molecules responsible for controlling numerous cellular processes. Ethanol-induced effects on Ca(2+) distribution and flux have been widely studied in vitro, showing that acute ethanol administration can modulate intracellular Ca(2+) concentrations in a dose dependent manner. In vivo, the relationship between Ca(2+) manipulation and the corresponding ethanol-induced behavioral effects have focused on Ca(2+) flux through voltage-gated Ca(2+) channels. The present study investigated the role of inward Ca(2+) currents in ethanol-induced psychomotor effects (stimulation and sedation) and ethanol intake. We studied the effects of the fast Ca(2+) chelator, BAPTA-AM, on ethanol-induced locomotor activity and the sedative effects of ethanol. Swiss (RjOrl) mice were pretreated with BAPTA-AM (0-10 mg/kg) 30 min before an ethanol (0-4 g/kg) challenge. Our results revealed that pretreatment with BAPTA-AM prevented locomotor stimulation produced by ethanol without altering basal locomotion. In contrast, BAPTA-AM reversed ethanol-induced hypnotic effects. In a second set of experiments, we investigated the effects of intracellular Ca(2+) chelation on ethanol intake. Following a drinking-in-the-dark methodology, male C57BL/6J mice were offered 20% v/v ethanol, tap water, or 0.1% sweetened water. The results of these experiments revealed that BAPTA-AM pretreatment (0-5 mg/kg) reduced ethanol consumption in a dose-dependent manner while leaving water and sweetened water intake unaffected. Our findings support the role of inward Ca(2+) currents in mediating different behavioral responses induced by ethanol. Our results are discussed together with data indicating that ethanol appears to be more sensitive to intracellular Ca(2+) manipulations than other psychoactive drugs.
Collapse
|
24
|
Methner DNR, Mayfield RD. Ethanol alters endosomal recycling of human dopamine transporters. J Biol Chem 2010; 285:10310-7. [PMID: 20133946 DOI: 10.1074/jbc.m109.029561] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dynamic membrane trafficking of the monoamine dopamine transporter (DAT) regulates dopaminergic signaling. Various intrinsic and pharmacological modulators can alter this trafficking. Previously we have shown ethanol potentiates in vitro DAT function and increases surface expression. However, the mechanism underlying these changes is unclear. In the present study, we found ethanol directly regulates DAT function by altering endosomal recycling of the transporter. We defined ethanol action on transporter regulation by [(3)H]DA uptake functional analysis combined with biochemical and immunological assays in stably expressing DAT HEK-293 cells. Short-term ethanol exposure potentiated DAT function in a concentration-, but not time-dependent manner. This potentiation was accompanied by a parallel increase in DAT surface expression. Ethanol had no effect on function or surface localization of the ethanol-insensitive mutant (G130T DAT), suggesting a trafficking-dependent mechanism in mediating the ethanol sensitivity of the transporter. The ethanol-induced increase in DAT surface expression occurred without altering the overall size of DAT endosomal recycling pools. We found ethanol increased the DAT membrane insertion rate while having no effect on internalization of the transporter. Ethanol had no effect on the surface expression or trafficking of the endogenously expressing transferrin receptor, suggesting ethanol does not have a nonspecific effect on endosomal recycling. These results define a novel trafficking mechanism by which ethanol regulates DAT function.
Collapse
Affiliation(s)
- D Nicole Riherd Methner
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
25
|
Rodan AR, Rothenfluh A. The genetics of behavioral alcohol responses in Drosophila. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:25-51. [PMID: 20813239 DOI: 10.1016/s0074-7742(10)91002-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Drosophila melanogaster is commonly found near rotting or fermenting fruit, reflected in its name pomace, or vinegar fly. In such environments, flies often encounter significant levels of ethanol. Three observations have made Drosophila a very promising model organism to understand the genetic contributions to the behavioral responses to alcohol. First, similar to higher vertebrates, flies show hyperactivation upon exposure to a low to medium dose of alcohol, while high doses can lead to sedation. In addition, when given a choice, flies will actually prefer alcohol-containing food over regular food. Second, the genes and biochemical pathways implicated in controlling these behavioral responses in flies are also participating in determining alcohol responses, and drinking behavior in mammals. Third, the fact that flies have been studied genetically for over one hundred years means that an exceptional repertoire of genetic tools are at our disposal. Here, we will review some of these tools and experimental approaches, survey the methods for, and measures after Drosophila ethanol exposure, and discuss the different molecular components and functional pathways involved in these behavioral responses to alcohol.
Collapse
Affiliation(s)
- Aylin R Rodan
- Division of Nephrology, Department of Psychiatry and Program in Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|