1
|
Huber AK, Kaczorowski A, Schneider F, Böning S, Görtz M, Langhoff D, Schwab C, Stenzinger A, Hohenfellner M, Duensing A, Duensing S. Digital spatial profiling identifies the tumor center as a topological niche in prostate cancer characterized by an upregulation of BAD. Sci Rep 2024; 14:20281. [PMID: 39217197 PMCID: PMC11366015 DOI: 10.1038/s41598-024-71070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Prostate cancer is characterized by a high degree of intratumoral heterogeneity. However, little is known about the spatial distribution of cancer cells with respect to specific functional characteristics and the formation of spatial niches. Here, we used digital spatial profiling (DSP) to investigate differences in protein expression in the tumor center versus the tumor periphery. Thirty-seven regions of interest were analyzed for the expression of 47 proteins, which included components of the PI3K-AKT, MAPK, and cell death signaling pathways as well as immune cell markers. A total of 1739 data points were collected from five patients. DSP identified the BCL-2 associated agonist of cell death (BAD) protein as the most significantly upregulated protein in the tumor center. BAD upregulation was confirmed by conventional immunohistochemistry, which furthermore showed a phosphorylation of BAD at serine 112 indicating its inactivation. Knockdown of BAD in prostate cancer cells in vitro led to decreased cell viability and colony growth. Clinically, high BAD expression was associated with a shorter time to biochemical recurrence in 158 mostly high-risk prostate cancer patients. Collectively, our results suggest that the tumor center is a topological niche with high BAD expression that may drive prostate cancer progression.
Collapse
Affiliation(s)
- Ann-Kathrin Huber
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Adam Kaczorowski
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Felix Schneider
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Sarah Böning
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Magdalena Görtz
- Department of Urology, University Hospital Heidelberg, and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - David Langhoff
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg, and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Anette Duensing
- Precision Oncology of Urological Malignancies, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Xun J, Ohtsuka H, Hirose K, Douchi D, Nakayama S, Ishida M, Miura T, Ariake K, Mizuma M, Nakagawa K, Morikawa T, Furukawa T, Unno M. Reduced expression of phosphorylated ataxia-telangiectasia mutated gene is related to poor prognosis and gemcitabine chemoresistance in pancreatic cancer. BMC Cancer 2023; 23:835. [PMID: 37674118 PMCID: PMC10481509 DOI: 10.1186/s12885-023-11294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/12/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Loss of expression of the gene ataxia-telangiectasia mutated (ATM), occurring in patients with multiple primary malignancies, including pancreatic cancer, is associated with poor prognosis. In this study, we investigated the detailed molecular mechanism through which ATM expression affects the prognosis of patients with pancreatic cancer. METHODS The levels of expression of ATM and phosphorylated ATM in patients with pancreatic cancer who had undergone surgical resection were analyzed using immunohistochemistry staining. RNA sequencing was performed on ATM-knockdown pancreatic-cancer cells to elucidate the mechanism underlying the invlovement of ATM in pancreatic cancer. RESULTS Immunohistochemical analysis showed that 15.3% and 27.8% of clinical samples had low levels of ATM and phosphorylated ATM, respectively. Low expression of phosphorylated ATM substantially reduced overall and disease-free survival in patients with pancreatic cancer. In the pancreatic cancer cell lines with ATM low expression, resistance to gemcitabine was demonstrated. The RNA sequence demonstrated that ATM knockdown induced the expression of MET and NTN1. In ATM knockdown cells, it was also revealed that the protein expression levels of HIF-1α and antiapoptotic BCL-2/BAD were upregulated. CONCLUSIONS These findings demonstrate that loss of ATM expression increases tumor development, suppresses apoptosis, and reduces gemcitabine sensitivity. Additionally, loss of phosphorylated ATM is associated with a poor prognosis in patients with pancreatic cancer. Thus, phosphorylated ATM could be a possible target for pancreatic cancer treatment as well as a molecular marker to track patient prognosis.
Collapse
Affiliation(s)
- Jingyu Xun
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Hideo Ohtsuka
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan.
| | - Katsuya Hirose
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Daisuke Douchi
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Shun Nakayama
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Masaharu Ishida
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Takayuki Miura
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Kyohei Ariake
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Kei Nakagawa
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Takanori Morikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| |
Collapse
|
3
|
Evaluating the Effects of Separate and Concomitant Use of MK-2206 and Salinomycin on Prostate Cancer Cell Line. Rep Biochem Mol Biol 2022; 11:157-165. [PMID: 35765523 PMCID: PMC9208569 DOI: 10.52547/rbmb.11.1.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 01/11/2023]
Abstract
Background Prostate cancer is known as one of the most prevalent health disorders in the male population globally. The aim of the current study was to evaluate the effects of separate and concomitant use of MK-2206 and salinomycin on prostate cancer cell line. Methods The antitumor potential of separate and concomitant use of MK-2206 and salinomycin was evaluated in a panel of prostate cancer cell line (PC-3). To get insights into the underlying mechanism of action, different assays including the rate of apoptosis, cell viability, and gene expression were performed in treated prostate cancer cells. Results A significant reduction was detected in the viability percentage of prostate cancer cells (p< 0.001) and the rate of Akt expression (p< 0.001) in all salinomycin, MK-2206, and salinomycin+MK-2206 groups compared to the negative control group. Furthermore, in comparison with the negative control group, there was a notable increase in both the rate of Bad expression (p< 0.001) and prostate cancer cells apoptosis after salinomycin, MK-2206, and salinomycin+MK-2206 treatments. Moreover, the concomitant use of salinomycin+MK-2206 revealed synergistic improvements regarding the viability of prostate cancer cells and the rate of the Akt and Bad expressions compared to the separate administration of salinomycin and MK-2206 (all p< 0.05). Conclusion The findings of the present study may contribute to improving the efficacy of the therapies regarding the management of prostate cancer and providing a beneficial strategy in clinical trials.
Collapse
|
4
|
Luo Y, Wu Y, Huang H, Yi N, Chen Y. Emerging role of BAD and DAD1 as potential targets and biomarkers in cancer. Oncol Lett 2021; 22:811. [PMID: 34671425 PMCID: PMC8503815 DOI: 10.3892/ol.2021.13072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/01/2021] [Indexed: 12/28/2022] Open
Abstract
As key regulators of apoptosis, BAD and defender against apoptotic cell death 1 (DAD1) are associated with cancer initiation and progression. Multiple studies have demonstrated that BAD and DAD1 serve critical roles in several types of cancer and perform various functions, such as participating in cellular apoptosis, invasion and chemosensitivity, as well as their role in diagnostic/prognostic judgement, etc. Investigating the detailed mechanisms of the cancerous effects of the two proteins will contribute to enriching the options for targeted therapy, and may improve clinical treatment of cancer. The present review summarizes research advances regarding the associations of BAD and DAD1 with cancer, and a hypothesis on the feasible relationship and interaction mechanism between the two proteins is proposed. Furthermore, the present review highlights the potential of the two proteins as therapeutic targets and valuable diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Yulou Luo
- First Clinical Medical College, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - You Wu
- Nursing College, Binzhou Medical University, Binzhou, Shandong 264003, P.R. China
| | - Hai Huang
- First Clinical Medical College, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Na Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830017, P.R. China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830017, P.R. China
| |
Collapse
|
5
|
Aragoneses-Cazorla G, Serrano-Lopez J, Martinez-Alfonzo I, Vallet-Regí M, González B, Luque-Garcia JL. A novel hemocompatible core@shell nanosystem for selective targeting and apoptosis induction in cancer cells. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00143d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synthesis, characterization and evaluation of transferrin-decorated mesoporous silica-coated silver nanoparticles as a novel hemocompatible core@shell nanosystem for selective targeting and apoptosis induction in cancer cells.
Collapse
Affiliation(s)
| | | | | | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences
- Faculty of Pharmacy
- Complutense University of Madrid
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12)
- Madrid
| | - Blanca González
- Department of Chemistry in Pharmaceutical Sciences
- Faculty of Pharmacy
- Complutense University of Madrid
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12)
- Madrid
| | - Jose L. Luque-Garcia
- Department of Analytical Chemistry
- Faculty of Chemical Sciences
- Complutense University of Madrid
- Madrid
- Spain
| |
Collapse
|
6
|
Torrealba N, Rodríguez-Berriguete G, Vera R, Fraile B, Olmedilla G, Martínez-Onsurbe P, Sánchez-Chapado M, Paniagua R, Royuela M. Homeostasis: apoptosis and cell cycle in normal and pathological prostate. Aging Male 2020; 23:335-345. [PMID: 29730957 DOI: 10.1080/13685538.2018.1470233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prostatic diseases such as hyperplasia and cancer are a consequence of glandular aging due to the loss of homeostasis. Glandular homeostasis is guaranteed by the delicate balance between production and cell death. Both cell renewal and apoptosis are part of this delicate balance. We will explore the predictive capacity for biochemical progression, following prostatectomy, of some members of the Bcl-2 family and of proteins involved in cell cycle inhibition in conjunction with established classical markers. The expression of Bcl-2, Bcl-xL, Mcl-1, Bax, Bim, Bad, PUMA, Noxa, p21, p27, Rb and p53 were analyzed by immunochemistry in 86 samples of radical prostatectomy and correlated with each of the markers established clinicopathological tests using statistical tests such as Sperman, Kaplan-Meier curves, unifactorial Cox, and multifactorial. The most relevant results are: (1) Positive correlation between: p27 with clinical T stage; and PUMA with pathological T stage; (2) Negative correlation between: Bcl-2 with clinical T stage, Bcl-xL with survival, Noxa and pRb with Gleason score.Our results suggest that the expression of Bcl-2, Bcl-xL, PUMA, Noxa, p27, and Rb were related to some of the classic markers established to predict biochemical progression after prostatectomy.
Collapse
Affiliation(s)
- Norelia Torrealba
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcala de Henares, Spain
| | | | - Raúl Vera
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcala de Henares, Spain
| | - Benito Fraile
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcala de Henares, Spain
| | - Gabriel Olmedilla
- Department of Pathology, Príncipe de Asturias Hospital, Alcalá de Henares, Madrid, Spain
| | - Pilar Martínez-Onsurbe
- Department of Pathology, Príncipe de Asturias Hospital, Alcalá de Henares, Madrid, Spain
| | | | - Ricardo Paniagua
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcala de Henares, Spain
| | - Mar Royuela
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcala de Henares, Spain
| |
Collapse
|
7
|
BAD sensitizes breast cancer cells to docetaxel with increased mitotic arrest and necroptosis. Sci Rep 2020; 10:355. [PMID: 31942016 PMCID: PMC6962214 DOI: 10.1038/s41598-019-57282-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer patients are commonly treated with taxane (e.g. docetaxel) chemotherapy, despite poor outcomes and eventual disease relapse. We previously identified the Bcl-2-associated death promoter (BAD) as a prognostic indicator of good outcome in taxane-treated breast cancer patients. We also demonstrated that BAD expression in human breast carcinoma cells generated larger tumors in mouse xenograft models. These paradoxical results suggest that BAD-expressing tumors are differentially sensitive to taxane treatment. We validated this here and show that docetaxel therapy preferentially reduced growth of BAD-expressing xenograft tumors. We next explored the cellular mechanism whereby BAD sensitizes cells to docetaxel. Taxanes are microtubule inhibiting agents that cause cell cycle arrest in mitosis whereupon the cells either die in mitosis or aberrantly exit (mitotic slippage) and survive as polyploid cells. In response to docetaxel, BAD-expressing cells had lengthened mitotic arrest with a higher proportion of cells undergoing death in mitosis with decreased mitotic slippage. Death in mitosis was non-apoptotic and not dependent on Bcl-XL interaction or caspase activation. Instead, cell death was necroptotic, and dependent on ROS. These results suggest that BAD is prognostic for favourable outcome in response to taxane chemotherapy by enhancing necroptotic cell death and inhibiting the production of potentially chemoresistant polyploid cells.
Collapse
|
8
|
Non-canonical BAD activity regulates breast cancer cell and tumor growth via 14-3-3 binding and mitochondrial metabolism. Oncogene 2019; 38:3325-3339. [PMID: 30635657 PMCID: PMC6756016 DOI: 10.1038/s41388-018-0673-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/05/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
Abstract
The Bcl-2-associated death promoter BAD is a prognostic indicator for good clinical outcome of breast cancer patients; however, whether BAD affects breast cancer biology is unknown. Here we showed that BAD increased cell growth in breast cancer cells through two distinct mechanisms. Phosphorylation of BAD at S118 increased S99 phosphorylation, 14-3-3 binding and AKT activation to promote growth and survival. Through a second, more prominent pathway, BAD stimulated mitochondrial oxygen consumption in a novel manner that was downstream of substrate entry into the mitochondria. BAD stimulated complex I activity that facilitated enhanced cell growth and sensitized cells to apoptosis in response to complex I blockade. We propose that this dependence on oxidative metabolism generated large but nonaggressive cancers. This model identifies a non-canonical role for BAD and reconciles BAD-mediated tumor growth with favorable outcomes in BAD-high breast cancer patients.
Collapse
|
9
|
Domińska K, Okła P, Kowalska K, Habrowska-Górczyńska DE, Urbanek KA, Ochędalski T, Piastowska-Ciesielska AW. Angiotensin 1-7 modulates molecular and cellular processes central to the pathogenesis of prostate cancer. Sci Rep 2018; 8:15772. [PMID: 30361641 PMCID: PMC6202343 DOI: 10.1038/s41598-018-34049-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/09/2018] [Indexed: 01/04/2023] Open
Abstract
Angiotensin 1–7 (Ang1–7) is an endogenous bioactive component of the renin-angiotensin system (RAS). In addition to its cardiovascular properties, its anti-proliferative and anti-angiogenic traits are believed to play important roles in carcinogenesis. The present study examines the influence of Ang1–7 on processes associated with development and progression of prostate cancer cells. Our findings indicate that while Ang1–7 (1 nM; 48 h) can effectively reduce cell proliferation in DU-145, it can induce a significant decrease in the expression of MKI67 in LNCaP. In both cell lines we also observed a reduction in colony size in soft agar assay. A various changes in gene expression were noted after exposure to Ang1–7: those of anti- and pro-apoptotic agents and the NF-kB family of transcription factors, as well as mesenchymal cell markers and vascular endothelial growth factor A (VEGFA). In addition, Ang1–7 was found to modulate cell adhesion and matrix metallopeptidase (MMP) activity. Changes were also observed in the levels of angiotensin receptors and sex steroid hormone receptors. Ang1–7 reduced the levels of estrogen receptor alpha gene (ESR1) and increased the expression of estrogen receptor beta gene (ESR2) in all prostate cancer cells; it also up-regulated androgen receptor (AR) expression in androgen-sensitive cells but contradictory effect was observed in androgen- irresponsive cell lines. In summary, the results confirm the existence of complex network between the various elements of the local RAS and the molecular and cellular mechanisms of prostate cancerogenesis. The response of cancer cells to Ang1–7 appears to vary dependently on the dose and time of incubation as well as the aggressiveness and the hormonal status of cells.
Collapse
Affiliation(s)
- Kamila Domińska
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz, 90-752, Poland.
| | - Piotr Okła
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz, 90-752, Poland
| | - Karolina Kowalska
- Laboratory of Cell Cultures and Genomic Analysis, Medical University of Lodz, Lodz, 90-752, Poland
| | | | - Kinga Anna Urbanek
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz, 90-752, Poland.,Laboratory of Cell Cultures and Genomic Analysis, Medical University of Lodz, Lodz, 90-752, Poland
| | - Tomasz Ochędalski
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz, 90-752, Poland
| | - Agnieszka Wanda Piastowska-Ciesielska
- Department of Comparative Endocrinology, Medical University of Lodz, Lodz, 90-752, Poland.,Laboratory of Cell Cultures and Genomic Analysis, Medical University of Lodz, Lodz, 90-752, Poland
| |
Collapse
|
10
|
Eke I, Makinde AY, Aryankalayil MJ, Sandfort V, Palayoor ST, Rath BH, Liotta L, Pierobon M, Petricoin EF, Brown MF, Stommel JM, Ahmed MM, Coleman CN. Exploiting Radiation-Induced Signaling to Increase the Susceptibility of Resistant Cancer Cells to Targeted Drugs: AKT and mTOR Inhibitors as an Example. Mol Cancer Ther 2018; 17:355-367. [PMID: 28802252 PMCID: PMC5805592 DOI: 10.1158/1535-7163.mct-17-0262] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/21/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
Implementing targeted drug therapy in radio-oncologic treatment regimens has greatly improved the outcome of cancer patients. However, the efficacy of molecular targeted drugs such as inhibitory antibodies or small molecule inhibitors essentially depends on target expression and activity, which both can change during the course of treatment. Radiotherapy has previously been shown to activate prosurvival pathways, which can help tumor cells to adapt and thereby survive treatment. Therefore, we aimed to identify changes in signaling induced by radiation and evaluate the potential of targeting these changes with small molecules to increase the therapeutic efficacy on cancer cell survival. Analysis of "The Cancer Genome Atlas" database disclosed a significant overexpression of AKT1, AKT2, and MTOR genes in human prostate cancer samples compared with normal prostate gland tissue. Multifractionated radiation of three-dimensional-cultured prostate cancer cell lines with a dose of 2 Gy/day as a clinically relevant schedule resulted in an increased protein phosphorylation and enhanced protein-protein interaction between AKT and mTOR, whereas gene expression of AKT, MTOR, and related kinases was not altered by radiation. Similar results were found in a xenograft model of prostate cancer. Pharmacologic inhibition of mTOR/AKT signaling after activation by multifractionated radiation was more effective than treatment prior to radiotherapy. Taken together, our findings provide a proof-of-concept that targeting signaling molecules after activation by radiotherapy may be a novel and promising treatment strategy for cancers treated with multifractionated radiation regimens such as prostate cancer to increase the sensitivity of tumor cells to molecular targeted drugs. Mol Cancer Ther; 17(2); 355-67. ©2017 AACRSee all articles in this MCT Focus section, "Developmental Therapeutics in Radiation Oncology."
Collapse
Affiliation(s)
- Iris Eke
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Adeola Y Makinde
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Veit Sandfort
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Sanjeewani T Palayoor
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Barbara H Rath
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Matthew F Brown
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jayne M Stommel
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mansoor M Ahmed
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
11
|
Gonçalves BF, de Campos SGP, Fávaro WJ, Brandt JZ, Pinho CF, Justulin LA, Taboga SR, Scarano WR. Combinatorial Effect of Abiraterone Acetate and NVP-BEZ235 on Prostate Tumor Progression in Rats. Discov Oncol 2018; 9:175-187. [PMID: 29363091 DOI: 10.1007/s12672-018-0323-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/10/2018] [Indexed: 01/08/2023] Open
Abstract
Use of drug combinations that target different pathways involved in the development and progression of prostate cancer (PCa) has emerged as an alternative to overcome the resistance caused by drug monotherapies. The antiandrogen abiraterone acetate and the PI3K/Akt inhibitor NVP-BEZ235 (BEZ235) may be suitable options for the prevention of drug resistance and the inhibition of PCa progression. The aim of the present study was to evaluate whether abiraterone acetate and BEZ235 achieve superior therapeutic effects to either drug administered as monotherapy, in the early stages of PCa in an androgen-dependent system. Our study showed that each drug might impair tumor growth by reducing proliferation and increasing cell death when administered as monotherapy. However, tumor growth continued to progress with each drug monotherapy and some important side effects were related to BEZ. Conversely, when used in combination, the drugs impaired the inflammatory response, decreased hyperplastic lesions, and blocked tumor progression from premalignant to a malignant stage. Our data showed that the strategy to block the androgenic and PI3K/AKT/mTOR pathway is an effective therapeutic option and should be investigated including distinct PI3K pathway inhibitors.
Collapse
Affiliation(s)
- Bianca Facchim Gonçalves
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Rua Professor Doutor Antonio Celso Wagner Zanin, 250, Botucatu, SP, 18618-689, Brazil.
| | | | - Wagner José Fávaro
- Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Joyce Zalotti Brandt
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Rua Professor Doutor Antonio Celso Wagner Zanin, 250, Botucatu, SP, 18618-689, Brazil
| | - Cristiane Figueiredo Pinho
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Rua Professor Doutor Antonio Celso Wagner Zanin, 250, Botucatu, SP, 18618-689, Brazil
| | - Luis Antônio Justulin
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Rua Professor Doutor Antonio Celso Wagner Zanin, 250, Botucatu, SP, 18618-689, Brazil
| | - Sebastião Roberto Taboga
- Institute of Biosciences, Humanities and Exact Sciences, Sao Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Rua Professor Doutor Antonio Celso Wagner Zanin, 250, Botucatu, SP, 18618-689, Brazil
| |
Collapse
|
12
|
Bad phosphorylation as a target of inhibition in oncology. Cancer Lett 2017; 415:177-186. [PMID: 29175460 DOI: 10.1016/j.canlet.2017.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Bcl-2 agonist of cell death (BAD) is a BH3-only member of the Bcl-2 family which possesses important regulatory function in apoptosis. BAD has also been shown to possess many non-apoptotic functions closely linked to cancer including regulation of glycolysis, autophagy, cell cycle progression and immune system development. Interestingly, BAD can be either pro-apoptotic or pro-survival depending on the phosphorylation state of three specific serine residues (human S75, S99 and S118). Expression of BAD and BAD phosphorylation patterns have been shown to influence tumor initiation and progression and play a predictive role in disease prognosis, drug response and chemosensitivity in various cancers. This review aims to summarize the current evidence on the functional role of BAD phosphorylation in human cancer and evaluate the potential utility of modulating BAD phosphorylation in cancer.
Collapse
|
13
|
Sikdar S, Datta S, Datta S. Exploring the importance of cancer pathways by meta-analysis of differential protein expression networks in three different cancers. Biol Direct 2016; 11:65. [PMID: 27993151 PMCID: PMC5168844 DOI: 10.1186/s13062-016-0168-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/07/2016] [Indexed: 01/08/2023] Open
Abstract
Background It is believed that all cancers occur due to the mutation or change in one or more genes. In order to investigate the significance of the biological pathways which are interrupted by these genetic mutations, we pursue an integrated analysis using multiple cancer datasets released by the International Cancer Genome Consortium (ICGC). This dataset consists of expression profiles for genes/proteins of patients receiving treatment, for three types of cancer - Head and Neck Squamous Cell Carcinoma (HNSC), Lung Adenocarcinoma (LUAD) and Kidney Renal Clear Cell Carcinoma (KIRC). We consider pathway analysis to identify all the biological pathways which are active among the patients and investigate the roles of the significant pathways using a differential network analysis of the protein expression datasets for the three cancers separately. We then integrate the pathway based results of all the three cancers which provide a more comprehensive picture of the three cancers. Results From our analysis of the protein expression data, overall, RAS and PI3K signaling pathways appear to play the most significant roles in the three cancers - Head and Neck Squamous Cell Carcinoma (HNSC), Lung Adenocarcinoma (LUAD) and Kidney Renal Clear Cell Carcinoma (KIRC). Conclusion This analysis suggests that the RAS and PI3K signaling pathways are the two most important pathways in all the three cancers and should be investigated further for their potential roles in cancers. Reviewers This article was reviewed by Joaquin Dopazo and Samiran Ghosh.
Collapse
Affiliation(s)
- Sinjini Sikdar
- Department of Biostatistics, University of Florida, Gainesville, FL, 32611, USA
| | - Somnath Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, 32611, USA
| | - Susmita Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
14
|
Sharma S, Ray S, Mukherjee S, Moiyadi A, Sridhar E, Srivastava S. Multipronged quantitative proteomic analyses indicate modulation of various signal transduction pathways in human meningiomas. Proteomics 2015; 15:394-407. [PMID: 25413884 DOI: 10.1002/pmic.201400328] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/23/2014] [Accepted: 11/12/2014] [Indexed: 12/17/2022]
Abstract
Meningiomas (MGs) are frequent tumors of the CNS originating from the meningeal layers of the spinal cord and the brain. In this study, comparative tissue proteomic analysis of low and high grades of MGs was performed by using iTRAQ-based quantitative proteomics in combination with ESI-quadrupole-TOF and Q-Exactive MS, and results were validated by employing ELISA. Combining the results obtained from two MS platforms, we were able to identify overall 4308 proteins (1% false discover rate), among which 2367 exhibited differential expression (more than and equal to 2 peptide and ≥ 1.5-fold in at least one grade) in MGs. Several differentially expressed proteins were found to be associated with diverse signaling pathways, including integrin, Wnt, Ras, epidermal growth factor receptor, and FGR signaling. Proteins, such as vinculin or histones, which act as the signaling activators to initiate multiple signaling pathways, were found to be upregulated in MGs. Quite a few candidates, such as protein S-100A6, aldehyde dehydrogenase mitochondrial, AHNAK, cytoskeleton-associated protein 4, and caveolin, showed sequential increase in low- and high-grade MGs, whereas differential expressions of collagen alpha-1 (VI), protein S100-A9, 14 kDa phosphohistidine phosphatase, or transgelin-2 were found to be grade specific. Our findings provide new insights regarding the association of various signal transduction pathways in MG pathogenesis and may introduce new opportunities for the early detection and prognosis of MGs.
Collapse
Affiliation(s)
- Samridhi Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | | | | | | | | |
Collapse
|
15
|
Zhao X, Shen L, Feng Y, Yu H, Wu X, Chang J, Shen X, Qiao J, Wang J. Decreased expression of RPS15A suppresses proliferation of lung cancer cells. Tumour Biol 2015; 36:6733-40. [DOI: 10.1007/s13277-015-3371-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/24/2015] [Indexed: 12/25/2022] Open
|
16
|
Felgueiras J, Fardilha M. Phosphoprotein phosphatase 1-interacting proteins as therapeutic targets in prostate cancer. World J Pharmacol 2014; 3:120-139. [DOI: 10.5497/wjp.v3.i4.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/01/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is a major public health concern worldwide, being one of the most prevalent cancers in men. Great improvements have been made both in terms of early diagnosis and therapeutics. However, there is still an urgent need for reliable biomarkers that could overcome the lack of cancer-specificity of prostate-specific antigen, as well as alternative therapeutic targets for advanced metastatic cases. Reversible phosphorylation of proteins is a post-translational modification critical to the regulation of numerous cellular processes. Phosphoprotein phosphatase 1 (PPP1) is a major serine/threonine phosphatase, whose specificity is determined by its interacting proteins. These interactors can be PPP1 substrates, regulators, or even both. Deregulation of this protein-protein interaction network alters cell dynamics and underlies the development of several cancer hallmarks. Therefore, the identification of PPP1 interactome in specific cellular context is of crucial importance. The knowledge on PPP1 complexes in prostate cancer remains scarce, with only 4 holoenzymes characterized in human prostate cancer models. However, an increasing number of PPP1 interactors have been identified as expressed in human prostate tissue, including the tumor suppressors TP53 and RB1. Efforts should be made in order to identify the role of such proteins in prostate carcinogenesis, since only 26 have yet well-recognized roles. Here, we revise literature and human protein databases to provide an in-depth knowledge on the biological significance of PPP1 complexes in human prostate carcinogenesis and their potential use as therapeutic targets for the development of new therapies for prostate cancer.
Collapse
|
17
|
Cekanova M, Fernando RI, Siriwardhana N, Sukhthankar M, Parra CDL, Woraratphoka J, Malone C, Ström A, Baek SJ, Wade PA, Saxton AM, Donnell RM, Pestell RG, Dharmawardhane S, Wimalasena J. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion. Exp Cell Res 2014; 331:1-10. [PMID: 25499972 DOI: 10.1016/j.yexcr.2014.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 10/27/2014] [Accepted: 11/24/2014] [Indexed: 01/29/2023]
Abstract
We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Maria Cekanova
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA.
| | - Romaine I Fernando
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN, USA
| | - Nalin Siriwardhana
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Mugdha Sukhthankar
- Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA
| | - Columba de la Parra
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Jirayus Woraratphoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN, USA
| | - Christine Malone
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Anders Ström
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Seung J Baek
- Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA
| | - Paul A Wade
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Arnold M Saxton
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Robert M Donnell
- Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA
| | - Richard G Pestell
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Jay Wimalasena
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
18
|
Targeting proapoptotic protein BAD inhibits survival and self-renewal of cancer stem cells. Cell Death Differ 2014; 21:1936-49. [PMID: 25215949 DOI: 10.1038/cdd.2014.140] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence suggests that the resistance of cancer stem cells (CSC) to many conventional therapies is one of the major limiting factors of cancer therapy efficacy. Identification of mechanisms responsible for survival and self-renewal of CSC will help design new therapeutic strategies that target and eliminate both differentiated cancer cells and CSC. Here we demonstrated the potential role of proapoptotic protein BAD in the biology of CSC in melanoma, prostate and breast cancers. We enriched CD44(+)/CD24(-) cells (CSC) by tumorosphere formation and purified this population by FACS. Both spheres and CSC exhibited increased potential for proliferation, migration, invasion, sphere formation, anchorage-independent growth, as well as upregulation of several stem cell-associated markers. We showed that the phosphorylation of BAD is essential for the survival of CSC. Conversely, ectopic expression of a phosphorylation-deficient mutant BAD induced apoptosis in CSC. This effect was enhanced by treatment with a BH3-mimetic, ABT-737. Both pharmacological agents that inhibit survival kinases and growth factors that are involved in drug resistance delivered their respective cytotoxic and protective effects by modulating the BAD phosphorylation in CSC. Furthermore, the frequency and self-renewal capacity of CSC was significantly reduced by knocking down the BAD expression. Consistent with our in vitro results, significant phosphorylation of BAD was found in CD44(+) CSC of 83% breast tumor specimens. In addition, we also identified a positive correlation between BAD expression and disease stage in prostate cancer, suggesting a role of BAD in tumor advancement. Our studies unveil the role of BAD in the survival and self-renewal of CSC and propose BAD not only as an attractive target for cancer therapy but also as a marker of tumor progression.
Collapse
|
19
|
Schlaepfer IR, Rider L, Rodrigues LU, Gijón MA, Pac CT, Romero L, Cimic A, Sirintrapun SJ, Glodé LM, Eckel RH, Cramer SD. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol Cancer Ther 2014; 13:2361-71. [PMID: 25122071 DOI: 10.1158/1535-7163.mct-14-0183] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate cancer is the most commonly diagnosed malignancy among Western men and accounts for the second leading cause of cancer-related deaths. Prostate cancer tends to grow slowly and recent studies suggest that it relies on lipid fuel more than on aerobic glycolysis. However, the biochemical mechanisms governing the relationships between lipid synthesis, lipid utilization, and cancer growth remain unknown. To address the role of lipid metabolism in prostate cancer, we have used etomoxir and orlistat, clinically safe drugs that block lipid oxidation and lipid synthesis/lipolysis, respectively. Etomoxir is an irreversible inhibitor of the carnitine palmitoyltransferase (CPT1) enzyme that decreases β oxidation in the mitochondria. Combinatorial treatments using etomoxir and orlistat resulted in synergistic decreased viability in LNCaP, VCaP, and patient-derived benign and prostate cancer cells. These effects were associated with decreased androgen receptor expression, decreased mTOR signaling, and increased caspase-3 activation. Knockdown of CPT1A enzyme in LNCaP cells resulted in decreased palmitate oxidation but increased sensitivity to etomoxir, with inactivation of AKT kinase and activation of caspase-3. Systemic treatment with etomoxir in nude mice resulted in decreased xenograft growth over 21 days, underscoring the therapeutic potential of blocking lipid catabolism to decrease prostate cancer tumor growth.
Collapse
Affiliation(s)
- Isabel R Schlaepfer
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado.
| | - Leah Rider
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | | | - Miguel A Gijón
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | - Colton T Pac
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | - Lina Romero
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | - Adela Cimic
- Department of Pathology, Wake Forest University School of Medicine Winston-Salem, North Carolina
| | - S Joseph Sirintrapun
- Department of Pathology, Wake Forest University School of Medicine Winston-Salem, North Carolina
| | - L Michael Glodé
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Robert H Eckel
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Scott D Cramer
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
20
|
Li D, Huang Y. Knockdown of ubiquitin associated protein 2-like inhibits the growth and migration of prostate cancer cells. Oncol Rep 2014; 32:1578-84. [PMID: 25069639 DOI: 10.3892/or.2014.3360] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/18/2014] [Indexed: 01/11/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is involved in the development of cancer in various functions. Inhibition of the ubiquitin-proteasome has been revealed to be a powerful therapeutic method for carcinoma. Ubiquitin associated protein 2-like (UBAP2L) is believed to be involved in the ubiquitin‑proteasome pathway; however, the role of UBAP2L in human prostate cancer is still unknown. In the present study, we found that UBAP2L was expressed in a number of prostate carcinoma cell lines. Using lentiviral-mediated RNA interference (RNAi), we efficiently knocked down endogenous UBAP2L expression at the mRNA and protein levels. After UBAP2L disruption, the proliferation and colony formation ability were significantly reduced in the PC-3 and DU145 cells. Flow cytometric analysis showed that UBAP2L knockdown blocked cell cycle progression. Downregulation of UBAP2L inhibited the migration of PC-3 and DU145 cells, as determined by Transwell assay. Moreover, depletion of UBAP2L blocked the AMPKα, Bad and PRAS40 signaling pathways. In conclusion, our results suggest that UBAP2L may play a role in prostate cancer growth and metastasis, and knockdown of UBAP2L by RNAi may serve as a potential therapeutic approach for prostate cancer.
Collapse
Affiliation(s)
- Dong Li
- Department of Urology, The Affiliated Renji Hospital of the Medical College, Shanghai Jiaotong University, Shanghai 200127, P.R. China
| | - Yiran Huang
- Department of Urology, The Affiliated Renji Hospital of the Medical College, Shanghai Jiaotong University, Shanghai 200127, P.R. China
| |
Collapse
|
21
|
Tilli TM, Bellahcène A, Castronovo V, Gimba ERP. Changes in the transcriptional profile in response to overexpression of the osteopontin-c splice isoform in ovarian (OvCar-3) and prostate (PC-3) cancer cell lines. BMC Cancer 2014; 14:433. [PMID: 24928374 PMCID: PMC4075779 DOI: 10.1186/1471-2407-14-433] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/23/2014] [Indexed: 12/16/2022] Open
Abstract
Background Especially in human tumor cells, the osteopontin (OPN) primary transcript is subject to alternative splicing, generating three isoforms termed OPNa, OPNb and OPNc. We previously demonstrated that the OPNc splice variant activates several aspects of the progression of ovarian and prostate cancers. The goal of the present study was to develop cell line models to determine the impact of OPNc overexpression on main cancer signaling pathways and thus obtain insights into the mechanisms of OPNc pro-tumorigenic roles. Methods Human ovarian and prostate cancer cell lines, OvCar-3 and PC-3 cells, respectively, were stably transfected to overexpress OPNc. Transcriptomic profiling was performed on these cells and compared to controls, to identify OPNc overexpression-dependent changes in gene expression levels and pathways by qRT-PCR analyses. Results Among 84 genes tested by using a multiplex real-time PCR Cancer Pathway Array approach, 34 and 16, respectively, were differentially expressed between OvCar-3 and PC-3 OPNc-overexpressing cells in relation to control clones. Differentially expressed genes are included in all main hallmarks of cancer, and several interacting proteins have been identified using an interactome network analysis. Based on marked up-regulation of Vegfa transcript in response to OPNc overexpression, we partially validated the array data by demonstrating that conditioned medium (CM) secreted from OvCar-3 and PC-3 OPNc-overexpressing cells significantly induced endothelial cell adhesion, proliferation and migration, compared to CM secreted from control cells. Conclusions Overall, the present study elucidated transcriptional changes of OvCar-3 and PC-3 cancer cell lines in response to OPNc overexpression, which provides an assessment for predicting the molecular mechanisms by which this splice variant promotes tumor progression features.
Collapse
Affiliation(s)
| | | | | | - Etel R P Gimba
- Coordenação de Pesquisa, Programa de Carcinogênese Molecular, Instituto Nacional de Câncer (INCa)/Programa de Pós Graduação Stricto Sensu em Oncologia do INCa, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
22
|
Baiz D, Hassan S, Choi YA, Flores A, Karpova Y, Yancey D, Pullikuth A, Sui G, Sadelain M, Debinski W, Kulik G. Combination of the PI3K inhibitor ZSTK474 with a PSMA-targeted immunotoxin accelerates apoptosis and regression of prostate cancer. Neoplasia 2013; 15:1172-83. [PMID: 24204196 PMCID: PMC3819633 DOI: 10.1593/neo.13986] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 12/12/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is activated in most advanced prostate cancers, yet so far treatments with PI3K inhibitors have been at best tumorostatic in preclinical cancer models and do not show significant antitumor efficacy in clinical trials. Results from tissue culture experiments in prostate cancer cells suggest that PI3K inhibitors should be combined with other cytotoxic agents; however, the general toxicity of such combinations prevents translating these experimental data into preclinical and clinical models. We investigated the emerging concept of tumor-targeted synthetic lethality in prostate cancer cells by using the pan-PI3K inhibitor ZSTK474 and the immunotoxin J591PE, a protein chimera between the single-chain variable fragment of the monoclonal antibody J591 against the prostate-specific membrane antigen (PSMA) and the truncated form of the Pseudomonas aeruginosa exotoxin A (PE38QQR). The combination of ZSTK474 and J591PE increased apoptosis within 6 hours and cell death (monitored at 24-48 hours) in the PSMA-expressing cells LNCaP, C4-2, and C4-2Luc but not in control cells that do not express PSMA (PC3 and BT549 cells). Mechanistic analysis suggested that induction of apoptosis requires Bcl-2-associated death promoter (BAD) dephosphorylation and decreased expression of myeloid leukemia cell differentiation protein 1 (MCL-1). A single injection of ZSTK474 and J591PE into engrafted prostate cancer C4-2Luc cells led to consistent and stable reduction of luminescence within 6 days. These results suggest that the combination of a PI3K inhibitor and a PSMA-targeted protein synthesis inhibitor toxin represents a promising novel strategy for advanced prostate cancer therapy that should be further investigated.
Collapse
Affiliation(s)
- Daniele Baiz
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC
| | - Sazzad Hassan
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC
| | - Young A Choi
- Department of Neurosurgery and Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, NC
| | - Anabel Flores
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC
| | - Yelena Karpova
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC
| | - Dana Yancey
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC
| | - Ashok Pullikuth
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC
| | - Guangchao Sui
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC
| | - Michel Sadelain
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Waldemar Debinski
- Department of Neurosurgery and Brain Tumor Center of Excellence, Wake Forest School of Medicine, Winston-Salem, NC
| | - George Kulik
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
23
|
Yancey D, Nelson KC, Baiz D, Hassan S, Flores A, Pullikuth A, Karpova Y, Axanova L, Moore V, Sui G, Kulik G. BAD dephosphorylation and decreased expression of MCL-1 induce rapid apoptosis in prostate cancer cells. PLoS One 2013; 8:e74561. [PMID: 24040284 PMCID: PMC3764099 DOI: 10.1371/journal.pone.0074561] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 08/05/2013] [Indexed: 01/12/2023] Open
Abstract
PTEN loss and constitutive activation of the PI3K signaling pathway have been associated with advanced androgen-independent prostate cancer. PTEN-deficient prostate cancer C42Luc cells survive in serum-free media and show relative resistance to apoptosis even in the presence of the PI3K inhibitor ZSTK474. Yet, when ZSTK474 is combined with the translation inhibitor cycloheximide, C42Luc cells undergo apoptosis within 6 hours. We identified dephosphorylation of BAD (Bcl2-associated death promoter) as a main apoptosis-regulatory molecule downstream from PI3K, and loss of MCL-1 (Myeloid cell leukemia -1) as a major target of cycloheximide. The combination of MCL-1 knockdown and expression of phosphorylation-deficient mutant BAD2SA is sufficient to trigger rapid apoptosis in prostate cancer cells. These results establish the mechanism for the synergistic induction of apoptosis by the combination of a PI3K inhibitor and of a protein synthesis inhibitor in PTEN-deficient prostate cancer cells.
Collapse
Affiliation(s)
- Dana Yancey
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Kyle C. Nelson
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Daniele Baiz
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Sazzad Hassan
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Anabel Flores
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Ashok Pullikuth
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Yelena Karpova
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Linara Axanova
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Victoria Moore
- Department of Chemistry, Elon University, Elon, North Carolina, United States of America
| | - Guangchao Sui
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - George Kulik
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
24
|
Rebillard A, Lefeuvre-Orfila L, Gueritat J, Cillard J. Prostate cancer and physical activity: adaptive response to oxidative stress. Free Radic Biol Med 2013; 60:115-24. [PMID: 23462616 DOI: 10.1016/j.freeradbiomed.2013.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/13/2013] [Accepted: 02/13/2013] [Indexed: 11/20/2022]
Abstract
Prostate cancer is the most common form of cancer affecting men in the Western world. Its relative incidence increases exponentially with age and a steady increase is observed with extended life span. A sedentary lifestyle represents an important risk factor and a decrease in prostate cancer prevalence is associated with exercise. However, the molecular mechanisms involved in this process remain unknown. We hypothesize that reactive oxygen species generated by physical exercise are a key regulatory factor in prostate cancer prevention. Aging is correlated with increased oxidative stress (OS), which in turn provides a favorable environment for tumorigenesis. Running training is known to enhance the antioxidant defense system, reducing oxidative stress. In this context, the decrease in OS induced by exercise may delay the development of prostate cancer. This review focuses on oxidative stress-based mechanisms leading to prostate cancer sensitization to exercise, which could have some impact on the development of novel cancer therapeutic strategies.
Collapse
Affiliation(s)
- Amélie Rebillard
- EA 1274, Laboratoire Mouvement, Sport, Santé, University of Rennes 2-ENS Cachan Antenne de Bretagne, 35170 Bruz, France.
| | | | | | | |
Collapse
|
25
|
Jiang L, Luo M, Liu D, Chen B, Zhang W, Mai L, Zeng J, Huang N, Huang Y, Mo X, Li W. BAD overexpression inhibits cell growth and induces apoptosis via mitochondrial-dependent pathway in non-small cell lung cancer. Cancer Cell Int 2013; 13:53. [PMID: 23725574 PMCID: PMC3674892 DOI: 10.1186/1475-2867-13-53] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/27/2013] [Indexed: 02/05/2023] Open
Abstract
Background The pro-apoptotic Bcl-2 protein BAD initiated apoptosis in human cells and has been identified as a prognostic marker in non-small cell lung cancer (NSCLC). In this study, we aimed to explore the functions of BAD in NSCLC. Methods Overexpression of BAD was performed by transfecting different NSCLC cell lines with wild-type BAD. Cell proliferation, cell cycle, apoptosis, and invasion were characterized in vitro. Tumorigenicity was analyzed in vivo. Western blot was performed to determine the effects of BAD overexpression on the Bcl-2 family proteins and apoptosis-related proteins. Results Overexpression of BAD significantly inhibited cell proliferation in H1299, H292, and SPC-A1 but not in SK-MES-1 and H460 cell lines in vitro. BAD overexpression also reduced the tumorigenicity of H1299/SPC-A1 cell in vivo. However, no appreciable effects on cell cycle distribution and invasion were observed in all these cell lines. BAD overexpression also induced apoptosis in all cell types, in which process expression of mitochondrial cytochrom c (cyto-c) and caspase 3 were increased, whereas Bcl-xl, Bcl-2, Bax and caspase 8 expressions did not changed. These findings indicated that a mitochondrial pathway, in which process cyto-c was released from mitochondrial to activate caspase 3, was involved in BAD overexpression-mediated apoptosis. Conclusions Our data suggested that increased expression of BAD enhance apoptosis and has negative influence on cell proliferation and tumor growth in NSCLC. Bad is a new potential target for tumor interventions.
Collapse
Affiliation(s)
- Li Jiang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R China.,Department of Respiratory Medicine, Nanchong Central Hospital, Nanchong 637000, P.R China
| | - Man Luo
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R China
| | - Dan Liu
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R China
| | - Bojiang Chen
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R China
| | - Wen Zhang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R China
| | - Lin Mai
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R China
| | - Jing Zeng
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R China
| | - Na Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu 610072, P.R China
| | - Yi Huang
- Clinical Laboratory Department, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, P.R China
| | - Xianming Mo
- Laboratory Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P.R China
| | - Weimin Li
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, P.R China
| |
Collapse
|
26
|
Ahmed M, Li LC. Adaptation and clonal selection models of castration-resistant prostate cancer: Current perspective. Int J Urol 2012; 20:362-71. [DOI: 10.1111/iju.12005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/14/2012] [Indexed: 12/21/2022]
Affiliation(s)
| | - Long-Cheng Li
- Department of Urology and Helen-Diller Family Comprehensive Cancer Center; University of California, San Francisco; San Francisco; California; USA
| |
Collapse
|
27
|
Huang N, Zhu J, Liu D, Li YL, Chen BJ, He YQ, Liu K, Mo XM, Li WM. Overexpression of Bcl-2-associated death inhibits A549 cell growth in vitro and in vivo. Cancer Biother Radiopharm 2011; 27:164-8. [PMID: 22011203 DOI: 10.1089/cbr.2011.1018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The importance of apoptosis during the process of inhibiting tumorigenesis has been recognized. The role of BH3-only proapoptotic protein Bcl-2-associated death (BAD) in tumor growth remains controversial. The aim of this study was to explore the role of BAD in lung cancer cells. Our study showed that expression of BAD was upregulated in A549 cells by a recombinant lentivirus overexpressing BAD. In vitro, BAD overexpression significantly inhibited A549 cell proliferation and induced apoptosis in cell proliferation and apoptosis assays, respectively. The effect of BAD on A549 cells was studied in tumor xenograft of nude mice and the results showed that the tumor volume in the experimental group was smaller than the control groups. Further, immunohistochemical technique was used to determine the cell proliferation and apoptosis status of the lung tumor xenograft cells. This demonstrated that the in vivo and in vitro results were consistent. Taken together, our results indicate that overexpression of BAD inhibits the growth of A549 cells in vitro and in vivo, through inhibiting cell proliferation and inducing apoptosis. Thus, BAD could be a potential therapeutic target.
Collapse
Affiliation(s)
- Na Huang
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Apoptosis is a tightly regulated cell suicide program that plays an essential role in the development and maintenance of tissue homeostasis by eliminating unnecessary or harmful cells. Impairment of this native defense mechanism promotes aberrant cellular proliferation and the accumulation of genetic defects, ultimately resulting in tumorigenesis, and frequently confers drug resistance to cancer cells. The regulation of apoptosis at several levels is essential to maintain the delicate balance between cellular survival and death signaling that is required to prevent disease. Complex networks of signaling pathways act to promote or inhibit apoptosis in response to various cues. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Various upstream signaling pathways can modulate apoptosis by converging on, and thereby altering the activity of, common central control points within the apoptotic signaling pathways, which involve the BCL-2 family proteins, inhibitor of apoptosis (IAP) proteins, and FLICE-inhibitory protein (c-FLIP). This review highlights the role of these fundamental regulators of apoptosis in the context of both normal apoptotic signaling mechanisms and dysregulated apoptotic pathways that can render cancer cells resistant to cell death. In addition, therapeutic strategies aimed at modulating the activity of BCL-2 family proteins, IAPs, and c-FLIP for the targeted induction of apoptosis are briefly discussed.
Collapse
Affiliation(s)
- Jessica Plati
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA
| | - Octavian Bucur
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA
- Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Roya Khosravi-Far
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA
| |
Collapse
|
29
|
Syndecan-1-dependent suppression of PDK1/Akt/bad signaling by docosahexaenoic acid induces apoptosis in prostate cancer. Neoplasia 2011; 12:826-36. [PMID: 20927321 DOI: 10.1593/neo.10586] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 11/18/2022] Open
Abstract
Evidence indicates that diets enriched in n-3 polyunsaturated fatty acids (n-3 PUFAs) reduce the risk of prostate cancer, but biochemical mechanisms are unclear. Syndecan-1 (SDC-1), a transmembrane heparan sulfate proteoglycan, supports the integrity of the epithelial compartment. In tumor cells of epithelial lineage, SDC-1 is generally downregulated. This may result in perturbation of homeostasis and lead to progression of malignancy. Our studies have shown that the n-3 PUFA species, docosahexaenoic acid (DHA), increases SDC-1 expression in prostate tissues of Pten knockout (Pten(P-/-)) mice/cells and human prostate cancer cells. We have now determined that DHA-mediated up-regulation of SDC-1 induces apoptosis. Bovine serum albumin-bound DHA and exogenous human recombinant SDC-1 ecotodomain were delivered to PC3 and LNCaP cells in the presence or absence of SDC-1 small interfering (si)RNA. In the presence of control siRNA, both DHA and SDC-1 ectodomain induced apoptosis, whereas SDC-1 silencing blocked DHA-induced but not SDC-1 ectodomain-induced apoptosis. Downstream effectors of SDC-1 signaling linked to n-3 PUFA-induced apoptosis involved the 3'-phosphoinositide-dependent kinase 1 (PDK1)/Akt/Bad integrating network. A diet enriched in n-3 PUFA decreased phosphorylation of PDK1, Akt (T308), and Bad in prostates of Pten(P-/-) mice. Similar results were observed in human prostate cancer cells in response to DHA and SDC-1 ectodomain. The effect of DHA on PDK1/Akt/Bad signaling was abrogated by SDC-1 siRNA. These findings define a mechanism by which SDC-1-dependent suppression of phosphorylation of PDK1/Akt/Bad mediates n-3 PUFA-induced apoptosis in prostate cancer.
Collapse
|
30
|
Liao W, Goh FY, Betts RJ, Kemeny DM, Tam J, Bay BH, Wong WF. A novel anti-apoptotic role for apolipoprotein L2 in IFN-γ-induced cytotoxicity in human bronchial epithelial cells. J Cell Physiol 2010; 226:397-406. [DOI: 10.1002/jcp.22345] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Craik AC, Veldhoen RA, Czernick M, Buckland TW, Kyselytzia K, Ghosh S, Lai R, Damaraju S, Underhill DA, Mackey JR, Goping IS. The BH3-only protein Bad confers breast cancer taxane sensitivity through a nonapoptotic mechanism. Oncogene 2010; 29:5381-91. [DOI: 10.1038/onc.2010.272] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Park SJ, Sung WJ, Kim MJ. p16INK4a, PTEN, E-cadherin, Bcl-2 and Ki-67 Expression in Prostate Cancer: Its Relationship with the Metastatic Potential and Known Prognostic Factors. KOREAN JOURNAL OF PATHOLOGY 2010. [DOI: 10.4132/koreanjpathol.2010.44.6.597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Seok Ju Park
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
| | - Woo Jung Sung
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
| | - Mi Jin Kim
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|