1
|
Qi C, Qian C, Steijvers E, Colvin RA, Lee D. Single dopaminergic neuron DAN-c1 in Drosophila larval brain mediates aversive olfactory learning through D2-like receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575767. [PMID: 38293177 PMCID: PMC10827047 DOI: 10.1101/2024.01.15.575767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The intricate relationship between the dopaminergic system and olfactory associative learning in Drosophila has been an intense scientific inquiry. Leveraging the formidable genetic tools, we conducted a screening of 57 dopaminergic drivers, leading to the discovery of DAN-c1 driver, uniquely targeting the single dopaminergic neuron (DAN) in each brain hemisphere. While the involvement of excitatory D1-like receptors is well-established, the role of D2-like receptors (D2Rs) remains underexplored. Our investigation reveals the expression of D2Rs in both DANs and the mushroom body (MB) of third instar larval brains. Silencing D2Rs in DAN-c1 via microRNA disrupts aversive learning, further supported by optogenetic activation of DAN-c1 during training, affirming the inhibitory role of D2R autoreceptor. Intriguingly, D2R knockdown in the MB impairs both appetitive and aversive learning. These findings elucidate the distinct contributions of D2Rs in diverse brain structures, providing novel insights into the molecular mechanisms governing associative learning in Drosophila larvae.
Collapse
Affiliation(s)
- Cheng Qi
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | | | | | - Robert A. Colvin
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Daewoo Lee
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
2
|
Selcho M. Octopamine in the mushroom body circuitry for learning and memory. Learn Mem 2024; 31:a053839. [PMID: 38862169 PMCID: PMC11199948 DOI: 10.1101/lm.053839.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/20/2024] [Indexed: 06/13/2024]
Abstract
Octopamine, the functional analog of noradrenaline, modulates many different behaviors and physiological processes in invertebrates. In the central nervous system, a few octopaminergic neurons project throughout the brain and innervate almost all neuropils. The center of memory formation in insects, the mushroom bodies, receive octopaminergic innervations in all insects investigated so far. Different octopamine receptors, either increasing or decreasing cAMP or calcium levels in the cell, are localized in Kenyon cells, further supporting the release of octopamine in the mushroom bodies. In addition, different mushroom body (MB) output neurons, projection neurons, and dopaminergic PAM cells are targets of octopaminergic neurons, enabling the modulation of learning circuits at different neural sites. For some years, the theory persisted that octopamine mediates rewarding stimuli, whereas dopamine (DA) represents aversive stimuli. This simple picture has been challenged by the finding that DA is required for both appetitive and aversive learning. Furthermore, octopamine is also involved in aversive learning and a rather complex interaction between these biogenic amines seems to modulate learning and memory. This review summarizes the role of octopamine in MB function, focusing on the anatomical principles and the role of the biogenic amine in learning and memory.
Collapse
Affiliation(s)
- Mareike Selcho
- Department of Animal Physiology, Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Mancini N, Thoener J, Tafani E, Pauls D, Mayseless O, Strauch M, Eichler K, Champion A, Kobler O, Weber D, Sen E, Weiglein A, Hartenstein V, Chytoudis-Peroudis CC, Jovanic T, Thum AS, Rohwedder A, Schleyer M, Gerber B. Rewarding Capacity of Optogenetically Activating a Giant GABAergic Central-Brain Interneuron in Larval Drosophila. J Neurosci 2023; 43:7393-7428. [PMID: 37734947 PMCID: PMC10621887 DOI: 10.1523/jneurosci.2310-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/19/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
Larvae of the fruit fly Drosophila melanogaster are a powerful study case for understanding the neural circuits underlying behavior. Indeed, the numerical simplicity of the larval brain has permitted the reconstruction of its synaptic connectome, and genetic tools for manipulating single, identified neurons allow neural circuit function to be investigated with relative ease and precision. We focus on one of the most complex neurons in the brain of the larva (of either sex), the GABAergic anterior paired lateral neuron (APL). Using behavioral and connectomic analyses, optogenetics, Ca2+ imaging, and pharmacology, we study how APL affects associative olfactory memory. We first provide a detailed account of the structure, regional polarity, connectivity, and metamorphic development of APL, and further confirm that optogenetic activation of APL has an inhibiting effect on its main targets, the mushroom body Kenyon cells. All these findings are consistent with the previously identified function of APL in the sparsening of sensory representations. To our surprise, however, we found that optogenetically activating APL can also have a strong rewarding effect. Specifically, APL activation together with odor presentation establishes an odor-specific, appetitive, associative short-term memory, whereas naive olfactory behavior remains unaffected. An acute, systemic inhibition of dopamine synthesis as well as an ablation of the dopaminergic pPAM neurons impair reward learning through APL activation. Our findings provide a study case of complex circuit function in a numerically simple brain, and suggest a previously unrecognized capacity of central-brain GABAergic neurons to engage in dopaminergic reinforcement.SIGNIFICANCE STATEMENT The single, identified giant anterior paired lateral (APL) neuron is one of the most complex neurons in the insect brain. It is GABAergic and contributes to the sparsening of neuronal activity in the mushroom body, the memory center of insects. We provide the most detailed account yet of the structure of APL in larval Drosophila as a neurogenetically accessible study case. We further reveal that, contrary to expectations, the experimental activation of APL can exert a rewarding effect, likely via dopaminergic reward pathways. The present study both provides an example of unexpected circuit complexity in a numerically simple brain, and reports an unexpected effect of activity in central-brain GABAergic circuits.
Collapse
Affiliation(s)
- Nino Mancini
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Juliane Thoener
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Esmeralda Tafani
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Dennis Pauls
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Oded Mayseless
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Martin Strauch
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, 52074, Germany
| | - Katharina Eichler
- Institute of Neurobiology, University of Puerto Rico Medical Science Campus, Old San Juan, Puerto Rico, 00901
| | - Andrew Champion
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, CB2 3EL, United Kingdom
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, Virginia
| | - Oliver Kobler
- Leibniz Institute for Neurobiology, Combinatorial Neuroimaging Core Facility, Magdeburg, 39118, Germany
| | - Denise Weber
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Edanur Sen
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Aliće Weiglein
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Volker Hartenstein
- University of California, Department of Molecular, Cell and Developmental Biology, Los Angeles, California 90095-1606
| | | | - Tihana Jovanic
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut des neurosciences Paris-Saclay, Saclay, 91400, France
| | - Andreas S Thum
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Astrid Rohwedder
- Department of Genetics, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Michael Schleyer
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
| | - Bertram Gerber
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, Magdeburg, 39118, Germany
- Center for Behavioral Brain Sciences, Magdeburg, 39106, Germany
- Institute for Biology, Otto von Guericke University, Magdeburg, 39120, Germany
| |
Collapse
|
4
|
Kasturacharya N, Dhall JK, Hasan G. A STIM dependent dopamine-neuropeptide axis maintains the larval drive to feed and grow in Drosophila. PLoS Genet 2023; 19:e1010435. [PMID: 37363909 DOI: 10.1371/journal.pgen.1010435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
Appropriate nutritional intake is essential for organismal survival. In holometabolous insects such as Drosophila melanogaster, the quality and quantity of food ingested as larvae determines adult size and fecundity. Here we have identified a subset of dopaminergic neurons (THD') that maintain the larval motivation to feed. Dopamine release from these neurons requires the ER Ca2+ sensor STIM. Larvae with loss of STIM stop feeding and growing, whereas expression of STIM in THD' neurons rescues feeding, growth and viability of STIM null mutants to a significant extent. Moreover STIM is essential for maintaining excitability and release of dopamine from THD' neurons. Optogenetic stimulation of THD' neurons activated neuropeptidergic cells, including median neuro secretory cells that secrete insulin-like peptides. Loss of STIM in THD' cells alters the developmental profile of specific insulin-like peptides including ilp3. Loss of ilp3 partially rescues STIM null mutants and inappropriate expression of ilp3 in larvae affects development and growth. In summary we have identified a novel STIM-dependent function of dopamine neurons that modulates developmental changes in larval feeding behaviour and growth.
Collapse
Affiliation(s)
- Nandashree Kasturacharya
- National Centre for Biological Sciences, TIFR, Bellary Road, Bengaluru, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, India
| | - Jasmine Kaur Dhall
- National Centre for Biological Sciences, TIFR, Bellary Road, Bengaluru, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, TIFR, Bellary Road, Bengaluru, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, India
| |
Collapse
|
5
|
Thane M, Paisios E, Stöter T, Krüger AR, Gläß S, Dahse AK, Scholz N, Gerber B, Lehmann DJ, Schleyer M. High-resolution analysis of individual Drosophila melanogaster larvae uncovers individual variability in locomotion and its neurogenetic modulation. Open Biol 2023; 13:220308. [PMID: 37072034 PMCID: PMC10113034 DOI: 10.1098/rsob.220308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/05/2023] [Indexed: 04/20/2023] Open
Abstract
Neuronally orchestrated muscular movement and locomotion are defining faculties of multicellular animals. Due to its simple brain and genetic accessibility, the larva of the fruit fly Drosophila melanogaster allows one to study these processes at tractable levels of complexity. However, although the faculty of locomotion clearly pertains to the individual, most studies of locomotion in larvae use measurements aggregated across animals, or animals tested one by one, an extravagance for larger-scale analyses. This prevents grasping the inter- and intra-individual variability in locomotion and its neurogenetic determinants. Here, we present the IMBA (individual maggot behaviour analyser) for analysing the behaviour of individual larvae within groups, reliably resolving individual identity across collisions. We use the IMBA to systematically describe the inter- and intra-individual variability in locomotion of wild-type animals, and how the variability is reduced by associative learning. We then report a novel locomotion phenotype of an adhesion GPCR mutant. We further investigated the modulation of locomotion across repeated activations of dopamine neurons in individual animals, and the transient backward locomotion induced by brief optogenetic activation of the brain-descending 'mooncrawler' neurons. In summary, the IMBA is an easy-to-use toolbox allowing an unprecedentedly rich view of the behaviour and its variability of individual larvae, with utility in multiple biomedical research contexts.
Collapse
Affiliation(s)
- Michael Thane
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Simulation and Graphics, Otto von Guerike University, Magdeburg, Germany
| | - Emmanouil Paisios
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Torsten Stöter
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anna-Rosa Krüger
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Sebastian Gläß
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anne-Kristin Dahse
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Nicole Scholz
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Bertram Gerber
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Dirk J. Lehmann
- Department of Simulation and Graphics, Otto von Guerike University, Magdeburg, Germany
- Department for Information Engineering, Faculty of Computer Science, Ostfalia University of Applied Science, Brunswick-Wolfenbuettel, Germany
| | - Michael Schleyer
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
6
|
Hafez OA, Escribano B, Ziegler RL, Hirtz JJ, Niebur E, Pielage J. The cellular architecture of memory modules in Drosophila supports stochastic input integration. eLife 2023; 12:e77578. [PMID: 36916672 PMCID: PMC10069864 DOI: 10.7554/elife.77578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The ability to associate neutral stimuli with valence information and to store these associations as memories forms the basis for decision making. To determine the underlying computational principles, we build a realistic computational model of a central decision module within the Drosophila mushroom body (MB), the fly's center for learning and memory. Our model combines the electron microscopy-based architecture of one MB output neuron (MBON-α3), the synaptic connectivity of its 948 presynaptic Kenyon cells (KCs), and its membrane properties obtained from patch-clamp recordings. We show that this neuron is electrotonically compact and that synaptic input corresponding to simulated odor input robustly drives its spiking behavior. Therefore, sparse innervation by KCs can efficiently control and modulate MBON activity in response to learning with minimal requirements on the specificity of synaptic localization. This architecture allows efficient storage of large numbers of memories using the flexible stochastic connectivity of the circuit.
Collapse
Affiliation(s)
- Omar A Hafez
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Benjamin Escribano
- Division of Neurobiology and Zoology, Department of Biology, University of KaiserslauternKaiserslauternGermany
| | - Rouven L Ziegler
- Division of Neurobiology and Zoology, Department of Biology, University of KaiserslauternKaiserslauternGermany
| | - Jan J Hirtz
- Physiology of Neuronal Networks Group, Department of Biology, University of KaiserslauternKaiserslauternGermany
| | - Ernst Niebur
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
- Solomon Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Jan Pielage
- Division of Neurobiology and Zoology, Department of Biology, University of KaiserslauternKaiserslauternGermany
| |
Collapse
|
7
|
Truman JW, Price J, Miyares RL, Lee T. Metamorphosis of memory circuits in Drosophila reveals a strategy for evolving a larval brain. eLife 2023; 12:80594. [PMID: 36695420 PMCID: PMC9984194 DOI: 10.7554/elife.80594] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
Mushroom bodies (MB) of adult Drosophila have a core of thousands of Kenyon neurons; axons of the early-born g class form a medial lobe and those from later-born α'β' and αβ classes form both medial and vertical lobes. The larva, however, hatches with only γ neurons and forms a vertical lobe 'facsimile' using larval-specific axon branches from its γ neurons. MB input (MBINs) and output (MBONs) neurons divide the Kenyon neuron lobes into discrete computational compartments. The larva has 10 such compartments while the adult has 16. We determined the fates of 28 of the 32 MBONs and MBINs that define the 10 larval compartments. Seven compartments are subsequently incorporated into the adult MB; four of their MBINs die, while 12 MBINs/MBONs remodel to function in adult compartments. The remaining three compartments are larval specific. At metamorphosis their MBIN/MBONs trans-differentiate, leaving the MB for other adult brain circuits. The adult vertical lobes are made de novo using MBONs/MBINs recruited from pools of adult-specific neurons. The combination of cell death, compartment shifting, trans-differentiation, and recruitment of new neurons result in no larval MBIN-MBON connections being maintained through metamorphosis. At this simple level, then, we find no anatomical substrate for a memory trace persisting from larva to adult. The adult phenotype of the trans-differentiating neurons represents their evolutionarily ancestral phenotype while their larval phenotype is a derived adaptation for the larval stage. These cells arise primarily within lineages that also produce permanent MBINs and MBONs, suggesting that larval specifying factors may allow information related to birth-order or sibling identity to be interpreted in a modified manner in the larva to allow these neurons to acquire larval phenotypic modifications. The loss of such factors at metamorphosis then allows these neurons to revert to their ancestral functions in the adult.
Collapse
Affiliation(s)
- James W Truman
- Janelia Research CampusAshburnUnited States
- Department of Biology, Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
| | | | | | - Tzumin Lee
- Janelia Research CampusAshburnUnited States
- Life Sciences Institute, University of MichiganAnn ArborUnited States
| |
Collapse
|
8
|
Thoener J, Weiglein A, Gerber B, Schleyer M. Optogenetically induced reward and 'frustration' memory in larval Drosophila. J Exp Biol 2022; 225:276423. [PMID: 35924545 DOI: 10.1242/jeb.244565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Humans and animals alike form oppositely valenced memories for stimuli that predict the occurrence versus the termination of a reward: appetitive 'reward' memory for stimuli associated with the occurrence of a reward and aversive 'frustration' memory for stimuli that are associated with its termination. We characterize these memories in larval Drosophila using a combination of Pavlovian conditioning, optogenetic activation of the dopaminergic central-brain DAN-i1864 neuron, and high-resolution video-tracking. This reveals their dependency on the number of training trials and the duration of DAN-i1864 activation, their temporal stability, and the parameters of locomotion that are modulated during memory expression. Together with previous results on 'punishment' versus 'relief' learning by DAN-f1 neuron activation, this reveals a 2x2 matrix of timing-dependent memory valence for the occurrence/ termination of reward/ punishment. These findings should aid the understanding and modelling of how brains decipher the predictive, causal structure of events around a target reinforcing occurrence.
Collapse
Affiliation(s)
- Juliane Thoener
- Leibniz Institute for Neurobiology, Department of Genetics, Magdeburg, Germany
| | - Aliće Weiglein
- Leibniz Institute for Neurobiology, Department of Genetics, Magdeburg, Germany
| | - Bertram Gerber
- Leibniz Institute for Neurobiology, Department of Genetics, Magdeburg, Germany.,Institute of Biology, Otto von Guericke University Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Michael Schleyer
- Leibniz Institute for Neurobiology, Department of Genetics, Magdeburg, Germany
| |
Collapse
|
9
|
Neuroprotective effect of sodium alginate against chromium-induced brain damage in rats. PLoS One 2022; 17:e0266898. [PMID: 35421180 PMCID: PMC9009676 DOI: 10.1371/journal.pone.0266898] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/29/2022] [Indexed: 12/28/2022] Open
Abstract
Oral exposure to chromium hexavalent [Cr(VI)] has disastrous impacts and affects many people worldwide. Cr(VI) triggers neurotoxicity via its high oxidation potential by generating high amount of ROS. Meanwhile, alginates are known by their chelating activity and ability to bind heavy metals and toxins, in addition to their antioxidant, anti-inflammatory, and anti-apoptotic activities. So, this study aimed to explore the neuroprotective potential of sodium alginate (SA) against cellular injury, DNA damage, macromolecule alterations, and apoptosis induced by oral ingestion of Cr. Forty Wistar male rats were divided into 4 groups; group I: standard control ingested with the vehicle solution, group II: Cr-intoxicated group received 10 mg/kg b.w. of potassium dichromate orally by gavage and kept without treatment, group III: SA group in which rats were orally exposed to 200 mg/kg b.w. of SA only, and group IV: SA-treated group that received 200 mg/kg b.w. of SA along with Cr for 28 consecutive days. Neurotransmitters such as Acetyl choline esterase (AchE), Monoamine oxidase A (MAOA) concentrations, Dopamine (DA) and 5-Hydroxytryptamine (5-HT) levels were assessed in brain homogenate tissues. Neurobiochemical markers; NAD+ and S100B protein were investigated in the brain tissues and serum, respectively. Levels of HSP70, caspase-3, protein profiling were evaluated. DNA damage was determined using the Comet assay. Results revealed a significant reduction in the AchE and MAOA concentrations, DA, 5-HT, and NAD+ levels, with an increase in the S100B protein levels. Cr(VI) altered protein pattern and caused DNA damage. High levels of HSP70 and caspase-3 proteins were observed. Fortunately, oral administration of SA prevented the accumulation of Cr in brain homogenates and significantly improved all investigated parameters. SA attenuated the ROS production and relieved the oxidative stress by its active constituents. SA can protect against cellular and DNA damage and limit apoptosis. SA could be a promising neuroprotective agent against Cr(VI)-inducing toxicity.
Collapse
|
10
|
Honda T. Optogenetic and thermogenetic manipulation of defined neural circuits and behaviors in Drosophila. Learn Mem 2022; 29:100-109. [PMID: 35332066 PMCID: PMC8973390 DOI: 10.1101/lm.053556.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
Abstract
Neural network dynamics underlying flexible animal behaviors remain elusive. The fruit fly Drosophila melanogaster is considered an excellent model in behavioral neuroscience because of its simple neuroanatomical architecture and the availability of various genetic methods. Moreover, Drosophila larvae's transparent body allows investigators to use optical methods on freely moving animals, broadening research directions. Activating or inhibiting well-defined events in excitable cells with a fine temporal resolution using optogenetics and thermogenetics led to the association of functions of defined neural populations with specific behavioral outputs such as the induction of associative memory. Furthermore, combining optogenetics and thermogenetics with state-of-the-art approaches, including connectome mapping and machine learning-based behavioral quantification, might provide a complete view of the experience- and time-dependent variations of behavioral responses. These methodologies allow further understanding of the functional connections between neural circuits and behaviors such as chemosensory, motivational, courtship, and feeding behaviors and sleep, learning, and memory.
Collapse
Affiliation(s)
- Takato Honda
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA
| |
Collapse
|
11
|
Saitoe M, Naganos S, Miyashita T, Matsuno M, Ueno K. A non-canonical on-demand dopaminergic transmission underlying olfactory aversive learning. Neurosci Res 2021; 178:1-9. [PMID: 34973292 DOI: 10.1016/j.neures.2021.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/16/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
Dopamine (DA) is involved in various brain functions including associative learning. However, it is unclear how a small number of DA neurons appropriately regulates various brain functions. DA neurons have a large number of release sites and release DA non-specifically to a large number of target neurons in the projection area in response to the activity of DA neurons. In contrast to this "broad transmission", recent studies in Drosophila ex vivo functional imaging studies have identified "on-demand transmission" that occurs independent on activity of DA neurons and releases DA specifically onto the target neurons that have produced carbon monoxide (CO) as a retrograde signal for DA release. Whereas broad transmission modulates the global function of the target area, on-demand transmission is suitable for modulating the function of specific circuits, neurons, or synapses. In Drosophila olfactory aversive conditioning, odor and shock information are associated in the brain region called mushroom body (MB) to form olfactory aversive memory. It has been suggested that DA neurons projecting to the MB mediate the transmission of shock information and reinforcement simultaneously. However, the circuit model based on on-demand transmission proposes that transmission of shock information and reinforcement are mediated by distinct neural mechanisms; while shock transmission is glutamatergic, DA neurons mediates reinforcement. On-demand transmission provides mechanical insights into how DA neurons regulate various brain functions.
Collapse
Affiliation(s)
- Minoru Saitoe
- Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.
| | - Shintaro Naganos
- Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Tomoyuki Miyashita
- Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Motomi Matsuno
- Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Kohei Ueno
- Learning and Memory Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| |
Collapse
|
12
|
Borstel KJ, Stevenson PA. Individual Scores for Associative Learning in a Differential Appetitive Olfactory Paradigm Using Binary Logistic Regression Analysis. Front Behav Neurosci 2021; 15:741439. [PMID: 34650412 PMCID: PMC8505765 DOI: 10.3389/fnbeh.2021.741439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
Numerous invertebrates have contributed to our understanding of the biology of learning and memory. In most cases, learning performance is documented for groups of individuals, and nearly always based on a single, typically binary, behavioural metric for a conditioned response. This is unfortunate for several reasons. Foremost, it has become increasingly apparent that invertebrates exhibit inter-individual differences in many aspects of their behaviour, and also that the conditioned response probability for an animal group does not adequately represent the behaviour of individuals in classical conditioning. Furthermore, a binary response character cannot yield a graded score for each individual. We also hypothesise that due to the complexity of a conditioned response, a single metric need not reveal an individual's full learning potential. In this paper, we report individual learning scores for freely moving adult male crickets (Gryllus bimaculatus) based on a multi-factorial analysis of a conditioned response. First, in an absolute conditioning paradigm, we video-tracked the odour responses of animals that, in previous training, received either odour plus reward (sugar water), reward alone, or odour alone to identify behavioural predictors of a conditioned response. Measures of these predictors were then analysed using binary regression analysis to construct a variety of mathematical models that give a probability for each individual that it exhibited a conditioned response (Presp). Using standard procedures to compare model accuracy, we identified the strongest model which could reliably discriminate between the different odour responses. Finally, in a differential appetitive olfactory paradigm, we employed the model after training to calculate the Presp of animals to a conditioned, and to an unconditioned odour, and from the difference a learning index for each animal. Comparing the results from our multi-factor model with a single metric analysis (head bobbing in response to a conditioned odour), revealed advantageous aspects of the model. A broad distribution of model-learning scores, with modes at low and high values, support the notion of a high degree of variation in learning capacity, which we discuss.
Collapse
Affiliation(s)
- Kim J Borstel
- Department of Physiology of Animals and Behaviour, Institute of Biology, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Paul A Stevenson
- Department of Physiology of Animals and Behaviour, Institute of Biology, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| |
Collapse
|
13
|
Schwartz J, Réalis-Doyelle E, Le Franc L, Favrel P. A Novel Dop2/Invertebrate-Type Dopamine Signaling System Potentially Mediates Stress, Female Reproduction, and Early Development in the Pacific Oyster (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:683-694. [PMID: 34365528 DOI: 10.1007/s10126-021-10052-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The dopaminergic signaling pathway is involved in many physiological functions in vertebrates, but poorly documented in protostome species except arthropods. We functionally characterized a novel dopamine receptor in the Pacific oyster (Crassostrea gigas), activated by dopamine and tyramine with different efficacy and potency orders. This receptor - Cragi-DOP2R - belongs to the D1-like family of receptors and corresponds to the first representative of the Dop2/invertebrate-type dopamine receptor (Dop2/INDR) group ever identified in Lophotrochozoa. Cragi-DOP2R transcripts were expressed in various adult tissues, with higher expression levels in the visceral ganglia and the gills. Following an experiment under acute osmotic conditions, Cragi-DOP2R transcripts significantly increased in the visceral ganglia and decreased in the gills, suggesting a role of dopamine signaling in the mediation of osmotic stress. Furthermore, a role of the Cragi-DOP2R signaling pathway in female gametogenesis and in early oyster development was strongly suggested by the significantly higher levels of receptor transcripts in mature female gonads and in the early embryonic stages.
Collapse
Affiliation(s)
- Julie Schwartz
- UMR BOREA, Normandie Université, UNICAEN, Sorbonne Universités, IRD-207, Esplanade de la Paix, CNRS-806714032, CAEN cedex 5, MNHN, France.
| | - Emilie Réalis-Doyelle
- UMR BOREA, Normandie Université, UNICAEN, Sorbonne Universités, IRD-207, Esplanade de la Paix, CNRS-806714032, CAEN cedex 5, MNHN, France
| | - Lorane Le Franc
- UMR BOREA, Normandie Université, UNICAEN, Sorbonne Universités, IRD-207, Esplanade de la Paix, CNRS-806714032, CAEN cedex 5, MNHN, France
| | - Pascal Favrel
- UMR BOREA, Normandie Université, UNICAEN, Sorbonne Universités, IRD-207, Esplanade de la Paix, CNRS-806714032, CAEN cedex 5, MNHN, France
| |
Collapse
|
14
|
Thoener J, König C, Weiglein A, Toshima N, Mancini N, Amin F, Schleyer M. Associative learning in larval and adult Drosophila is impaired by the dopamine-synthesis inhibitor 3-Iodo-L-tyrosine. Biol Open 2021; 10:269081. [PMID: 34106227 PMCID: PMC8214425 DOI: 10.1242/bio.058198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/04/2021] [Indexed: 11/30/2022] Open
Abstract
Across the animal kingdom, dopamine plays a crucial role in conferring reinforcement signals that teach animals about the causal structure of the world. In the fruit fly Drosophila melanogaster, dopaminergic reinforcement has largely been studied using genetics, whereas pharmacological approaches have received less attention. Here, we apply the dopamine-synthesis inhibitor 3-Iodo-L-tyrosine (3IY), which causes acute systemic inhibition of dopamine signaling, and investigate its effects on Pavlovian conditioning. We find that 3IY feeding impairs sugar-reward learning in larvae while leaving task-relevant behavioral faculties intact, and that additional feeding of a precursor of dopamine (L-3,4-dihydroxyphenylalanine, L-DOPA), rescues this impairment. Concerning a different developmental stage and for the aversive valence domain. Moreover, we demonstrate that punishment learning by activating the dopaminergic neuron PPL1-γ1pedc in adult flies is also impaired by 3IY feeding, and can likewise be rescued by L-DOPA. Our findings exemplify the advantages of using a pharmacological approach in combination with the genetic techniques available in D. melanogaster to manipulate neuronal and behavioral function. Summary: We surveyed the effects of a dopamine-synthesis inhibitor on associative learning in larval and adult Drosophila. This approach can supplement genetic tools in investigating the conserved reinforcing function of dopamine.
Collapse
Affiliation(s)
- Juliane Thoener
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| | - Christian König
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| | - Aliće Weiglein
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| | - Naoko Toshima
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| | - Nino Mancini
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| | - Fatima Amin
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| | - Michael Schleyer
- Leibniz Institute for Neurobiology, Department of Genetics, 39118 Magdeburg, Germany
| |
Collapse
|
15
|
Schumann I, Berger M, Nowag N, Schäfer Y, Saumweber J, Scholz H, Thum AS. Ethanol-guided behavior in Drosophila larvae. Sci Rep 2021; 11:12307. [PMID: 34112872 PMCID: PMC8192949 DOI: 10.1038/s41598-021-91677-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022] Open
Abstract
Chemosensory signals allow vertebrates and invertebrates not only to orient in its environment toward energy-rich food sources to maintain nutrition but also to avoid unpleasant or even poisonous substrates. Ethanol is a substance found in the natural environment of Drosophila melanogaster. Accordingly, D. melanogaster has evolved specific sensory systems, physiological adaptations, and associated behaviors at its larval and adult stage to perceive and process ethanol. To systematically analyze how D. melanogaster larvae respond to naturally occurring ethanol, we examined ethanol-induced behavior in great detail by reevaluating existing approaches and comparing them with new experiments. Using behavioral assays, we confirm that larvae are attracted to different concentrations of ethanol in their environment. This behavior is controlled by olfactory and other environmental cues. It is independent of previous exposure to ethanol in their food. Moreover, moderate, naturally occurring ethanol concentration of 4% results in increased larval fitness. On the contrary, higher concentrations of 10% and 20% ethanol, which rarely or never appear in nature, increase larval mortality. Finally, ethanol also serves as a positive teaching signal in learning and memory and updates valence associated with simultaneously processed odor information. Since information on how larvae perceive and process ethanol at the genetic and neuronal level is limited, the establishment of standardized assays described here is an important step towards their discovery.
Collapse
Affiliation(s)
- Isabell Schumann
- Department of Genetics, Leipzig University, 04103, Leipzig, Germany
| | - Michael Berger
- Department of Biology, University of Cologne, 50674, Cologne, Germany
| | - Nadine Nowag
- Department of Genetics, Leipzig University, 04103, Leipzig, Germany
| | - Yannick Schäfer
- Department of Biology, University of Cologne, 50674, Cologne, Germany
| | | | - Henrike Scholz
- Department of Biology, University of Cologne, 50674, Cologne, Germany
| | - Andreas S Thum
- Department of Genetics, Leipzig University, 04103, Leipzig, Germany. .,Department of Genetics, Institute of Biology, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103, Leipzig, Germany.
| |
Collapse
|
16
|
Weiglein A, Thoener J, Feldbruegge I, Warzog L, Mancini N, Schleyer M, Gerber B. Aversive teaching signals from individual dopamine neurons in larval Drosophila show qualitative differences in their temporal "fingerprint". J Comp Neurol 2021; 529:1553-1570. [PMID: 32965036 DOI: 10.1002/cne.25037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/07/2022]
Abstract
Dopamine serves many functions, and dopamine neurons are correspondingly diverse. We use a combination of optogenetics, behavioral experiments, and high-resolution video-tracking to probe for the functional capacities of two single, identified dopamine neurons in larval Drosophila. The DAN-f1 and the DAN-d1 neuron were recently found to carry aversive teaching signals during Pavlovian olfactory learning. We enquire into a fundamental feature of these teaching signals, namely their temporal "fingerprint". That is, receiving punishment feels bad, whereas being relieved from it feels good, and animals and humans alike learn with opposite valence about the occurrence and the termination of punishment (the same principle applies in the appetitive domain, with opposite sign). We find that DAN-f1 but not DAN-d1 can mediate such timing-dependent valence reversal: presenting an odor before DAN-f1 activation leads to learned avoidance of the odor (punishment memory), whereas presenting the odor upon termination of DAN-f1 activation leads to learned approach (relief memory). In contrast, DAN-d1 confers punishment memory only. These effects are further characterized in terms of the impact of the duration of optogenetic activation, the temporal stability of the memories thus established, and the specific microbehavioral patterns of locomotion through which they are expressed. Together with recent findings in the appetitive domain and from adult Drosophila, our results suggest that heterogeneity in the temporal fingerprint of teaching signals might be a more general principle of reinforcement processing through dopamine neurons.
Collapse
Affiliation(s)
- Aliće Weiglein
- Department of Genetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Juliane Thoener
- Department of Genetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Irina Feldbruegge
- Department of Genetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Louisa Warzog
- Department of Genetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Nino Mancini
- Department of Genetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael Schleyer
- Department of Genetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Bertram Gerber
- Department of Genetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute of Biology, Otto von Guericke University Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
17
|
Wong JYH, Wan BA, Bland T, Montagnese M, McLachlan AD, O'Kane CJ, Zhang SW, Masuda-Nakagawa LM. Octopaminergic neurons have multiple targets in Drosophila larval mushroom body calyx and can modulate behavioral odor discrimination. ACTA ACUST UNITED AC 2021; 28:53-71. [PMID: 33452115 PMCID: PMC7812863 DOI: 10.1101/lm.052159.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Discrimination of sensory signals is essential for an organism to form and retrieve memories of relevance in a given behavioral context. Sensory representations are modified dynamically by changes in behavioral state, facilitating context-dependent selection of behavior, through signals carried by noradrenergic input in mammals, or octopamine (OA) in insects. To understand the circuit mechanisms of this signaling, we characterized the function of two OA neurons, sVUM1 neurons, that originate in the subesophageal zone (SEZ) and target the input region of the memory center, the mushroom body (MB) calyx, in larval Drosophila. We found that sVUM1 neurons target multiple neurons, including olfactory projection neurons (PNs), the inhibitory neuron APL, and a pair of extrinsic output neurons, but relatively few mushroom body intrinsic neurons, Kenyon cells. PN terminals carried the OA receptor Oamb, a Drosophila α1-adrenergic receptor ortholog. Using an odor discrimination learning paradigm, we showed that optogenetic activation of OA neurons compromised discrimination of similar odors but not learning ability. Our results suggest that sVUM1 neurons modify odor representations via multiple extrinsic inputs at the sensory input area to the MB olfactory learning circuit.
Collapse
Affiliation(s)
- J Y Hilary Wong
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Bo Angela Wan
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Tom Bland
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Marcella Montagnese
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Alex D McLachlan
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Cahir J O'Kane
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Shuo Wei Zhang
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | | |
Collapse
|
18
|
Dvořáček J, Kodrík D. Drosophila reward system - A summary of current knowledge. Neurosci Biobehav Rev 2021; 123:301-319. [PMID: 33421541 DOI: 10.1016/j.neubiorev.2020.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/16/2020] [Accepted: 12/27/2020] [Indexed: 01/19/2023]
Abstract
The fruit fly Drosophila melanogaster brain is the most extensively investigated model of a reward system in insects. Drosophila can discriminate between rewarding and punishing environmental stimuli and consequently undergo associative learning. Functional models, especially those modelling mushroom bodies, are constantly being developed using newly discovered information, adding to the complexity of creating a simple model of the reward system. This review aims to clarify whether its reward system also includes a hedonic component. Neurochemical systems that mediate the 'wanting' component of reward in the Drosophila brain are well documented, however, the systems that mediate the pleasure component of reward in mammals, including those involving the endogenous opioid and endocannabinoid systems, are unlikely to be present in insects. The mushroom body components exhibit differential developmental age and different functional processes. We propose a hypothetical hierarchy of the levels of reinforcement processing in response to particular stimuli, and the parallel processes that take place concurrently. The possible presence of activity-silencing and meta-satiety inducing levels in Drosophila should be further investigated.
Collapse
Affiliation(s)
- Jiří Dvořáček
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
19
|
Peng T, Derstroff D, Maus L, Bauer T, Grüter C. Forager age and foraging state, but not cumulative foraging activity, affect biogenic amine receptor gene expression in the honeybee mushroom bodies. GENES BRAIN AND BEHAVIOR 2021; 20:e12722. [PMID: 33325617 DOI: 10.1111/gbb.12722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 01/17/2023]
Abstract
Foraging behavior is crucial for the development of a honeybee colony. Biogenic amines are key mediators of learning and the transition from in-hive tasks to foraging. Foragers vary considerably in their behavior, but whether and how this behavioral diversity depends on biogenic amines is not yet well understood. For example, forager age, cumulative foraging activity or foraging state may all be linked to biogenic amine signaling. Furthermore, expression levels may fluctuate depending on daytime. We tested if these intrinsic and extrinsic factors are linked to biogenic amine signaling by quantifying the expression of octopamine, dopamine and tyramine receptor genes in the mushroom bodies, important tissues for learning and memory. We found that older foragers had a significantly higher expression of Amdop1, Amdop2, AmoctαR1, and AmoctβR1 compared to younger foragers, whereas Amtar1 showed the opposite pattern. Surprisingly, our measures of cumulative foraging activity were not related to the expression of the same receptor genes in the mushroom bodies. Furthermore, we trained foragers to collect sucrose solution at a specific time of day and tested if the foraging state of time-trained foragers affected receptor gene expression. Bees engaged in foraging had a higher expression of Amdop1 and AmoctβR3/4 than inactive foragers. Finally, the expression of Amdop1, Amdop3, AmoctαR1, and Amtar1 also varied with daytime. Our results show that receptor gene expression in forager mushroom bodies is complex and depends on both intrinsic and extrinsic factors.
Collapse
Affiliation(s)
- Tianfei Peng
- College of Plant Science, Jilin University, Changchun, China.,Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Dennis Derstroff
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Lea Maus
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Timo Bauer
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Christoph Grüter
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany.,School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
20
|
Serotonin receptor 5-HT7 in Drosophila mushroom body neurons mediates larval appetitive olfactory learning. Sci Rep 2020; 10:21267. [PMID: 33277559 PMCID: PMC7718245 DOI: 10.1038/s41598-020-77910-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/09/2020] [Indexed: 11/29/2022] Open
Abstract
Serotonin (5-HT) and dopamine are critical neuromodulators known to regulate a range of behaviors in invertebrates and mammals, such as learning and memory. Effects of both serotonin and dopamine are mediated largely through their downstream G-protein coupled receptors through cAMP-PKA signaling. While the role of dopamine in olfactory learning in Drosophila is well described, the function of serotonin and its downstream receptors on Drosophila olfactory learning remain largely unexplored. In this study we show that the output of serotonergic neurons, possibly through points of synaptic contacts on the mushroom body (MB), is essential for training during olfactory associative learning in Drosophila larvae. Additionally, we demonstrate that the regulation of olfactory associative learning by serotonin is mediated by its downstream receptor (d5-HT7) in a cAMP-dependent manner. We show that d5-HT7 expression specifically in the MB, an anatomical structure essential for olfactory learning in Drosophila, is critical for olfactory associative learning. Importantly our work shows that spatio-temporal restriction of d5-HT7 expression to the MB is sufficient to rescue olfactory learning deficits in a d5-HT7 null larvae. In summary, our results establish a critical, and previously unknown, role of d5-HT7 in olfactory learning.
Collapse
|
21
|
Haverkamp A, Smid HM. A neuronal arms race: the role of learning in parasitoid-host interactions. CURRENT OPINION IN INSECT SCIENCE 2020; 42:47-54. [PMID: 32947014 DOI: 10.1016/j.cois.2020.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Parasitic wasps and their larval hosts are intimately connected by an array of behavioral adaptations and counter-adaptations. This co-evolution has led to highly specific, natural variation in learning rates and memory consolidation in parasitoid wasps. Similarly, the hosts of the parasitoids show specific sensory adaptations as well as non-associative learning strategies for parasitoid avoidance. However, these neuronal and behavioral adaptations of both hosts and wasps have so far been studied largely apart from each other. Here we argue that a parallel investigation of the nervous system in wasps and their hosts might lead to novel insights into the evolution of insect behavior and the neurobiology of learning and memory.
Collapse
Affiliation(s)
- Alexander Haverkamp
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
22
|
Siddique YH, Rahul, Idrisi M, Shahid M. Effect of Cabergoline on Cognitive Impairments in Transgenic Drosophila Model of Parkinson’s Disease. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200514100917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Parkinson’s disease is a common neurodegenerative disorder characterized
by selective loss of dopaminergic neurons in the substantia nigra pars compacta.
Introduction:
The effects of alpha synuclein, parkin mutation and pharmacological agents have
been studied in the Drosophila model.
Methods:
The effect of cabergoline was studied on the cognitive impairments exhibited by the
transgenic Drosophila expressing human alpha-synuclein in the neurons. The PD flies were allowed
to feed on the diet having 0.5, 1 and 1.5 μM of cabergoline.
Results and Discussion:
The exposure of cabergoline not only showed a dose-dependent significant
delay in the cognitive impairments but also prevented the loss of dopaminergic neurons. Molecular
docking studies showed the positive interaction between cabergoline and alpha-synuclein.
Conclusion:
The results suggest a protective effect of cabergoline against the cognitive impairments.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mantasha Idrisi
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd. Shahid
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
23
|
Schleyer M, Weiglein A, Thoener J, Strauch M, Hartenstein V, Kantar Weigelt M, Schuller S, Saumweber T, Eichler K, Rohwedder A, Merhof D, Zlatic M, Thum AS, Gerber B. Identification of Dopaminergic Neurons That Can Both Establish Associative Memory and Acutely Terminate Its Behavioral Expression. J Neurosci 2020; 40:5990-6006. [PMID: 32586949 PMCID: PMC7392503 DOI: 10.1523/jneurosci.0290-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/14/2020] [Accepted: 05/19/2020] [Indexed: 02/01/2023] Open
Abstract
An adaptive transition from exploring the environment in search of vital resources to exploiting these resources once the search was successful is important to all animals. Here we study the neuronal circuitry that allows larval Drosophila melanogaster of either sex to negotiate this exploration-exploitation transition. We do so by combining Pavlovian conditioning with high-resolution behavioral tracking, optogenetic manipulation of individually identified neurons, and EM data-based analyses of synaptic organization. We find that optogenetic activation of the dopaminergic neuron DAN-i1 can both establish memory during training and acutely terminate learned search behavior in a subsequent recall test. Its activation leaves innate behavior unaffected, however. Specifically, DAN-i1 activation can establish associative memories of opposite valence after paired and unpaired training with odor, and its activation during the recall test can terminate the search behavior resulting from either of these memories. Our results further suggest that in its behavioral significance DAN-i1 activation resembles, but does not equal, sugar reward. Dendrogram analyses of all the synaptic connections between DAN-i1 and its two main targets, the Kenyon cells and the mushroom body output neuron MBON-i1, further suggest that the DAN-i1 signals during training and during the recall test could be delivered to the Kenyon cells and to MBON-i1, respectively, within previously unrecognized, locally confined branching structures. This would provide an elegant circuit motif to terminate search on its successful completion.SIGNIFICANCE STATEMENT In the struggle for survival, animals have to explore their environment in search of food. Once food is found, however, it is adaptive to prioritize exploiting it over continuing a search that would now be as pointless as searching for the glasses you are wearing. This exploration-exploitation trade-off is important for animals and humans, as well as for technical search devices. We investigate which of the only 10,000 neurons of a fruit fly larva can tip the balance in this trade-off, and identify a single dopamine neuron called DAN-i1 that can do so. Given the similarities in dopamine neuron function across the animal kingdom, this may reflect a general principle of how search is terminated once it is successful.
Collapse
Affiliation(s)
- Michael Schleyer
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Aliće Weiglein
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Juliane Thoener
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Martin Strauch
- Institute of Imaging & Computer Vision, RWTH Aachen University, 52056 Aachen, Germany
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095-1606
| | - Melisa Kantar Weigelt
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Sarah Schuller
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Timo Saumweber
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Katharina Eichler
- University of Konstanz, Institute for Biology, 78464 Konstanz, Germany
- HHMI Janelia Research Campus, Ashburn, Virginia 20147
- Institute of Neurobiology, University of Puerto Rico Medical Science Campus, Old San Juan, Puerto Rico 00901
| | - Astrid Rohwedder
- University of Konstanz, Institute for Biology, 78464 Konstanz, Germany
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Dorit Merhof
- Institute of Imaging & Computer Vision, RWTH Aachen University, 52056 Aachen, Germany
| | - Marta Zlatic
- HHMI Janelia Research Campus, Ashburn, Virginia 20147
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Andreas S Thum
- University of Konstanz, Institute for Biology, 78464 Konstanz, Germany
- University Leipzig, Institute for Biology, 04103 Leipzig, Germany
| | - Bertram Gerber
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
- Centre for Behavioural Brain Sciences, 39108 Magdeburg, Germany
- Institute for Biology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
24
|
Eschbach C, Fushiki A, Winding M, Schneider-Mizell CM, Shao M, Arruda R, Eichler K, Valdes-Aleman J, Ohyama T, Thum AS, Gerber B, Fetter RD, Truman JW, Litwin-Kumar A, Cardona A, Zlatic M. Recurrent architecture for adaptive regulation of learning in the insect brain. Nat Neurosci 2020; 23:544-555. [PMID: 32203499 PMCID: PMC7145459 DOI: 10.1038/s41593-020-0607-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/06/2020] [Indexed: 11/09/2022]
Abstract
Dopaminergic neurons (DANs) drive learning across the animal kingdom, but the upstream circuits that regulate their activity and thereby learning remain poorly understood. We provide a synaptic-resolution connectome of the circuitry upstream of all DANs in a learning center, the mushroom body of Drosophila larva. We discover afferent sensory pathways and a large population of neurons that provide feedback from mushroom body output neurons and link distinct memory systems (aversive and appetitive). We combine this with functional studies of DANs and their presynaptic partners and with comprehensive circuit modeling. We find that DANs compare convergent feedback from aversive and appetitive systems, which enables the computation of integrated predictions that may improve future learning. Computational modeling reveals that the discovered feedback motifs increase model flexibility and performance on learning tasks. Our study provides the most detailed view to date of biological circuit motifs that support associative learning.
Collapse
Affiliation(s)
- Claire Eschbach
- HHMI Janelia Research Campus, Ashburn, VA, USA
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Akira Fushiki
- HHMI Janelia Research Campus, Ashburn, VA, USA
- Departments of Neuroscience and Neurology, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Michael Winding
- HHMI Janelia Research Campus, Ashburn, VA, USA
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Casey M Schneider-Mizell
- HHMI Janelia Research Campus, Ashburn, VA, USA
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Mei Shao
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | | | - Katharina Eichler
- HHMI Janelia Research Campus, Ashburn, VA, USA
- Institute of Neurobiology, University of Puerto Rico Medical Science Campus, San Juan, Puerto Rico, USA
| | | | - Tomoko Ohyama
- HHMI Janelia Research Campus, Ashburn, VA, USA
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Andreas S Thum
- Department of Genetics, Institute for Biology, University of Leipzig, Leipzig, Germany
| | - Bertram Gerber
- Abteilung Genetik von Lernen & Gedächtnis, Leibniz Institut für Neurobiologie, Otto von Guericke University Magdeburg, Institut für Biologie, Verhaltensgenetik, & Center for Behavioral Brain Sciences, Magdeburg, Germany
| | | | - James W Truman
- HHMI Janelia Research Campus, Ashburn, VA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Ashok Litwin-Kumar
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Albert Cardona
- HHMI Janelia Research Campus, Ashburn, VA, USA.
- MRC Laboratory of Molecular Biology, Cambridge, UK.
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK.
| | - Marta Zlatic
- HHMI Janelia Research Campus, Ashburn, VA, USA.
- Department of Zoology, University of Cambridge, Cambridge, UK.
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
25
|
Silva B, Hidalgo S, Campusano JM. Dop1R1, a type 1 dopaminergic receptor expressed in Mushroom Bodies, modulates Drosophila larval locomotion. PLoS One 2020; 15:e0229671. [PMID: 32101569 PMCID: PMC7043742 DOI: 10.1371/journal.pone.0229671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
As in vertebrates, dopaminergic neural systems are key regulators of motor programs in insects, including the fly Drosophila melanogaster. Dopaminergic systems innervate the Mushroom Bodies (MB), an important association area in the insect brain primarily associated to olfactory learning and memory, but that has been also implicated with the execution of motor programs. The main objectives of this work is to assess the idea that dopaminergic systems contribute to the execution of motor programs in Drosophila larvae, and then, to evaluate the contribution of specific dopaminergic receptors expressed in MB to these programs. Our results show that animals bearing a mutation in the dopamine transporter show reduced locomotion, while mutants for the dopaminergic biosynthetic enzymes or the dopamine receptor Dop1R1 exhibit increased locomotion. Pan-neuronal expression of an RNAi for the Dop1R1 confirmed these results. Further studies show that animals expressing the RNAi for Dop1R1 in the entire MB neuronal population or only in the MB γ-lobe forming neurons, exhibit an increased motor output, as well. Interestingly, our results also suggest that other dopaminergic receptors do not contribute to larval motor behavior. Thus, our data support the proposition that CNS dopamine systems innervating MB neurons modulate larval locomotion and that Dop1R1 mediates this effect.
Collapse
Affiliation(s)
- Bryon Silva
- Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Sergio Hidalgo
- Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, Bristol, United Kingdom
| | - Jorge M. Campusano
- Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
26
|
Brünner B, Saumweber J, Samur M, Weber D, Schumann I, Mahishi D, Rohwedder A, Thum AS. Food restriction reconfigures naïve and learned choice behavior in Drosophila larvae. J Neurogenet 2020; 34:123-132. [PMID: 31975653 DOI: 10.1080/01677063.2020.1714612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In many animals, the establishment and expression of food-related memory is limited by the presence of food and promoted by its absence, implying that this behavior is driven by motivation. In the past, this has already been demonstrated in various insects including honeybees and adult Drosophila. For Drosophila larvae, which are characterized by an immense growth and the resulting need for constant food intake, however, knowledge is rather limited. Accordingly, we have analyzed whether starvation modulates larval memory formation or expression after appetitive classical olfactory conditioning, in which an odor is associated with a sugar reward. We show that odor-sugar memory of starved larvae lasts longer than in fed larvae, although the initial performance is comparable. 80 minutes after odor fructose conditioning, only starved but not fed larvae show a reliable odor-fructose memory. This is likely due to a specific increase in the stability of anesthesia-resistant memory (ARM). Furthermore, we observe that starved larvae, in contrast to fed ones, prefer sugars that offer a nutritional benefit in addition to their sweetness. Taken together our work shows that Drosophila larvae adjust the expression of learned and naïve choice behaviors in the absence of food. These effects are only short-lasting probably due to their lifestyle and their higher internal motivation to feed. In the future, the extensive use of established genetic tools will allow us to identify development-specific differences arising at the neuronal and molecular level.
Collapse
Affiliation(s)
- Benita Brünner
- Department of Genetics, University of Leipzig, Leipzig, Germany
| | | | - Merve Samur
- Department of Genetics, University of Leipzig, Leipzig, Germany.,Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Turkey
| | - Denise Weber
- Department of Genetics, University of Leipzig, Leipzig, Germany
| | | | - Deepthi Mahishi
- Department of Genetics, University of Leipzig, Leipzig, Germany
| | | | - Andreas S Thum
- Department of Genetics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
27
|
Affiliation(s)
- Nadine Ehmann
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Dennis Pauls
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
28
|
Lyutova R, Selcho M, Pfeuffer M, Segebarth D, Habenstein J, Rohwedder A, Frantzmann F, Wegener C, Thum AS, Pauls D. Reward signaling in a recurrent circuit of dopaminergic neurons and peptidergic Kenyon cells. Nat Commun 2019; 10:3097. [PMID: 31308381 PMCID: PMC6629635 DOI: 10.1038/s41467-019-11092-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 06/20/2019] [Indexed: 11/09/2022] Open
Abstract
Dopaminergic neurons in the brain of the Drosophila larva play a key role in mediating reward information to the mushroom bodies during appetitive olfactory learning and memory. Using optogenetic activation of Kenyon cells we provide evidence that recurrent signaling exists between Kenyon cells and dopaminergic neurons of the primary protocerebral anterior (pPAM) cluster. Optogenetic activation of Kenyon cells paired with odor stimulation is sufficient to induce appetitive memory. Simultaneous impairment of the dopaminergic pPAM neurons abolishes appetitive memory expression. Thus, we argue that dopaminergic pPAM neurons mediate reward information to the Kenyon cells, and in turn receive feedback from Kenyon cells. We further show that this feedback signaling is dependent on short neuropeptide F, but not on acetylcholine known to be important for odor-shock memories in adult flies. Our data suggest that recurrent signaling routes within the larval mushroom body circuitry may represent a mechanism subserving memory stabilization.
Collapse
Affiliation(s)
- Radostina Lyutova
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Mareike Selcho
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Maximilian Pfeuffer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Dennis Segebarth
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany.,Institute of Clinical Neurobiology, University Hospital of Würzburg, D-97078, Würzburg, Germany
| | - Jens Habenstein
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany.,Department of Behavioral Physiology and Sociobiology, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Astrid Rohwedder
- Department of Genetics, University of Leipzig, D-04103, Leipzig, Germany
| | - Felix Frantzmann
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany
| | - Andreas S Thum
- Department of Genetics, University of Leipzig, D-04103, Leipzig, Germany
| | - Dennis Pauls
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, D-97074, Würzburg, Germany.
| |
Collapse
|
29
|
Bielopolski N, Amin H, Apostolopoulou AA, Rozenfeld E, Lerner H, Huetteroth W, Lin AC, Parnas M. Inhibitory muscarinic acetylcholine receptors enhance aversive olfactory learning in adult Drosophila. eLife 2019; 8:48264. [PMID: 31215865 PMCID: PMC6641838 DOI: 10.7554/elife.48264] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/18/2019] [Indexed: 11/13/2022] Open
Abstract
Olfactory associative learning in Drosophila is mediated by synaptic plasticity between the Kenyon cells of the mushroom body and their output neurons. Both Kenyon cells and their inputs from projection neurons are cholinergic, yet little is known about the physiological function of muscarinic acetylcholine receptors in learning in adult flies. Here, we show that aversive olfactory learning in adult flies requires type A muscarinic acetylcholine receptors (mAChR-A), particularly in the gamma subtype of Kenyon cells. mAChR-A inhibits odor responses and is localized in Kenyon cell dendrites. Moreover, mAChR-A knockdown impairs the learning-associated depression of odor responses in a mushroom body output neuron. Our results suggest that mAChR-A function in Kenyon cell dendrites is required for synaptic plasticity between Kenyon cells and their output neurons.
Collapse
Affiliation(s)
- Noa Bielopolski
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hoger Amin
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | | | - Eyal Rozenfeld
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hadas Lerner
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Wolf Huetteroth
- Institute for Biology, University of Leipzig, Leipzig, Germany
| | - Andrew C Lin
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Moshe Parnas
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Aminergic neuromodulation of associative visual learning in harnessed honey bees. Neurobiol Learn Mem 2018; 155:556-567. [DOI: 10.1016/j.nlm.2018.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/04/2018] [Accepted: 05/19/2018] [Indexed: 11/21/2022]
|
31
|
Connectomics and function of a memory network: the mushroom body of larval Drosophila. Curr Opin Neurobiol 2018; 54:146-154. [PMID: 30368037 DOI: 10.1016/j.conb.2018.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/04/2018] [Indexed: 11/20/2022]
Abstract
The Drosophila larva is a relatively simple, 10 000-neuron study case for learning and memory with enticing analytical power, combining genetic tractability, the availability of robust behavioral assays, the opportunity for single-cell transgenic manipulation, and an emerging synaptic connectome of its complete central nervous system. Indeed, although the insect mushroom body is a much-studied memory network, the connectome revealed that more than half of the classes of connection within the mushroom body had escaped attention. The connectome also revealed circuitry that integrates, both within and across brain hemispheres, higher-order sensory input, intersecting valence signals, and output neurons that instruct behavior. Further, it was found that activating individual dopaminergic mushroom body input neurons can have a rewarding or a punishing effect on olfactory stimuli associated with it, depending on the relative timing of this activation, and that larvae form molecularly dissociable short-term, long-term, and amnesia-resistant memories. Together, the larval mushroom body is a suitable study case to achieve a nuanced account of molecular function in a behaviorally meaningful memory network.
Collapse
|
32
|
Tomasiunaite U, Widmann A, Thum AS. Maggot Instructor: Semi-Automated Analysis of Learning and Memory in Drosophila Larvae. Front Psychol 2018; 9:1010. [PMID: 29973900 PMCID: PMC6019503 DOI: 10.3389/fpsyg.2018.01010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 11/21/2022] Open
Abstract
For several decades, Drosophila has been widely used as a suitable model organism to study the fundamental processes of associative olfactory learning and memory. More recently, this condition also became true for the Drosophila larva, which has become a focus for learning and memory studies based on a number of technical advances in the field of anatomical, molecular, and neuronal analyses. The ongoing efforts should be mentioned to reconstruct the complete connectome of the larval brain featuring a total of about 10,000 neurons and the development of neurogenic tools that allow individual manipulation of each neuron. By contrast, standardized behavioral assays that are commonly used to analyze learning and memory in Drosophila larvae exhibit no such technical development. Most commonly, a simple assay with Petri dishes and odor containers is used; in this method, the animals must be manually transferred in several steps. The behavioral approach is therefore labor-intensive and limits the capacity to conduct large-scale genetic screenings in small laboratories. To circumvent these limitations, we introduce a training device called the Maggot Instructor. This device allows automatic training up to 10 groups of larvae in parallel. To achieve such goal, we used fully automated, computer-controlled optogenetic activation of single olfactory neurons in combination with the application of electric shocks. We showed that Drosophila larvae trained with the Maggot Instructor establish an odor-specific memory, which is independent of handling and non-associative effects. The Maggot Instructor will allow to investigate the large collections of genetically modified larvae in a short period and with minimal human resources. Therefore, the Maggot Instructor should be able to help extensive behavioral experiments in Drosophila larvae to keep up with the current technical advancements. In the longer term, this condition will lead to a better understanding of how learning and memory are organized at the cellular, synaptic, and molecular levels in Drosophila larvae.
Collapse
Affiliation(s)
| | - Annekathrin Widmann
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Molecular Neurobiology of Behavior, Georg-August-University Göttingen, Göttingen, Germany
| | - Andreas S Thum
- Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Genetics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
33
|
Marescotti M, Lagogiannis K, Webb B, Davies RW, Armstrong JD. Monitoring brain activity and behaviour in freely moving Drosophila larvae using bioluminescence. Sci Rep 2018; 8:9246. [PMID: 29915372 PMCID: PMC6006295 DOI: 10.1038/s41598-018-27043-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/09/2018] [Indexed: 12/18/2022] Open
Abstract
We present a bioluminescence method, based on the calcium-reporter Aequorin (AEQ), that exploits targeted transgenic expression patterns to identify activity of specific neural groups in the larval Drosophila nervous system. We first refine, for intact but constrained larva, the choice of Aequorin transgene and method of delivery of the co-factor coelenterazine and assay the luminescence signal produced for different neural expression patterns and concentrations of co-factor, using standard photo-counting techniques. We then develop an apparatus that allows simultaneous measurement of this neural signal while video recording the crawling path of an unconstrained animal. The setup also enables delivery and measurement of an olfactory cue (CO2) and we demonstrate the ability to record synchronized changes in Kenyon cell activity and crawling speed caused by the stimulus. Our approach is thus shown to be an effective and affordable method for studying the neural basis of behavior in Drosophila larvae.
Collapse
Affiliation(s)
- Manuela Marescotti
- Brainwave-Discovery Ltd., Edinburgh, Scotland, UK. .,The University of Edinburgh, Edinburgh, Scotland, UK.
| | - Konstantinos Lagogiannis
- The University of Edinburgh, Edinburgh, Scotland, UK.,Centre Of Developmental Neuroscience, King's College London, London, UK
| | - Barbara Webb
- The University of Edinburgh, Edinburgh, Scotland, UK
| | - R Wayne Davies
- Brainwave-Discovery Ltd., Edinburgh, Scotland, UK.,The University of Edinburgh, Edinburgh, Scotland, UK
| | - J Douglas Armstrong
- Brainwave-Discovery Ltd., Edinburgh, Scotland, UK.,The University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
34
|
Morris M, Shaw A, Lambert M, Perry HH, Lowenstein E, Valenzuela D, Velazquez-Ulloa NA. Developmental nicotine exposure affects larval brain size and the adult dopaminergic system of Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2018; 18:13. [PMID: 29898654 PMCID: PMC6001141 DOI: 10.1186/s12861-018-0172-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/21/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Pregnant women may be exposed to nicotine if they smoke or use tobacco products, nicotine replacement therapy, or via e-cigarettes. Prenatal nicotine exposure has been shown to have deleterious effects on the nervous system in mammals including changes in brain size and in the dopaminergic system. The genetic and molecular mechanisms for these changes are not well understood. A Drosophila melanogaster model for these effects of nicotine exposure could contribute to faster identification of genes and molecular pathways underlying these effects. The purpose of this study was to determine if developmental nicotine exposure affects the nervous system of Drosophila melanogaster, focusing on changes to brain size and the dopaminergic system at two developmental stages. RESULTS We reared flies on control or nicotine food from egg to 3rd instar larvae or from egg to adult and determined effectiveness of the nicotine treatment. We used immunohistochemistry to visualize the whole brain and dopaminergic neurons, using tyrosine hydroxylase as the marker. We measured brain area, tyrosine hydroxylase fluorescence, and counted the number of dopaminergic neurons in brain clusters. We detected an increase in larval brain hemisphere area, a decrease in tyrosine hydroxylase fluorescence in adult central brains, and a decrease in the number of neurons in the PPM3 adult dopaminergic cluster. We tested involvement of Dα7, one of the nicotinic acetylcholine receptor subunits, and found it was involved in eclosion, as previously described, but not involved in brain size. CONCLUSIONS We conclude that developmental nicotine exposure in Drosophila melanogaster affects brain size and the dopaminergic system. Prenatal nicotine exposure in mammals has also been shown to have effects on brain size and in the dopaminergic system. This study further establishes Drosophila melanogaster as model organism to study the effects of developmental nicotine exposure. The genetic and molecular tools available for Drosophila research will allow elucidation of the mechanisms underlying the effects of nicotine exposure during development.
Collapse
Affiliation(s)
- Melanie Morris
- School of Medicine, University of Washington, Seattle, USA
| | - Ariel Shaw
- Biochemistry, Cell and Molecular Biology Program, Lewis & Clark College, Portland, USA
| | | | | | - Eve Lowenstein
- Biology Department, Lewis & Clark College, Portland, USA
| | | | | |
Collapse
|
35
|
Widmann A, Eichler K, Selcho M, Thum AS, Pauls D. Odor-taste learning in Drosophila larvae. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:47-54. [PMID: 28823531 DOI: 10.1016/j.jinsphys.2017.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
The Drosophila larva is an attractive model system to study fundamental questions in the field of neuroscience. Like the adult fly, the larva offers a seemingly unlimited genetic toolbox, which allows one to visualize, silence or activate neurons down to the single cell level. This, combined with its simplicity in terms of cell numbers, offers a useful system to study the neuronal correlates of complex processes including associative odor-taste learning and memory formation. Here, we summarize the current knowledge about odor-taste learning and memory at the behavioral level and integrate the recent progress on the larval connectome to shed light on the sub-circuits that allow Drosophila larvae to integrate present sensory input in the context of past experience and to elicit an appropriate behavioral response.
Collapse
Affiliation(s)
| | - Katharina Eichler
- Department of Biology, University of Konstanz, D-78464 Konstanz, Germany; HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Mareike Selcho
- Department of Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Andreas S Thum
- Department of Biology, University of Konstanz, D-78464 Konstanz, Germany; Department of Genetics, University of Leipzig, D-04103 Leipzig, Germany.
| | - Dennis Pauls
- Department of Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, D-97074 Würzburg, Germany.
| |
Collapse
|
36
|
Sun J, Xu AQ, Giraud J, Poppinga H, Riemensperger T, Fiala A, Birman S. Neural Control of Startle-Induced Locomotion by the Mushroom Bodies and Associated Neurons in Drosophila. Front Syst Neurosci 2018; 12:6. [PMID: 29643770 PMCID: PMC5882849 DOI: 10.3389/fnsys.2018.00006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/05/2018] [Indexed: 01/12/2023] Open
Abstract
Startle-induced locomotion is commonly used in Drosophila research to monitor locomotor reactivity and its progressive decline with age or under various neuropathological conditions. A widely used paradigm is startle-induced negative geotaxis (SING), in which flies entrapped in a narrow column react to a gentle mechanical shock by climbing rapidly upwards. Here we combined in vivo manipulation of neuronal activity and splitGFP reconstitution across cells to search for brain neurons and putative circuits that regulate this behavior. We show that the activity of specific clusters of dopaminergic neurons (DANs) afferent to the mushroom bodies (MBs) modulates SING, and that DAN-mediated SING regulation requires expression of the DA receptor Dop1R1/Dumb, but not Dop1R2/Damb, in intrinsic MB Kenyon cells (KCs). We confirmed our previous observation that activating the MB α'β', but not αβ, KCs decreased the SING response, and we identified further MB neurons implicated in SING control, including KCs of the γ lobe and two subtypes of MB output neurons (MBONs). We also observed that co-activating the αβ KCs antagonizes α'β' and γ KC-mediated SING modulation, suggesting the existence of subtle regulation mechanisms between the different MB lobes in locomotion control. Overall, this study contributes to an emerging picture of the brain circuits modulating locomotor reactivity in Drosophila that appear both to overlap and differ from those underlying associative learning and memory, sleep/wake state and stress-induced hyperactivity.
Collapse
Affiliation(s)
- Jun Sun
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, Centre National de la Recherche Scientifique, PSL Research University, ESPCI Paris, Paris, France
| | - An Qi Xu
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, Centre National de la Recherche Scientifique, PSL Research University, ESPCI Paris, Paris, France
| | - Julia Giraud
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, Centre National de la Recherche Scientifique, PSL Research University, ESPCI Paris, Paris, France
| | - Haiko Poppinga
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Thomas Riemensperger
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - André Fiala
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Serge Birman
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, Centre National de la Recherche Scientifique, PSL Research University, ESPCI Paris, Paris, France
| |
Collapse
|
37
|
Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila. Nat Commun 2018; 9:1104. [PMID: 29549237 PMCID: PMC5856778 DOI: 10.1038/s41467-018-03130-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 01/22/2018] [Indexed: 01/01/2023] Open
Abstract
The brain adaptively integrates present sensory input, past experience, and options for future action. The insect mushroom body exemplifies how a central brain structure brings about such integration. Here we use a combination of systematic single-cell labeling, connectomics, transgenic silencing, and activation experiments to study the mushroom body at single-cell resolution, focusing on the behavioral architecture of its input and output neurons (MBINs and MBONs), and of the mushroom body intrinsic APL neuron. Our results reveal the identity and morphology of almost all of these 44 neurons in stage 3 Drosophila larvae. Upon an initial screen, functional analyses focusing on the mushroom body medial lobe uncover sparse and specific functions of its dopaminergic MBINs, its MBONs, and of the GABAergic APL neuron across three behavioral tasks, namely odor preference, taste preference, and associative learning between odor and taste. Our results thus provide a cellular-resolution study case of how brains organize behavior.
Collapse
|
38
|
Tsao CH, Chen CC, Lin CH, Yang HY, Lin S. Drosophila mushroom bodies integrate hunger and satiety signals to control innate food-seeking behavior. eLife 2018; 7:35264. [PMID: 29547121 PMCID: PMC5910021 DOI: 10.7554/elife.35264] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/15/2018] [Indexed: 12/28/2022] Open
Abstract
The fruit fly can evaluate its energy state and decide whether to pursue food-related cues. Here, we reveal that the mushroom body (MB) integrates hunger and satiety signals to control food-seeking behavior. We have discovered five pathways in the MB essential for hungry flies to locate and approach food. Blocking the MB-intrinsic Kenyon cells (KCs) and the MB output neurons (MBONs) in these pathways impairs food-seeking behavior. Starvation bi-directionally modulates MBON responses to a food odor, suggesting that hunger and satiety controls occur at the KC-to-MBON synapses. These controls are mediated by six types of dopaminergic neurons (DANs). By manipulating these DANs, we could inhibit food-seeking behavior in hungry flies or promote food seeking in fed flies. Finally, we show that the DANs potentially receive multiple inputs of hunger and satiety signals. This work demonstrates an information-rich central circuit in the fly brain that controls hunger-driven food-seeking behavior.
Collapse
Affiliation(s)
- Chang-Hui Tsao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chien-Chun Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chen-Han Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Department of Life Sciences and the Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hao-Yu Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Suewei Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Department of Life Sciences and the Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
39
|
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. It is known that there are many factors, either genetic or environmental factors, involved in PD, but the mechanism of PD is still not fully understood. Several animal models have been established to study the mechanisms of PD. Among these models, Drosophila melanogaster has been utilized as a valuable model to get insight into important features of PD. Drosophila melanogaster possesses a well-developed dopaminergic (DA) neuron system which is known to play an important role in PD pathogenesis. The well understanding of DA neurons from early larval through adult stage makes Drosophila as a powerful model for investigating the progressive neurodegeneration in PD. Besides, the short life cycle of Drosophila melanogaster serves an advantage in studying epidemiological features of PD. Most of PD symptoms can be mimicked in Drosophila model such as progressive impairment in locomotion, DA neuron degeneration, and some other non-motor symptoms. The Drosophila models of PD, therefore, show a great potential in application for PD genetic and drug screening.
Collapse
Affiliation(s)
- Vuu My Dung
- University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
40
|
Hida N, Aboukilila MY, Burow DA, Paul R, Greenberg MM, Fazio M, Beasley S, Spitale RC, Cleary MD. EC-tagging allows cell type-specific RNA analysis. Nucleic Acids Res 2017. [PMID: 28641402 PMCID: PMC5587779 DOI: 10.1093/nar/gkx551] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purification of cell type-specific RNAs remains a significant challenge. One solution involves biosynthetic tagging of target RNAs. RNA tagging via incorporation of 4-thiouracil (TU) in cells expressing transgenic uracil phosphoribosyltransferase (UPRT), a method known as TU-tagging, has been used in multiple systems but can have limited specificity due to endogenous pathways of TU incorporation. Here, we describe an alternative method that requires the activity of two enzymes: cytosine deaminase (CD) and UPRT. We found that the sequential activity of these enzymes converts 5-ethynylcytosine (EC) to 5-ethynyluridine monophosphate that is subsequently incorporated into nascent RNAs. The ethynyl group allows efficient detection and purification of tagged RNAs. We show that ‘EC-tagging’ occurs in tissue culture cells and Drosophila engineered to express CD and UPRT. Additional control can be achieved through a split-CD approach in which functional CD is reconstituted from independently expressed fragments. We demonstrate the sensitivity and specificity of EC-tagging by obtaining cell type-specific gene expression data from intact Drosophila larvae, including transcriptome measurements from a small population of central brain neurons. EC-tagging provides several advantages over existing techniques and should be broadly useful for investigating the role of differential RNA expression in cell identity, physiology and pathology.
Collapse
Affiliation(s)
- Naoki Hida
- Molecular and Cell Biology Unit, Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Mohamed Y Aboukilila
- Molecular and Cell Biology Unit, Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Dana A Burow
- Molecular and Cell Biology Unit, Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Rakesh Paul
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael Fazio
- Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Samantha Beasley
- Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Michael D Cleary
- Molecular and Cell Biology Unit, Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| |
Collapse
|
41
|
Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I, Schneider-Mizell CM, Saumweber T, Huser A, Eschbach C, Gerber B, Fetter RD, Truman JW, Priebe CE, Abbott LF, Thum AS, Zlatic M, Cardona A. The complete connectome of a learning and memory centre in an insect brain. Nature 2017; 548:175-182. [PMID: 28796202 PMCID: PMC5806122 DOI: 10.1038/nature23455] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/04/2017] [Indexed: 12/19/2022]
Abstract
Associating stimuli with positive or negative reinforcement is essential for survival, but a complete wiring diagram of a higher-order circuit supporting associative memory has not been previously available. Here we reconstruct one such circuit at synaptic resolution, the Drosophila larval mushroom body. We find that most Kenyon cells integrate random combinations of inputs but that a subset receives stereotyped inputs from single projection neurons. This organization maximizes performance of a model output neuron on a stimulus discrimination task. We also report a novel canonical circuit in each mushroom body compartment with previously unidentified connections: reciprocal Kenyon cell to modulatory neuron connections, modulatory neuron to output neuron connections, and a surprisingly high number of recurrent connections between Kenyon cells. Stereotyped connections found between output neurons could enhance the selection of learned behaviours. The complete circuit map of the mushroom body should guide future functional studies of this learning and memory centre.
Collapse
Affiliation(s)
- Katharina Eichler
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Feng Li
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - Ashok Litwin-Kumar
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, 3227 Broadway, New York, New York 10027, USA
| | - Youngser Park
- Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, 100 Whitehead Hall, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | - Ingrid Andrade
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - Casey M Schneider-Mizell
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - Timo Saumweber
- Abteilung Genetik von Lernen und Gedächtnis, Leibniz Institut für Neurobiologie, 39118 Magdeburg, Germany
| | - Annina Huser
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Claire Eschbach
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - Bertram Gerber
- Abteilung Genetik von Lernen und Gedächtnis, Leibniz Institut für Neurobiologie, 39118 Magdeburg, Germany
- Otto von Guericke Universität Magdeburg, Institut für Biologie, Verhaltensgenetik, Universitätsplatz 2, D-39106 Magdeburg, Germany
- Otto-von-Guericke University Magdeburg, Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Richard D Fetter
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - James W Truman
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - Carey E Priebe
- Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, 100 Whitehead Hall, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | - L F Abbott
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, 3227 Broadway, New York, New York 10027, USA
- Department of Physiology and Cellular Biophysics, Columbia University, Russ Berrie Pavilion, 1150 St Nicholas Avenue, New York, New York 10032, USA
| | - Andreas S Thum
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Marta Zlatic
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Albert Cardona
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
42
|
Larderet I, Fritsch PM, Gendre N, Neagu-Maier GL, Fetter RD, Schneider-Mizell CM, Truman JW, Zlatic M, Cardona A, Sprecher SG. Organization of the Drosophila larval visual circuit. eLife 2017; 6:28387. [PMID: 30726702 PMCID: PMC5577918 DOI: 10.7554/elife.28387] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/07/2017] [Indexed: 11/20/2022] Open
Abstract
Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on photoreceptor neuron types (PR) present, organization of the eye and wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create two converging pathways potentially underlying the computation of ambient light intensity and temporal light changes already within this first visual processing center. Locally processed visual information then signals via dedicated projection interneurons to higher brain areas including the lateral horn and mushroom body. The stratified structure of the larval optic neuropil (LON) suggests common organizational principles with the adult fly and vertebrate visual systems. The complete synaptic wiring diagram of the LON paves the way to understanding how circuits with reduced numerical complexity control wide ranges of behaviors.
Collapse
Affiliation(s)
- Ivan Larderet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Nanae Gendre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | | | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
43
|
Huser A, Eschment M, Güllü N, Collins KAN, Böpple K, Pankevych L, Rolsing E, Thum AS. Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae. PLoS One 2017; 12:e0181865. [PMID: 28777821 PMCID: PMC5544185 DOI: 10.1371/journal.pone.0181865] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
The biogenic amine serotonin (5-HT) is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a useful model for studying the anatomical and molecular basis of chemosensory behaviors. This is particularly true for the olfactory system, which is mostly described down to the synaptic level over the first three orders of neuronal information processing. Here we focus on the 5-HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical and behavioral experiments we describe the distribution and the implications of individual 5-HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice behaviors as well as for appetitive and aversive associative olfactory learning and memory. In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an acute neuronal function, affects associative olfactory learning and memory using high salt concentration as a negative unconditioned stimulus. These findings describe for the first time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the longer run these results may uncover developmental, 5-HT dependent principles related to reinforcement processing possibly shared with adult Drosophila and other insects.
Collapse
Affiliation(s)
- Annina Huser
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Melanie Eschment
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nazli Güllü
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Kathrin Böpple
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Lyubov Pankevych
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Emilia Rolsing
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andreas S. Thum
- Department of Biology, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
- Department of Genetics, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
44
|
Upregulated energy metabolism in the Drosophila mushroom body is the trigger for long-term memory. Nat Commun 2017; 8:15510. [PMID: 28580949 PMCID: PMC5465319 DOI: 10.1038/ncomms15510] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 04/04/2017] [Indexed: 01/02/2023] Open
Abstract
Efficient energy use has constrained the evolution of nervous systems. However, it is unresolved whether energy metabolism may resultantly regulate major brain functions. Our observation that Drosophila flies double their sucrose intake at an early stage of long-term memory formation initiated the investigation of how energy metabolism intervenes in this process. Cellular-resolution imaging of energy metabolism reveals a concurrent elevation of energy consumption in neurons of the mushroom body, the fly's major memory centre. Strikingly, upregulation of mushroom body energy flux is both necessary and sufficient to drive long-term memory formation. This effect is triggered by a specific pair of dopaminergic neurons afferent to the mushroom bodies, via the D5-like DAMB dopamine receptor. Hence, dopamine signalling mediates an energy switch in the mushroom body that controls long-term memory encoding. Our data thus point to an instructional role for energy flux in the execution of demanding higher brain functions. Energy consumption in the brain is thought to respond to changes in neuronal activity, without informational role. Here the authors show that increased energy flux in the mushroom body, driven by a pair of input dopaminergic neurons, is a command for the formation of long-term memory in Drosophila.
Collapse
|
45
|
Xu G, Wu SF, Gu GX, Teng ZW, Ye GY, Huang J. Pharmacological characterization of dopamine receptors in the rice striped stem borer, Chilo suppressalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:80-93. [PMID: 28302436 DOI: 10.1016/j.ibmb.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 06/06/2023]
Abstract
Dopamine is an important neurotransmitter and neuromodulator in both vertebrates and invertebrates and is the most abundant monoamine present in the central nervous system of insects. A complement of functionally distinct dopamine receptors mediate the signal transduction of dopamine by modifying intracellular Ca2+ and cAMP levels. In the present study, we pharmacologically characterized three types of dopamine receptors, CsDOP1, CsDOP2 and CsDOP3, from the rice striped stem borer, Chilo suppressalis. All three receptors show considerable sequence identity with orthologous dopamine receptors. The phylogenetic analysis also clusters the receptors within their respective groups. Transcript levels of CsDOP1, CsDOP2 and CsDOP3 were all expressed at high levels in the central nervous system, indicating their important roles in neural processes. After heterologous expression in HEK 293 cells, CsDOP1, CsDOP2 and CsDOP3 were dose-dependently activated by dopamine and synthetic dopamine receptor agonists. They can also be blocked by different series of antagonists. This study offers important information on three dopamine receptors from C. suppressalis that will provide the basis for forthcoming studies investigating their roles in behaviors and physiology, and facilitate the development of new insecticides for pest control.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shun-Fan Wu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| | - Gui-Xiang Gu
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zi-Wen Teng
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jia Huang
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
46
|
Kohsaka H, Guertin PA, Nose A. Neural Circuits Underlying Fly Larval Locomotion. Curr Pharm Des 2017; 23:1722-1733. [PMID: 27928962 PMCID: PMC5470056 DOI: 10.2174/1381612822666161208120835] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/01/2016] [Indexed: 12/17/2022]
Abstract
Locomotion is a complex motor behavior that may be expressed in different ways using a variety of strategies depending upon species and pathological or environmental conditions. Quadrupedal or bipedal walking, running, swimming, flying and gliding constitute some of the locomotor modes enabling the body, in all cases, to move from one place to another. Despite these apparent differences in modes of locomotion, both vertebrate and invertebrate species share, at least in part, comparable neural control mechanisms for locomotor rhythm and pattern generation and modulation. Significant advances have been made in recent years in studies of the genetic aspects of these control systems. Findings made specifically using Drosophila (fruit fly) models and preparations have contributed to further understanding of the key role of genes in locomotion. This review focuses on some of the main findings made in larval fruit flies while briefly summarizing the basic advantages of using this powerful animal model for studying the neural locomotor system.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Department of Complexity Science and Engineering, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Pierre A. Guertin
- Department of Psychiatry & Neurosciences, Laval University, Québec City, QC, Canada
| | - Akinao Nose
- Department of Complexity Science and Engineering, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
47
|
Widmann A, Artinger M, Biesinger L, Boepple K, Peters C, Schlechter J, Selcho M, Thum AS. Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae. PLoS Genet 2016; 12:e1006378. [PMID: 27768692 PMCID: PMC5074598 DOI: 10.1371/journal.pgen.1006378] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 09/21/2016] [Indexed: 01/01/2023] Open
Abstract
Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes—besides other forms—a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3’5’-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution. Learning and memory helps organisms to predict and adapt to events in their environment. Gained experience leaves traces of memory in the nervous system. Yet, memory formation in vertebrates and invertebrates is a highly complex and dynamic process that consists of different phases, which depend on various neuronal and molecular mechanisms. To understand which changes occur in a brain when it learns, we applied a reductionist approach. Instead of studying complex cases, we analyzed learning and memory in Drosophila larvae that have a simple brain that is genetically and behaviorally accessible and consists of only about 10,000 neurons. Drosophila larvae are able to learn to associate an odor with punishing high salt concentrations. It is therefore possible to correlate changes in larval behavior with molecular events in identifiable neurons after classical olfactory conditioning. We show that under these circumstances larvae form two parallel memory phases; a short lasting component (lSTM) that is molecularly conserved throughout the animal kingdom as it depends on the classical cAMP pathway. In parallel they establish a larval anesthesia resistant memory (lARM) that relies on a different molecular signal. lARM has not been described in larvae before.
Collapse
Affiliation(s)
| | - Marc Artinger
- Department of Biology, University of Konstanz, Germany
| | | | | | | | | | - Mareike Selcho
- Department of Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Germany
| | - Andreas S. Thum
- Department of Biology, University of Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Germany
- * E-mail:
| |
Collapse
|
48
|
Apostolopoulou AA, Köhn S, Stehle B, Lutz M, Wüst A, Mazija L, Rist A, Galizia CG, Lüdke A, Thum AS. Caffeine Taste Signaling in Drosophila Larvae. Front Cell Neurosci 2016; 10:193. [PMID: 27555807 PMCID: PMC4977282 DOI: 10.3389/fncel.2016.00193] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal, and ventral organ). However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment. In contrast, caffeine-driven reduction in feeding in non-choice situations does not require D1. Hence, this work provides data on taste coding via different receptor neurons, depending on the behavioral context. Furthermore, we show that the larval pharyngeal system is involved in bitter tasting. Using ectopic expressions, we show that the caffeine receptor in neuron D1 requires the function of at least four receptor genes: the putative co-receptors Gr33a, Gr66a, the putative caffeine-specific receptor Gr93a, and yet unknown additional molecular component(s). This suggests that larval taste perception is more complex than previously assumed already at the sensory level. Taste information from different sensory organs located outside at the head or inside along the pharynx of the larva is assembled to trigger taste guided behaviors.
Collapse
Affiliation(s)
- Anthi A Apostolopoulou
- Department of Biology, University of KonstanzKonstanz, Germany; Department of Biomedical Science, University of SheffieldSheffield, UK
| | - Saskia Köhn
- Department of Biology, University of Konstanz Konstanz, Germany
| | - Bernhard Stehle
- Department of Biology, University of Konstanz Konstanz, Germany
| | - Michael Lutz
- Department of Biology, University of Konstanz Konstanz, Germany
| | - Alexander Wüst
- Department of Biology, University of Konstanz Konstanz, Germany
| | - Lorena Mazija
- Department of Biology, University of Konstanz Konstanz, Germany
| | - Anna Rist
- Department of Biology, University of Konstanz Konstanz, Germany
| | - C Giovanni Galizia
- Department of Biology, University of KonstanzKonstanz, Germany; Zukunftskolleg, University of KonstanzKonstanz, Germany
| | - Alja Lüdke
- Department of Biology, University of KonstanzKonstanz, Germany; Zukunftskolleg, University of KonstanzKonstanz, Germany
| | - Andreas S Thum
- Department of Biology, University of KonstanzKonstanz, Germany; Zukunftskolleg, University of KonstanzKonstanz, Germany
| |
Collapse
|
49
|
Honda T, Lee CY, Honjo K, Furukubo-Tokunaga K. Artificial Induction of Associative Olfactory Memory by Optogenetic and Thermogenetic Activation of Olfactory Sensory Neurons and Octopaminergic Neurons in Drosophila Larvae. Front Behav Neurosci 2016; 10:137. [PMID: 27445732 PMCID: PMC4923186 DOI: 10.3389/fnbeh.2016.00137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/15/2016] [Indexed: 11/25/2022] Open
Abstract
The larval brain of Drosophila melanogaster provides an excellent system for the study of the neurocircuitry mechanism of memory. Recent development of neurogenetic techniques in fruit flies enables manipulations of neuronal activities in freely behaving animals. This protocol describes detailed steps for artificial induction of olfactory associative memory in Drosophila larvae. In this protocol, the natural reward signal is substituted by thermogenetic activation of octopaminergic neurons in the brain. In parallel, the odor signal is substituted by optogenetic activation of a specific class of olfactory receptor neurons. Association of reward and odor stimuli is achieved with the concomitant application of blue light and heat that leads to activation of both sets of neurons in living transgenic larvae. Given its operational simplicity and robustness, this method could be utilized to further our knowledge on the neurocircuitry mechanism of memory in the fly brain.
Collapse
Affiliation(s)
- Takato Honda
- Institute of Biological Sciences, University of TsukubaTsukuba, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of TsukubaTsukuba, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of TsukubaTsukuba, Japan
| | - Chi-Yu Lee
- Institute of Biological Sciences, University of TsukubaTsukuba, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of TsukubaTsukuba, Japan
| | - Ken Honjo
- Institute of Biological Sciences, University of Tsukuba Tsukuba, Japan
| | | |
Collapse
|
50
|
Awata H, Wakuda R, Ishimaru Y, Matsuoka Y, Terao K, Katata S, Matsumoto Y, Hamanaka Y, Noji S, Mito T, Mizunami M. Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies. Sci Rep 2016; 6:29696. [PMID: 27412401 PMCID: PMC4944188 DOI: 10.1038/srep29696] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/21/2016] [Indexed: 01/25/2023] Open
Abstract
Revealing reinforcing mechanisms in associative learning is important for elucidation of brain mechanisms of behavior. In mammals, dopamine neurons are thought to mediate both appetitive and aversive reinforcement signals. Studies using transgenic fruit-flies suggested that dopamine neurons mediate both appetitive and aversive reinforcements, through the Dop1 dopamine receptor, but our studies using octopamine and dopamine receptor antagonists and using Dop1 knockout crickets suggested that octopamine neurons mediate appetitive reinforcement and dopamine neurons mediate aversive reinforcement in associative learning in crickets. To fully resolve this issue, we examined the effects of silencing of expression of genes that code the OA1 octopamine receptor and Dop1 and Dop2 dopamine receptors by RNAi in crickets. OA1-silenced crickets exhibited impairment in appetitive learning with water but not in aversive learning with sodium chloride solution, while Dop1-silenced crickets exhibited impairment in aversive learning but not in appetitive learning. Dop2-silenced crickets showed normal scores in both appetitive learning and aversive learning. The results indicate that octopamine neurons mediate appetitive reinforcement via OA1 and that dopamine neurons mediate aversive reinforcement via Dop1 in crickets, providing decisive evidence that neurotransmitters and receptors that mediate appetitive reinforcement indeed differ among different species of insects.
Collapse
Affiliation(s)
- Hiroko Awata
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Ryo Wakuda
- Graduate School of Live Sciences, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yoshiyasu Ishimaru
- Department of Life Systems, Institute of Technology and Science, Tokushima University, Tokushima 770-8506, Japan
| | - Yuji Matsuoka
- Department of Life Systems, Institute of Technology and Science, Tokushima University, Tokushima 770-8506, Japan
| | - Kanta Terao
- Graduate School of Live Sciences, Hokkaido University, Sapporo, 060-0810, Japan
| | - Satomi Katata
- Graduate School of Live Sciences, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yukihisa Matsumoto
- Faculty of Liberal Arts, Tokyo Medical and Dental University, Ichikawa 272-0827, Japan
| | | | - Sumihare Noji
- Department of Life Systems, Institute of Technology and Science, Tokushima University, Tokushima 770-8506, Japan
| | - Taro Mito
- Department of Life Systems, Institute of Technology and Science, Tokushima University, Tokushima 770-8506, Japan
| | - Makoto Mizunami
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|