1
|
Hodgkin J, Stroud D, O'Rourke D. Mutations of nhr-49 affect C. elegans susceptibility to Yersinia biofilms. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001522. [PMID: 39975509 PMCID: PMC11836678 DOI: 10.17912/micropub.biology.001522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
The C. elegans transcription factor NHR-49 has been extensively studied for its functions in regulating metabolic processes, stress responses, innate immunity and aging. Molecular identification of a gene previously known as bah-3 , which affects susceptibility of worms to deleterious surface attachment of bacterial biofilms from Yersinia spp., revealed that bah-3 ( dc9 ) is an ochre nonsense allele of nhr-49 . Other severe mutations of nhr-49 also had a Bah phenotype, but deletions affecting 5' isoforms of the gene did not affect biofilm attachment, nor did 3' gain-of-function missense mutations. Other bah genes ( bah-1 , bah-2 , bah-4 ) encode GT92 glycosylation factors, predicted to affect surface coat. NHR-49 may act as a positive transcription factor for one or more of these surface glycosylation genes, in contrast to its other roles in regulating metabolic processes.
Collapse
Affiliation(s)
- Jonathan Hodgkin
- Biochemistry, University of Oxford, Oxford, England, United Kingdom
| | - Dave Stroud
- Biochemistry, University of Oxford, Oxford, England, United Kingdom
| | - Delia O'Rourke
- Centre for Human Genetics, University of Oxford, Oxford, England, United Kingdom
| |
Collapse
|
2
|
O’Rourke D, Gravato-Nobre MJ, Stroud D, Pritchett E, Barker E, Price RL, Robinson SA, Spiro S, Kuwabara P, Hodgkin J. Isolation and molecular identification of nematode surface mutants with resistance to bacterial pathogens. G3 (BETHESDA, MD.) 2023; 13:jkad056. [PMID: 36911920 PMCID: PMC10151413 DOI: 10.1093/g3journal/jkad056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023]
Abstract
Numerous mutants of the nematode Caenorhabditis elegans with surface abnormalities have been isolated by utilizing their resistance to a variety of bacterial pathogens (Microbacterium nematophilum, Yersinia pseudotuberculosis, and 2 Leucobacter strains), all of which are able to cause disease or death when worms are grown on bacterial lawns containing these pathogens. Previous work led to the identification of 9 srf or bus genes; here, we report molecular identification and characterization of a further 10 surface-affecting genes. Three of these were found to encode factors implicated in glycosylation (srf-2, bus-5, and bus-22), like several of those previously reported; srf-2 belongs to the GT92 family of putative galactosyltransferases, and bus-5 is homologous to human dTDP-D-glucose 4,6-dehydratase, which is implicated in Catel-Manzke syndrome. Other genes encoded proteins with sequence similarity to phosphatidylinositol phosphatases (bus-6), Patched-related receptors (ptr-15/bus-13), steroid dehydrogenases (dhs-5/bus-21), or glypiation factors (bus-24). Three genes appeared to be nematode-specific (srf-5, bus-10, and bus-28). Many mutants exhibited cuticle fragility as revealed by bleach and detergent sensitivity; this fragility was correlated with increased drug sensitivity, as well as with abnormal skiddy locomotion. Most of the genes examined were found to be expressed in epidermal seam cells, which appear to be important for synthesizing nematode surface coat. The results reveal the genetic and biochemical complexity of this critical surface layer, and provide new tools for its analysis.
Collapse
Affiliation(s)
- Delia O’Rourke
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Dave Stroud
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Emily Pritchett
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Emily Barker
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Rebecca L Price
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Sarah A Robinson
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Simon Spiro
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
3
|
Cohen JD, Sundaram MV. C. elegans Apical Extracellular Matrices Shape Epithelia. J Dev Biol 2020; 8:E23. [PMID: 33036165 PMCID: PMC7712855 DOI: 10.3390/jdb8040023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Apical extracellular matrices (aECMs) coat exposed surfaces of epithelia to shape developing tissues and protect them from environmental insults. Despite their widespread importance for human health, aECMs are poorly understood compared to basal and stromal ECMs. The nematode Caenorhabditis elegans contains a variety of distinct aECMs, some of which share many of the same types of components (lipids, lipoproteins, collagens, zona pellucida domain proteins, chondroitin glycosaminoglycans and proteoglycans) with mammalian aECMs. These aECMs include the eggshell, a glycocalyx-like pre-cuticle, both collagenous and chitin-based cuticles, and other understudied aECMs of internal epithelia. C. elegans allows rapid genetic manipulations and live imaging of fluorescently-tagged aECM components, and is therefore providing new insights into aECM structure, trafficking, assembly, and functions in tissue shaping.
Collapse
Affiliation(s)
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine 415 Curie Blvd, Philadelphia, PA 19104-6145, USA;
| |
Collapse
|
4
|
Zhao Q, Wang W, Gao S, Sun Y. Analysis of DNA methylation alterations in rice seeds induced by different doses of carbon-ion radiation. JOURNAL OF RADIATION RESEARCH 2018; 59:565-576. [PMID: 30020485 PMCID: PMC6151634 DOI: 10.1093/jrr/rry053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/08/2018] [Indexed: 06/08/2023]
Abstract
To investigate the mechanism underlying differences in biological effects induced by low- versus high-dose heavy-ion radiation (HIR) in rice plants, two-dimensional gel electrophoresis (2-DE) coupled with methylation-sensitive amplification polymorphism (MSAP) analysis were used to check the expression changes in rice leaf proteome profiles and the changes in DNA methylation after exposure of seeds to ground-based carbon-ion radiation at various cumulative doses (0, 0.01, 0.02, 0.1, 0.2, 1, 2, 5 or 20 Gy; 12C6+; energy, 165 MeV/u; mean linear energy transfer, 30 KeV/μm). In this study, principal component analysis (PCA) and gene ontology (GO) functional analysis of differentially expressed proteins of rice at tillering stage showed that proteins expressed in rice samples exposed to 0.01, 0.02, 0.1, 0.2 or 1 Gy differed from those exposed to 2, 5 or 20 Gy. Correspondingly, the proportion of hypermethylation was higher than that of hypomethylation at CG sites following low-dose HIR (LDR; 0.01, 0.2 or 1 Gy), whereas this was reversed at high-dose HIR (HDR; 2, 5 or 20 Gy). The hypomethylation changes tended to occur at CHG sites with both low- and high-dose HIR. Furthermore, sequencing of MSAP variant bands indicated that the plants might activate more metabolic processes and biosynthetic pathways on exposure to LDR, but activate stress resistance on exposure to HDR. This study showed that radiation induced different biological effects with low- and high-dose HIR, and that this may have been caused by different patterns of hyper- and hypomethylation at the CG sites.
Collapse
Affiliation(s)
- Qian Zhao
- Institute of Environmental System Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, PR China
| | - Wei Wang
- Institute of Environmental System Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, PR China
| | - Shuai Gao
- Institute of Environmental System Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, PR China
| | - Yeqing Sun
- Institute of Environmental System Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, PR China
| |
Collapse
|
5
|
Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, Qiu X, Lee C, Furlan SN, Steemers FJ, Adey A, Waterston RH, Trapnell C, Shendure J. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 2017; 357:661-667. [PMID: 28818938 DOI: 10.1126/science.aam8940] [Citation(s) in RCA: 928] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/12/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022]
Abstract
To resolve cellular heterogeneity, we developed a combinatorial indexing strategy to profile the transcriptomes of single cells or nuclei, termed sci-RNA-seq (single-cell combinatorial indexing RNA sequencing). We applied sci-RNA-seq to profile nearly 50,000 cells from the nematode Caenorhabditis elegans at the L2 larval stage, which provided >50-fold "shotgun" cellular coverage of its somatic cell composition. From these data, we defined consensus expression profiles for 27 cell types and recovered rare neuronal cell types corresponding to as few as one or two cells in the L2 worm. We integrated these profiles with whole-animal chromatin immunoprecipitation sequencing data to deconvolve the cell type-specific effects of transcription factors. The data generated by sci-RNA-seq constitute a powerful resource for nematode biology and foreshadow similar atlases for other organisms.
Collapse
Affiliation(s)
- Junyue Cao
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Jonathan S Packer
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Vijay Ramani
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Chau Huynh
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Riza Daza
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Xiaojie Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Scott N Furlan
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Andrew Adey
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA.,Knight Cardiovascular Institute, Portland, OR, USA
| | - Robert H Waterston
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA. .,Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
6
|
Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, Qiu X, Lee C, Furlan SN, Steemers FJ, Adey A, Waterston RH, Trapnell C, Shendure J. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 2017. [DOI: 10.1126/science.aam8940 order by 10746--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Junyue Cao
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Jonathan S. Packer
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Vijay Ramani
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Chau Huynh
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Riza Daza
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Xiaojie Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Scott N. Furlan
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Andrew Adey
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Knight Cardiovascular Institute, Portland, OR, USA
| | | | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
7
|
Lažetić V, Fay DS. Molting in C. elegans. WORM 2017; 6:e1330246. [PMID: 28702275 DOI: 10.1080/21624054.2017.1330246] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022]
Abstract
Molting is an essential developmental process for the majority of animal species on Earth. During the molting process, which is a specialized form of extracellular matrix (ECM) remodeling, the old apical ECM, or cuticle, is replaced with a new one. Many of the genes and pathways identified as important for molting in nematodes are highly conserved in vertebrates and include regulators and components of vesicular trafficking, steroid-hormone signaling, developmental timers, and hedgehog-like signaling. In this review, we discuss what is known about molting, with a focus on studies in Caenorhabditis elegans. We also describe the key structural elements of the cuticle that must be released, newly synthesized, or remodeled for proper molting to occur.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - David S Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
8
|
Genome-wide evaluation of the interplay between Caenorhabditis elegans and Yersinia pseudotuberculosis during in vivo biofilm formation. Infect Immun 2014; 83:17-27. [PMID: 25312958 DOI: 10.1128/iai.00110-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The formation of an incapacitating biofilm on Caenorhabditis elegans by Yersinia pseudotuberculosis represents a tractable model for investigating the genetic basis for host-pathogen interplay during the biofilm-mediated infection of a living surface. Previously we established a role for quorum sensing (QS) and the master motility regulator, FlhDC, in biofilm formation by Y. pseudotuberculosis on C. elegans. To obtain further genome-wide insights, we used transcriptomic analysis to obtain comparative information on C. elegans in the presence and absence of biofilm and on wild-type Y. pseudotuberculosis and Y. pseudotuberculosis QS mutants. Infection of C. elegans with the wild-type Y. pseudotuberculosis resulted in the differential regulation of numerous genes, including a distinct subset of nematode C-lectin (clec) and fatty acid desaturase (fat) genes. Evaluation of the corresponding C. elegans clec-49 and fat-3 deletion mutants showed delayed biofilm formation and abolished biofilm formation, respectively. Transcriptomic analysis of Y. pseudotuberculosis revealed that genes located in both of the histidine utilization (hut) operons were upregulated in both QS and flhDC mutants. In addition, mutation of the regulatory gene hutC resulted in the loss of biofilm, increased expression of flhDC, and enhanced swimming motility. These data are consistent with the existence of a regulatory cascade in which the Hut pathway links QS and flhDC. This work also indicates that biofilm formation by Y. pseudotuberculosis on C. elegans is an interactive process during which the initial attachment/recognition of Yersinia to/by C. elegans is followed by bacterial growth and biofilm formation.
Collapse
|
9
|
Chisholm AD, Xu S. The Caenorhabditis elegans epidermis as a model skin. II: differentiation and physiological roles. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:879-902. [PMID: 23539358 DOI: 10.1002/wdev.77] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Caenorhabditis elegans epidermis forms one of the principal barrier epithelia of the animal. Differentiation of the epidermis begins in mid embryogenesis and involves apical-basal polarization of the cytoskeletal and secretory systems as well as cellular junction formation. Secretion of the external cuticle layers is one of the major developmental and physiological specializations of the epidermal epithelium. The four post-embryonic larval stages are separated by periodic moults, in which the epidermis generates a new cuticle with stage-specific characteristics. The differentiated epidermis also plays key roles in endocrine signaling, fat storage, and ionic homeostasis. The epidermis is intimately associated with the development and function of the nervous system, and may have glial-like roles in modulating neuronal function. The epidermis provides passive and active defenses against skin-penetrating pathogens and can repair small wounds. Finally, age-dependent deterioration of the epidermis is a prominent feature of aging and may affect organismal aging and lifespan.
Collapse
Affiliation(s)
- Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
10
|
Hansen SF, Harholt J, Oikawa A, Scheller HV. Plant Glycosyltransferases Beyond CAZy: A Perspective on DUF Families. FRONTIERS IN PLANT SCIENCE 2012; 3:59. [PMID: 22629278 PMCID: PMC3355507 DOI: 10.3389/fpls.2012.00059] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/10/2012] [Indexed: 05/18/2023]
Abstract
The carbohydrate active enzyme (CAZy) database is an invaluable resource for glycobiology and currently contains 45 glycosyltransferase families that are represented in plants. Glycosyltransferases (GTs) have many functions in plants, but the majority are likely to be involved in biosynthesis of polysaccharides and glycoproteins in the plant cell wall. Bioinformatic approaches and structural modeling suggest that a number of protein families in plants include GTs that have not yet been identified as such and are therefore not included in CAZy. These families include proteins with domain of unknown function (DUF) DUF23, DUF246, and DUF266. The evidence for these proteins being GTs and their possible roles in cell wall biosynthesis is discussed.
Collapse
Affiliation(s)
- Sara Fasmer Hansen
- Feedstocks Division, Joint Bioenergy Institute, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Jesper Harholt
- Department of Plant Biology and Biotechnology, University of CopenhagenFrederiksberg, Denmark
| | - Ai Oikawa
- Feedstocks Division, Joint Bioenergy Institute, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Henrik V. Scheller
- Feedstocks Division, Joint Bioenergy Institute, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
- Department of Plant and Microbial Biology, University of CaliforniaBerkeley, CA, USA
- *Correspondence: Henrik V. Scheller, Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 5885 Hollis Street, Emeryville, CA 94608, USA. e-mail:
| |
Collapse
|
11
|
Engelmann I, Griffon A, Tichit L, Montañana-Sanchis F, Wang G, Reinke V, Waterston RH, Hillier LW, Ewbank JJ. A comprehensive analysis of gene expression changes provoked by bacterial and fungal infection in C. elegans. PLoS One 2011; 6:e19055. [PMID: 21602919 PMCID: PMC3094335 DOI: 10.1371/journal.pone.0019055] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/17/2011] [Indexed: 12/16/2022] Open
Abstract
While Caenorhabditis elegans specifically responds to infection by the up-regulation of certain genes, distinct pathogens trigger the expression of a common set of genes. We applied new methods to conduct a comprehensive and comparative study of the transcriptional response of C. elegans to bacterial and fungal infection. Using tiling arrays and/or RNA-sequencing, we have characterized the genome-wide transcriptional changes that underlie the host's response to infection by three bacterial (Serratia marcescens, Enterococcus faecalis and otorhabdus luminescens) and two fungal pathogens (Drechmeria coniospora and Harposporium sp.). We developed a flexible tool, the WormBase Converter (available at http://wormbasemanager.sourceforge.net/), to allow cross-study comparisons. The new data sets provided more extensive lists of differentially regulated genes than previous studies. Annotation analysis confirmed that genes commonly up-regulated by bacterial infections are related to stress responses. We found substantial overlaps between the genes regulated upon intestinal infection by the bacterial pathogens and Harposporium, and between those regulated by Harposporium and D. coniospora, which infects the epidermis. Among the fungus-regulated genes, there was a significant bias towards genes that are evolving rapidly and potentially encode small proteins. The results obtained using new methods reveal that the response to infection in C. elegans is determined by the nature of the pathogen, the site of infection and the physiological imbalance provoked by infection. They form the basis for future functional dissection of innate immune signaling. Finally, we also propose alternative methods to identify differentially regulated genes that take into account the greater variability in lowly expressed genes.
Collapse
Affiliation(s)
- Ilka Engelmann
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Aurélien Griffon
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | | | - Frédéric Montañana-Sanchis
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Guilin Wang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Robert H. Waterston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - LaDeana W. Hillier
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jonathan J. Ewbank
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
- * E-mail:
| |
Collapse
|
12
|
Biofilm development on Caenorhabditis elegans by Yersinia is facilitated by quorum sensing-dependent repression of type III secretion. PLoS Pathog 2011; 7:e1001250. [PMID: 21253572 PMCID: PMC3017118 DOI: 10.1371/journal.ppat.1001250] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 12/06/2010] [Indexed: 12/30/2022] Open
Abstract
Yersinia pseudotuberculosis forms biofilms on Caenorhabditis elegans which block nematode feeding. This genetically amenable host-pathogen model has important implications for biofilm development on living, motile surfaces. Here we show that Y. pseudotuberculosis biofilm development on C. elegans is governed by N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) since (i) AHLs are produced in nematode associated biofilms and (ii) Y. pseudotuberculosis strains expressing an AHL-degrading enzyme or in which the AHL synthase (ypsI and ytbI) or response regulator (ypsR and ytbR) genes have been mutated, are attenuated. Although biofilm formation is also attenuated in Y. pseudotuberculosis strains carrying mutations in the QS-controlled motility regulator genes, flhDC and fliA, and the flagellin export gene, flhA, flagella are not required since fliC mutants form normal biofilms. However, in contrast to the parent and fliC mutant, Yop virulon proteins are up-regulated in flhDC, fliA and flhA mutants in a temperature and calcium independent manner. Similar observations were found for the Y. pseudotuberculosis QS mutants, indicating that the Yop virulon is repressed by QS via the master motility regulator, flhDC. By curing the pYV virulence plasmid from the ypsI/ytbI mutant, by growing YpIII under conditions permissive for type III needle formation but not Yop secretion and by mutating the type III secretion apparatus gene, yscJ, we show that biofilm formation can be restored in flhDC and ypsI/ytbI mutants. These data demonstrate that type III secretion blocks biofilm formation and is reciprocally regulated with motility via QS. Many Gram-negative bacteria communicate by producing and sensing the presence of chemical signal molecules such as the N-acylhomoserine lactones (AHLs). Bacterial cells use AHLs to convey information about their environment, metabolism and population size. This type of chemical signalling is called ‘quorum sensing’ (QS) and is often used by pathogenic bacteria to promote acute or chronic infections through the control of motility, toxins, tissue degrading enzymes and surface-associated biofilms. Yersinia pseudotuberculosis is a human pathogen which forms biofilms on the surface of the nematode worm, Caenorhabditis elegans. This offers a simple means for investigating biofilm development on living tissues and can be used to identify genetic features of both the pathogen and the host that contribute to biofilm-associated infections. We have discovered that quorum sensing is required for Y. pseudotuberculosis biofilm formation on C. elegans through a regulatory pathway which involves the master motility regulator protein (FlhDC) reciprocally controlling bacterial swimming and the construction of a specialized secretion needle that delivers proteins into mammalian cells to disrupt their normal activities.
Collapse
|
13
|
Abstract
The surface coat (SC) of the plant-parasitic nematode cuticle is an understudied area of current research, even though it likely plays key roles in both nematode-plant and nematode-microbe interactions. Although in several ways Caenorhabditis elegans is a poor model for plant-parasitic nematodes, it is a useful starting point for investigations of the cuticle and its SC, especially in the light of recent work using this species as a model for innate immunity and the generic biology underpinning much host-parasite biology. We review the research focused on the involvement of the SC of plant-parasitic nematodes. Using the insights gained from animal-parasitic nematodes and other sequenced nematodes, we discuss the key roles that the SC may play.
Collapse
Affiliation(s)
- Keith G Davies
- Plant Pathology and Microbiology, Rothamsted Research, Hertfordshire AL5 2JQ, United Kingdom
| | | |
Collapse
|
14
|
O'Callaghan D, Vergunst A. Non-mammalian animal models to study infectious disease: worms or fly fishing? Curr Opin Microbiol 2010; 13:79-85. [PMID: 20045373 DOI: 10.1016/j.mib.2009.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022]
Abstract
A major challenge in studying human infectious diseases is to understand in detail the molecular bases, including both pathogen and host-related factors, which contribute to disease development. Non-mammalian models have proven to be of great value for our understanding of disease and have shown conservation in fundamental virulence mechanisms for the infection of evolutionary divergent hosts. In this review we describe recent advances with three major non-mammalian models used for analysis of infectious disease in humans; the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and the zebrafish Danio rerio.
Collapse
Affiliation(s)
- David O'Callaghan
- INSERM Espri 26, UFR Médecine, Université de Montpellier 1, EA4204, UFR Médecine, Nimes, France.
| | | |
Collapse
|