1
|
Zhang H, Tang M, Li D, Xu M, Ao Y, Lin L. Applications and advances in molecular diagnostics: revolutionizing non-tuberculous mycobacteria species and subspecies identification. Front Public Health 2024; 12:1410672. [PMID: 38962772 PMCID: PMC11220129 DOI: 10.3389/fpubh.2024.1410672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Non-tuberculous mycobacteria (NTM) infections pose a significant public health challenge worldwide, affecting individuals across a wide spectrum of immune statuses. Recent epidemiological studies indicate rising incidence rates in both immunocompromised and immunocompetent populations, underscoring the need for enhanced diagnostic and therapeutic approaches. NTM infections often present with symptoms similar to those of tuberculosis, yet with less specificity, increasing the risk of misdiagnosis and potentially adverse outcomes for patients. Consequently, rapid and accurate identification of the pathogen is crucial for precise diagnosis and treatment. Traditional detection methods, notably microbiological culture, are hampered by lengthy incubation periods and a limited capacity to differentiate closely related NTM subtypes, thereby delaying diagnosis and the initiation of targeted therapies. Emerging diagnostic technologies offer new possibilities for the swift detection and accurate identification of NTM infections, playing a critical role in early diagnosis and providing more accurate and comprehensive information. This review delineates the current molecular methodologies for NTM species and subspecies identification. We critically assess the limitations and challenges inherent in these technologies for diagnosing NTM and explore potential future directions for their advancement. It aims to provide valuable insights into advancing the application of molecular diagnostic techniques in NTM infection identification.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Maoting Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Deyuan Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Min Xu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yusen Ao
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liangkang Lin
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Ferreira LM, Sáfadi T, Ferreira JL. K-mer applied in Mycobacterium tuberculosis genome cluster analysis. BRAZ J BIOL 2024; 84:e258258. [DOI: 10.1590/1519-6984.258258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/26/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract According to studies carried out, approximately 10 million people developed tuberculosis in 2018. Of this total, 1.5 million people died from the disease. To study the behavior of the genome sequences of Mycobacterium tuberculosis (MTB), the bacterium responsible for the development of tuberculosis (TB), an analysis was performed using k-mers (DNA word frequency). The k values ranged from 1 to 10, because the analysis was performed on the full length of the sequences, where each sequence is composed of approximately 4 million base pairs, k values above 10, the analysis is interrupted, as consequence of the program's capacity. The aim of this work was to verify the formation of the phylogenetic tree in each k-mer analyzed. The results showed the formation of distinct groups in some k-mers analyzed, taking into account the threshold line. However, in all groups, the multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains remained together and separated from the other strains.
Collapse
|
3
|
Grazian C. Clustering minimal inhibitory concentration data through Bayesian mixture models: An application to detect Mycobacterium tuberculosis resistance mutations. Stat Methods Med Res 2023; 32:2423-2439. [PMID: 37920984 PMCID: PMC10710010 DOI: 10.1177/09622802231211010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Antimicrobial resistance is becoming a major threat to public health throughout the world. Researchers are attempting to contrast it by developing both new antibiotics and patient-specific treatments. In the second case, whole-genome sequencing has had a huge impact in two ways: first, it is becoming cheaper and faster to perform whole-genome sequencing, and this makes it competitive with respect to standard phenotypic tests; second, it is possible to statistically associate the phenotypic patterns of resistance to specific mutations in the genome. Therefore, it is now possible to develop catalogues of genomic variants associated with resistance to specific antibiotics, in order to improve prediction of resistance and suggest treatments. It is essential to have robust methods for identifying mutations associated to resistance and continuously updating the available catalogues. This work proposes a general method to study minimal inhibitory concentration distributions and to identify clusters of strains showing different levels of resistance to antimicrobials. Once the clusters are identified and strains allocated to each of them, it is possible to perform regression method to identify with high statistical power the mutations associated with resistance. The method is applied to a new 96-well microtiter plate used for testing Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Clara Grazian
- School of Mathematics and Statistics, University of Sydney, NSW, Australia
- ARC Training Centre in Data Analytics for Resources and Environments (DARE), Australia
| |
Collapse
|
4
|
Lovey A, Verma S, Kaipilyawar V, Ribeiro-Rodrigues R, Husain S, Palaci M, Dietze R, Ma S, Morrison RD, Sherman DR, Ellner JJ, Salgame P. Early alveolar macrophage response and IL-1R-dependent T cell priming determine transmissibility of Mycobacterium tuberculosis strains. Nat Commun 2022; 13:884. [PMID: 35173157 PMCID: PMC8850437 DOI: 10.1038/s41467-022-28506-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/28/2022] [Indexed: 12/15/2022] Open
Abstract
Mechanisms underlying variability in transmission of Mycobacterium tuberculosis strains remain undefined. By characterizing high and low transmission strains of M.tuberculosis in mice, we show here that high transmission M.tuberculosis strain induce rapid IL-1R-dependent alveolar macrophage migration from the alveolar space into the interstitium and that this action is key to subsequent temporal events of early dissemination of bacteria to the lymph nodes, Th1 priming, granulomatous response and bacterial control. In contrast, IL-1R-dependent alveolar macrophage migration and early dissemination of bacteria to lymph nodes is significantly impeded in infection with low transmission M.tuberculosis strain; these events promote the development of Th17 immunity, fostering neutrophilic inflammation and increased bacterial replication. Our results suggest that by inducing granulomas with the potential to develop into cavitary lesions that aids bacterial escape into the airways, high transmission M.tuberculosis strain is poised for greater transmissibility. These findings implicate bacterial heterogeneity as an important modifier of TB disease manifestations and transmission.
Collapse
Affiliation(s)
- Arianne Lovey
- Center for Emerging Pathogens, Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Sheetal Verma
- Center for Emerging Pathogens, Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Vaishnavi Kaipilyawar
- Center for Emerging Pathogens, Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | | | - Seema Husain
- The Genomics Center, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Moises Palaci
- Núcleo de Doenças Infecciosas, NDI/Universidade Federal do Espirito Santo-UFES, Vitoria, Brazil
| | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas, NDI/Universidade Federal do Espirito Santo-UFES, Vitoria, Brazil
- Global Health & Tropical Medicine-Instituto de Higiene e Medicina Tropical-Universidade Nova de Lisboa, Lisbon, Portugal
| | - Shuyi Ma
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Division of Infectious Diseases, Department of Pediatrics, University of Washington, Seattle, WA, USA
- Pathobiology Program, Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Robert D Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - David R Sherman
- Department of Microbiology, University of Washington, Seattle, WA, 98109-8070, USA
| | - Jerrold J Ellner
- Center for Emerging Pathogens, Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Padmini Salgame
- Center for Emerging Pathogens, Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
5
|
Jain P, Bepari AK, Sen PK, Rafe T, Imtiaz R, Hossain M, Reza HM. High prevalence of multiple antibiotic resistance in clinical E. coli isolates from Bangladesh and prediction of molecular resistance determinants using WGS of an XDR isolate. Sci Rep 2021; 11:22859. [PMID: 34819576 PMCID: PMC8613203 DOI: 10.1038/s41598-021-02251-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/08/2021] [Indexed: 12/04/2022] Open
Abstract
Multi-drug-resistance (MDR) is a severe public health concern worldwide, and its containment is more challenging in developing countries due to poor antimicrobial resistance (AMR) surveillance and irrational use of antibiotics. The current study investigated 100 clinical E. coli isolates and revealed that 98% of them were MDR. PCR analysis using 25 selected isolates showed the predominance of metallo-β-lactamase gene blaNDM (80%) and ESBL genes blaOXA (48%) and blaCTX-M-15 (32%). The AmpC gene was detected in 68% of the isolates, while 32% was tetC positive. Notably, 34% of the isolates were resistant to carbapenem. Whole genome sequence (WGS) analysis of an extensively drug-resistant (XDR) isolate (L16) revealed the presence of the notorious sequence type 131 responsible for multi-drug-resistant infections, multiple antibiotic resistance genes (ARGs), virulence genes, and mobile genetic elements that pose risks to environmental transmission. Our results indicate that MDR is alarmingly increasing in Bangladesh that critically limits the treatment option against infections and contributes to further aggravation to the prevailing situation of MDR worldwide. The findings of this study will be valuable in designing sustainable strategies to contain MDR in the region.
Collapse
Affiliation(s)
- Preeti Jain
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Asim Kumar Bepari
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Prosengit Kumer Sen
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Tanzir Rafe
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Rashed Imtiaz
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Maqsud Hossain
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh.
| |
Collapse
|
6
|
Santos-Lazaro D, Gavilan RG, Solari L, Vigo AN, Puyen ZM. Whole genome analysis of extensively drug resistant Mycobacterium tuberculosis strains in Peru. Sci Rep 2021; 11:9493. [PMID: 33947918 PMCID: PMC8097007 DOI: 10.1038/s41598-021-88603-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/14/2021] [Indexed: 02/02/2023] Open
Abstract
Peru has the highest burden of multidrug-resistant tuberculosis in the Americas region. Since 1999, the annual number of extensively drug-resistant tuberculosis (XDR-TB) Peruvian cases has been increasing, becoming a public health challenge. The objective of this study was to perform genomic characterization of Mycobacterium tuberculosis strains obtained from Peruvian patients with XDR-TB diagnosed from 2011 to 2015 in Peru. Whole genome sequencing (WGS) was performed on 68 XDR-TB strains from different regions of Peru. 58 (85.3%) strains came from the most populated districts of Lima and Callao. Concerning the lineages, 62 (91.2%) strains belonged to the Euro-American Lineage, while the remaining 6 (8.8%) strains belonged to the East-Asian Lineage. Most strains (90%) had high-confidence resistance mutations according to pre-established WHO-confident grading system. Discordant results between microbiological and molecular methodologies were caused by mutations outside the hotspot regions analysed by commercial molecular assays (rpoB I491F and inhA S94A). Cluster analysis using a cut-off ≤ 10 SNPs revealed that only 23 (34%) strains evidenced recent transmission links. This study highlights the relevance and utility of WGS as a high-resolution approach to predict drug resistance, analyse transmission of strains between groups, and determine evolutionary patterns of circulating XDR-TB strains in the country.
Collapse
Affiliation(s)
| | - Ronnie G. Gavilan
- grid.419228.40000 0004 0636 549XInstituto Nacional de Salud, Lima, Peru ,grid.441740.20000 0004 0542 2122Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Lely Solari
- grid.419228.40000 0004 0636 549XInstituto Nacional de Salud, Lima, Peru
| | - Aiko N. Vigo
- grid.419228.40000 0004 0636 549XInstituto Nacional de Salud, Lima, Peru
| | - Zully M. Puyen
- grid.419228.40000 0004 0636 549XInstituto Nacional de Salud, Lima, Peru ,grid.441917.e0000 0001 2196 144XEscuela de Medicina, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| |
Collapse
|
7
|
Devi KR, Pradhan J, Bhutia R, Dadul P, Sarkar A, Gohain N, Narain K. Molecular diversity of Mycobacterium tuberculosis complex in Sikkim, India and prediction of dominant spoligotypes using artificial intelligence. Sci Rep 2021; 11:7365. [PMID: 33795751 PMCID: PMC8016865 DOI: 10.1038/s41598-021-86626-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
In India, tuberculosis is an enormous public health problem. This study provides the first description of molecular diversity of the Mycobacterium tuberculosis complex (MTBC) from Sikkim, India. A total of 399 Acid Fast Bacilli sputum positive samples were cultured on Lőwenstein-Jensen media and genetic characterisation was done by spoligotyping and 24-loci MIRU-VNTR typing. Spoligotyping revealed the occurrence of 58 different spoligotypes. Beijing spoligotype was the most dominant type constituting 62.41% of the total isolates and was associated with Multiple Drug Resistance. Minimum Spanning tree analysis of 249 Beijing strains based on 24-loci MIRU-VNTR analysis identified 12 clonal complexes (Single Locus Variants). The principal component analysis was used to visualise possible grouping of MTBC isolates from Sikkim belonging to major spoligotypes using 24-MIRU VNTR profiles. Artificial intelligence-based machine learning (ML) methods such as Random Forests (RF), Support Vector Machines (SVM) and Artificial Neural Networks (ANN) were used to predict dominant spoligotypes of MTBC using MIRU-VNTR data. K-fold cross-validation and validation using unseen testing data set revealed high accuracy of ANN, RF, and SVM for predicting Beijing, CAS1_Delhi, and T1 Spoligotypes (93-99%). However, prediction using the external new validation data set revealed that the RF model was more accurate than SVM and ANN.
Collapse
Affiliation(s)
- Kangjam Rekha Devi
- grid.420069.90000 0004 1803 0080N.E. Region, Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, Post Box #105, Dibrugarh, Assam 786 001 India
| | - Jagat Pradhan
- National Tuberculosis Elimination Programme (NTEP), Gangtok, Sikkim India
| | - Rinchenla Bhutia
- National Tuberculosis Elimination Programme (NTEP), Gangtok, Sikkim India
| | - Peggy Dadul
- Department of Health Care, Human Services and Family Welfare, State Tuberculosis Control Society, Gangtok, Sikkim India
| | - Atanu Sarkar
- grid.420069.90000 0004 1803 0080N.E. Region, Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, Post Box #105, Dibrugarh, Assam 786 001 India
| | - Nitumoni Gohain
- grid.420069.90000 0004 1803 0080N.E. Region, Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, Post Box #105, Dibrugarh, Assam 786 001 India
| | - Kanwar Narain
- grid.420069.90000 0004 1803 0080N.E. Region, Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, Post Box #105, Dibrugarh, Assam 786 001 India
| |
Collapse
|
8
|
Chee CBE, Lim LKY, Ong RTH, Sng LH, Hsu LY, Lee VJM, Wang YT. Whole genome sequencing analysis of multidrug-resistant tuberculosis in Singapore, 2006-2018. Eur J Clin Microbiol Infect Dis 2020; 40:1079-1083. [PMID: 33190171 DOI: 10.1007/s10096-020-04100-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/05/2020] [Indexed: 01/29/2023]
Abstract
There were 290 multidrug-resistant (MDR)-TB cases diagnosed in Singapore from 2006 to 2018. Eighty-one percent were foreign-born. Spoligotyping and MIRU-VNTR methods identified 108 patients in 24 clusters. The Beijing spoligotype accounted for 22 clusters. Whole genome sequencing (WGS) analysis reduced the number of clustered patients and clusters to 43 and nine respectively. One MIRU cluster was redefined into three WGS clusters. All the clusters had foreign-born source cases. Forty percent of local-born, versus 9% of foreign-born, MDR-TB cases belonged to WGS clusters. WGS more accurately elucidated potential MDR-TB transmission which was overestimated by conventional genotyping methods in Singapore.
Collapse
Affiliation(s)
| | - Leo K Y Lim
- TB Control Unit, Tan Tock Seng Hospital, Singapore, Singapore
| | - Rick T H Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Li Hwei Sng
- Singapore General Hospital, Singapore, Singapore
| | - Li Yang Hsu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | | - Yee Tang Wang
- TB Control Unit, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
9
|
Abstract
Multi-omics strategies are indispensable tools in the search for new anti-tuberculosis drugs. Omics methodologies, where the ensemble of a class of biological molecules are measured and evaluated together, enable drug discovery programs to answer two fundamental questions. Firstly, in a discovery biology approach, to find new targets in druggable pathways for target-based investigation, advancing from target to lead compound. Secondly, in a discovery chemistry approach, to identify the mode of action of lead compounds derived from high-throughput screens, progressing from compound to target. The advantage of multi-omics methodologies in both of these settings is that omics approaches are unsupervised and unbiased to a priori hypotheses, making omics useful tools to confirm drug action, reveal new insights into compound activity, and discover new avenues for inquiry. This review summarizes the application of Mycobacterium tuberculosis omics technologies to the early stages of tuberculosis antimicrobial drug discovery.
Collapse
|
10
|
Wollenberg K, Harris M, Gabrielian A, Ciobanu N, Chesov D, Long A, Taaffe J, Hurt D, Rosenthal A, Tartakovsky M, Crudu V. A retrospective genomic analysis of drug-resistant strains of M. tuberculosis in a high-burden setting, with an emphasis on comparative diagnostics and reactivation and reinfection status. BMC Infect Dis 2020; 20:17. [PMID: 31910804 PMCID: PMC6947865 DOI: 10.1186/s12879-019-4739-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/27/2019] [Indexed: 12/01/2022] Open
Abstract
Background Recurrence of drug-resistant tuberculosis (DR-TB) after treatment occurs through relapse of the initial infection or reinfection by a new drug-resistant strain. Outbreaks of DR-TB in high burden regions present unique challenges in determining recurrence status for effective disease management and treatment. In the Republic of Moldova the burden of DR-TB is exceptionally high, with many cases presenting as recurrent. Methods We performed a retrospective analysis of Mycobacterium tuberculosis from Moldova to better understand the genomic basis of drug resistance and its effect on the determination of recurrence status in a high DR-burden environment. To do this we analyzed genomes from 278 isolates collected from 189 patients, including 87 patients with longitudinal samples. These pathogen genomes were sequenced using Illumina technology, and SNP panels were generated for each sample for use in phylogenetic and network analysis. Discordance between genomic resistance profiles and clinical drug-resistance test results was examined in detail to assess the possibility of mixed infection. Results There were clusters of multiple patients with 10 or fewer differences among DR-TB samples, which is evidence of person-to-person transmission of DR-TB. Analysis of longitudinally collected isolates revealed that many infections exhibited little change over time, though 35 patients demonstrated reinfection by divergent (number of differences > 10) lineages. Additionally, several same-lineage sample pairs were found to be more divergent than expected for a relapsed infection. Network analysis of the H3/4.2.1 clade found very close relationships among 61 of these samples, making differentiation of reactivation and reinfection difficult. There was discordance between genomic profile and clinical drug sensitivity test results in twelve samples, and four of these had low level (but not statistically significant) variation at DR SNPs suggesting low-level mixed infections. Conclusions Whole-genome sequencing provided a detailed view of the genealogical structure of the DR-TB epidemic in Moldova, showing that reinfection may be more prevalent than currently recognized. We also found increased evidence of mixed infection, which could be more robustly characterized with deeper levels of genomic sequencing.
Collapse
Affiliation(s)
- Kurt Wollenberg
- Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Michael Harris
- Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrei Gabrielian
- Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nelly Ciobanu
- Microbiology and Morphology Laboratory, Institute of Phthisiopneumology, Chisnau, Moldova
| | - Dumitru Chesov
- Department of Pneumology and Allergology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova.,Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Alyssa Long
- Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jessica Taaffe
- Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Darrell Hurt
- Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alex Rosenthal
- Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael Tartakovsky
- Office of Cyber Infrastructure & Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Valeriu Crudu
- Microbiology and Morphology Laboratory, Institute of Phthisiopneumology, Chisnau, Moldova
| |
Collapse
|
11
|
Jandrasits C, Kröger S, Haas W, Renard BY. Computational pan-genome mapping and pairwise SNP-distance improve detection of Mycobacterium tuberculosis transmission clusters. PLoS Comput Biol 2019; 15:e1007527. [PMID: 31815935 PMCID: PMC6922483 DOI: 10.1371/journal.pcbi.1007527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 12/19/2019] [Accepted: 11/03/2019] [Indexed: 12/30/2022] Open
Abstract
Next-generation sequencing based base-by-base distance measures have become an integral complement to epidemiological investigation of infectious disease outbreaks. This study introduces PANPASCO, a computational pan-genome mapping based, pairwise distance method that is highly sensitive to differences between cases, even when located in regions of lineage specific reference genomes. We show that our approach is superior to previously published methods in several datasets and across different Mycobacterium tuberculosis lineages, as its characteristics allow the comparison of a high number of diverse samples in one analysis—a scenario that becomes more and more likely with the increased usage of whole-genome sequencing in transmission surveillance. Tuberculosis still is a threat to global health. It is essential to detect and interrupt transmissions to stop the spread of this infectious disease. With the rising use of next-generation sequencing methods, its application in the surveillance of Mycobacterium tuberculosis has become increasingly important in the last years. The main goal of molecular surveillance is the identification of patient-patient transmission and cluster detection. The mutation rate of M. tuberculosis is very low and stable. Therefore, many existing methods for comparative analysis of isolates provide inadequate results since their resolution is too limited. There is a need for a method that takes every detectable difference into account. We developed PANPASCO, a novel approach for comparing pairs of isolates using all genomic information available for each pair. We combine improved SNP-distance calculation with the use of a pan-genome incorporating more than 100 M. tuberculosis reference genomes representing lineages 1-4 for read mapping prior to variant detection. We thereby enable the collective analysis and comparison of similar and diverse isolates associated with different M. tuberculosis strains.
Collapse
Affiliation(s)
| | - Stefan Kröger
- Respiratory Infections Unit, Robert Koch Institute, Berlin, Germany
| | - Walter Haas
- Respiratory Infections Unit, Robert Koch Institute, Berlin, Germany
| | | |
Collapse
|
12
|
Genotyping of Mycobacterium tuberculosis spreading in Hanoi, Vietnam using conventional and whole genome sequencing methods. INFECTION GENETICS AND EVOLUTION 2019; 78:104107. [PMID: 31706080 DOI: 10.1016/j.meegid.2019.104107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/24/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
Abstract
Hanoi is the capital of Vietnam, one of the 30 countries with a high tuberculosis (TB) burden. Fundamental data on the molecular epidemiology of the disease is required for future TB management. To identify lineages and genotypes of Mycobacterium tuberculosis (Mtb), conventional genotyping data from clinical isolates of the Hanoi area was compared with whole genome sequencing (WGS) analysis from 332 of 470 samples. It was obtained from lineage-specific single nucleotide variants (SNVs), large sequence polymorphisms, spoligotyping, and variable number of tandem repeats (VNTR) analysis using mycobacterial interspersed repetitive unit (MIRU) and Japan anti-tuberculosis association (JATA) locus sets. This information was directly compared with results obtained from WGS. Mini-satellite repeat unit variants were identified using BLAST search against concatenated short read sequences, the RepUnitTyping tool. WGS analysis revealed that the Mtb strains tested are diverse and classified into lineage (L) 1, 2 and 4 (24.7, 57.2 and 18.1% respectively). The majority of the L2 strains were further divided into ancient and modern Beijing genotypes, and most of the L1 group were EAI4_VNM strains. Although conventional PCR-based genotyping results were mostly consistent with information obtained through WGS analysis, in-depth analysis identified aberrant deletions and spacers that may cause discordance. JATA-VNTR sets, including hypervariable loci, separated large Beijing genotypic clusters generated by MIRU15 into smaller groups. The distribution of repeat unit variants observed within 33 VNTR loci showed clear variation depending on the three lineages. WGS-based pairwise-SNV differences within VNTR-defined genotypic clusters were greater in L1 than in L2 and L4 (P = .001). Direct comparisons between results of PCR-based genotyping and in silico analysis of WGS data would bridge a gap between classical and modern technologies during this transition period, and provide further information on Mtb genotypes in specific geographical areas.
Collapse
|
13
|
Dippenaar A, De Vos M, Marx FM, Adroub SA, van Helden PD, Pain A, Sampson SL, Warren RM. Whole genome sequencing provides additional insights into recurrent tuberculosis classified as endogenous reactivation by IS6110 DNA fingerprinting. INFECTION GENETICS AND EVOLUTION 2019; 75:103948. [PMID: 31276801 DOI: 10.1016/j.meegid.2019.103948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/22/2019] [Accepted: 06/30/2019] [Indexed: 12/21/2022]
Abstract
Recurrent tuberculosis (TB) after successful TB treatment occurs due to endogenous reactivation (relapse) or exogenous reinfection. We revisited the conclusions of relapse in a high TB incidence setting that were drawn on the basis of IS6110 restriction fragment length polymorphism (RFLP) analysis in a large retrospective cohort study in suburban Cape Town, South Africa. Using whole genome sequencing (WGS), we undertook pair-wise genome comparison of Mycobacterium tuberculosis strains cultured from diagnostic sputum samples collected at the index and recurrent TB episode for 25 recurrent TB cases who had been classified as relapse based on identical DNA fingerprint patterns in the earlier study. We found that paired strain genome sequences were identical or showed minimal variant differences in 22 of 25 recurrent TB cases, consistent with relapse. One showed 20 variant differences, suggestive of exogenous reinfection. Two of the 25 had mixed infections, each with the index episode strain detected as the dominant strain at recurrence in one of these patients, the minority strain harboured drug-resistance conferring mutations (rpoB, katG). In conclusion, our study highlights the additional value of WGS for investigating recurrent TB in settings with high infection pressure and closely related circulating strains, where the extent of re- and mixed infection may be underestimated.
Collapse
Affiliation(s)
- Anzaan Dippenaar
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Margaretha De Vos
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Florian M Marx
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; DST-NRF South African Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
| | - Sabir A Adroub
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Paul D van Helden
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samantha L Sampson
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robin M Warren
- NRF/DST Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
14
|
Klotoe BJ, Kacimi S, Costa-Conceicão E, Gomes HM, Barcellos RB, Panaiotov S, Haj Slimene D, Sikhayeva N, Sengstake S, Schuitema AR, Akhalaia M, Alenova A, Zholdybayeva E, Tarlykov P, Anthony R, Refrégier G, Sola C. Genomic characterization of MDR/XDR-TB in Kazakhstan by a combination of high-throughput methods predominantly shows the ongoing transmission of L2/Beijing 94-32 central Asian/Russian clusters. BMC Infect Dis 2019; 19:553. [PMID: 31234780 PMCID: PMC6592005 DOI: 10.1186/s12879-019-4201-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
Background Kazakhstan remains a high-burden TB prevalence country with a concomitent high-burden of multi-drug resistant tuberculosis. For this reason, we performed an in depth genetic diversity and population structure characterization of Mycobacterium tuberculosis complex (MTC) genetic diversity in Kazakhstan with both patient and community benefit. Methods A convenience sample of 700 MTC DNA cultures extracts from 630 tuberculosis patients recruited from 12 out of 14 regions in Kazakhstan, between 2010 and 2015, was independently studied by high-throughput hybridization-based methods, TB-SPRINT (59-Plex, n = 700), TB-SNPID (50-Plex, n = 543). DNA from 391 clinical isolates was successfully typed by two methods. To resolve the population structure of drug-resistant clades in more detail two complementary assays were run on the L2 isolates: an IS6110-NTF insertion site typing assay and a SigE SNP polymorphism assay. Results Strains belonged to L2/Beijing and L4/Euro-American sublineages; L2/Beijing prevalence totaled almost 80%. 50% of all samples were resistant to RIF and to INH., Subtyping showed that: (1) all L2/Beijing were “modern” Beijing and (2) most of these belonged to the previously described 94–32 sublineage (Central Asian/Russian), (3) at least two populations of the Central Asian/Russian sublineages are circulating in Kazakhstan, with different evolutionary dynamics. Conclusions For the first time, the global genetic diversity and population structure of M. tuberculosis genotypes circulating in Kazakhstan was obtained and compared to previous local studies. Results suggest a region-specific spread of a very limited number of L2/Beijing clonal complexes in Kazakhstan many strongly associated with an MDR phenotype. Electronic supplementary material The online version of this article (10.1186/s12879-019-4201-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- B J Klotoe
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - S Kacimi
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - E Costa-Conceicão
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - H M Gomes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.,Laboratory of Molecular Biology Applied to Mycobacteria, FIOCRUZ, Rio de Janeiro, Brazil
| | - R B Barcellos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.,Center of Scientific and Technological Development (CDCT), Secretary of Health of Rio Grande do Sul State (SES/RS), Porto Alegre, Brazil
| | - S Panaiotov
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.,National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - D Haj Slimene
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.,Institut Pasteur de Tunisie, Tunis, Tunisie
| | - N Sikhayeva
- National Centre for Biotechnology, Astana, Kazakhstan
| | - S Sengstake
- Royal Tropical Institute (KIT), Amsterdam, The Netherlands
| | - A R Schuitema
- Royal Tropical Institute (KIT), Amsterdam, The Netherlands
| | - M Akhalaia
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - A Alenova
- National Centre for Tuberculosis Problems, Almaty, Kazakhstan
| | | | - P Tarlykov
- National Centre for Biotechnology, Astana, Kazakhstan
| | - R Anthony
- Royal Tropical Institute (KIT), Amsterdam, The Netherlands
| | - G Refrégier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - C Sola
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| |
Collapse
|
15
|
Bhembe NL, Nwodo UU, Okoh AI, Obi CL, Mabinya LV, Green E. Clonality and genetic profiles of drug-resistant Mycobacterium tuberculosis in the Eastern Cape Province, South Africa. Microbiologyopen 2019; 8:e00449. [PMID: 30801981 PMCID: PMC6436438 DOI: 10.1002/mbo3.449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 01/05/2023] Open
Abstract
In this study, we investigated the diversity of drug-resistant Mycobacterium tuberculosis isolates from families who own cattle in the Eastern Cape Province of South Africa using spoligotyping and mycobacterial interspersed repetitive-unit-variable number tandem repeat (MIRU-VNTR) typing. The Mycobacterium tuberculosis was investigated using MIRU-VNTR and the Mycobacterium tuberculosis families were evaluated using spoligotyping. Spoligotyping grouped 91% of the isolates into seven clusters, while 9% of the deoxyribonucleic acid (DNA) from TB isolates were unclustered from a total of 154 DNA used. Previously described shared types were observed in 89.6% of the isolates, with the Beijing family, SIT1, the principal genotype in the province, while the families T, SIT53 and X1, SIT1329 were the least detected genotypes. MIRU-VNTR grouped 81% of the isolates in 23 clusters while 19% were unclustered. A combination of the VNTR and spoligotyping grouped 79% of the isolates into 23 clusters with 21% unclustered. The low level of diversity and the clonal spread of drug-resistant Mycobacterium tuberculosis isolates advocate that the spread of TB in this study may be instigated by the clonal spread of Beijing genotype. The results from this study provide vital information about the lack of TB control and distribution of Mycobacterium tuberculosis complex strain types in the Eastern Cape Province of South Africa.
Collapse
Affiliation(s)
- Nolwazi L Bhembe
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Molecular Pathogenesis and Molecular Epidemiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Molecular Pathogenesis and Molecular Epidemiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Molecular Pathogenesis and Molecular Epidemiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Chikwelu L Obi
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Academic and Research Division, University of Fort Hare, Alice, South Africa
| | - Leonard V Mabinya
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Molecular Pathogenesis and Molecular Epidemiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Ezekiel Green
- Department of Biotechnology and Food Science, Faculty of Science, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
16
|
Roof I, Jajou R, Kamst M, Mulder A, de Neeling A, van Hunen R, van der Hoek W, van Soolingen D. Prevalence and Characterization of Heterogeneous Variable-Number Tandem-Repeat Clusters Comprising Drug-Susceptible and/or Variable Resistant Mycobacterium tuberculosis Complex Isolates in the Netherlands from 2004 to 2016. J Clin Microbiol 2018; 56:e00887-18. [PMID: 30158196 PMCID: PMC6204671 DOI: 10.1128/jcm.00887-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023] Open
Abstract
The variable-number tandem-repeat (VNTR) typing method is used to study tuberculosis (TB) transmission. Clustering of Mycobacterium tuberculosis isolates with identical VNTR patterns is assumed to reflect recent transmission. Hence, clusters are thought to be homogeneous regarding antibiotic resistance. In practice, however, heterogeneous clusters are also identified. This study investigates the prevalence and characteristics of heterogeneous VNTR clusters and assesses whether isolates in these clusters remain clustered when subjected to whole-genome sequencing (WGS). In the period from 2004 to 2016, 9,072 isolates were included. Demographic and epidemiological linkage data were obtained from the Netherlands Tuberculosis Register. VNTR clusters were defined as homogeneous when isolates shared identical resistance profiles or as heterogeneous if both susceptible and (variable) resistant isolates were found. Multivariate logistic regression analysis was performed to identify factors associated with heterogeneous clustering. Isolates from 2016 were subjected to WGS, and a genetic distance of 12 single nucleotide polymorphisms (SNPs) was used as the cutoff for WGS clustering. In total, 4,661/9,072 (51%) isolates were clustered into 985 different VNTR clusters, of which 217 (22%) were heterogeneous. Patient characteristics associated with heterogeneous clustering were non-Dutch ethnicity (odds ratio [OR], 1.46 [95% confidence interval {CI}, 1.22 to 1.75]), asylum seeker (OR, 1.51 [95% CI, 1.24 to 1.85]), extrapulmonary TB (OR, 1.26 [95% CI, 1.09 to 1.46]), previous TB diagnosis (OR, 1.38 [95% CI, 1.04 to 1.82]), and not being a contact of a TB patient (OR, 1.35 [95% CI, 1.08 to 1.69]). With WGS, 34% of heterogeneous and 78% of homogeneous isolates from 2016 remained clustered. Heterogeneous VNTR clusters are common but seem to be explained by a substantial degree of false clustering by VNTR typing compared to WGS.
Collapse
Affiliation(s)
- Inge Roof
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Rana Jajou
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Miranda Kamst
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Arnout Mulder
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Albert de Neeling
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Rianne van Hunen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- KNCV Tuberculosis Foundation, The Hague, the Netherlands
| | - Wim van der Hoek
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Dick van Soolingen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
17
|
Antibiotics Resistance Genes Screening and Comparative Genomics Analysis of Commensal Escherichia coli Isolated from Poultry Farms between China and Sudan. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5327450. [PMID: 30225258 PMCID: PMC6129349 DOI: 10.1155/2018/5327450] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/26/2018] [Accepted: 08/09/2018] [Indexed: 12/02/2022]
Abstract
Escherichia coli (E. coli) strains, from the gut of animals and humans, harbor wide range of drug resistance genes. A comparative study is conducted on the intestinal E. coli from fecal samples of healthy chicken from China and Sudan in order to monitor the antimicrobial sensitivity pattern. A number of 250 E. coli isolates from chicken farms, including 120 from China and 130 from Sudan, were isolated and identified. All isolates were subjected to susceptibility tests against 10 antibiotics and the distribution of antibiotic resistant genes was confirmed by PCR amplification, involving genes such as ampC, tetA, pKD13, acrA, ermA, ermB, ermC, tetB, mphA, aadA14, aadA1, aac3-1, and aac3- III. Many isolates were found to exhibit resistance against more than one antibiotic. However, the Chinese isolates showed more antibiotics resistance and resistance genes compared to the Sudanese isolates. For better understanding of the multidrug resistance factors, we conducted whole genome analyses of E. coli D107 isolated from China, which revealed that the genome possesses multiple resistance genes including tetracycline, erythromycin, and kanamycin. Furthermore, E. coli D4 isolate from Sudan was more sensitive to antibiotics such as erythromycin, tetracycline, and gentamicin. After analysis by RAST and MAUVE, the two strains showed 89% average nucleotide identity. However, the genomes mostly differed at the number of antibiotics-related genes, as the genome of D107 revealed a considerable number of antibiotics resistance genes such as ermA and mphD which were found to be absent in D4 genome. These outcomes provided confirmation that the poultry farms environment in different countries (China and Sudan) may serve as a potential reservoir of antimicrobial resistance genes and also indicated the evolutionary differences of strains in terms of resistant genes expression.
Collapse
|
18
|
Ryoo S, Lee J, Oh JY, Kim BK, Kim Y, Kim JH, Shin C, Lee SH. Comparing Two Mycobacterium tuberculosis Genomes from Chinese Immigrants with Native Genomes Using Mauve Alignments. Tuberc Respir Dis (Seoul) 2018; 81:216-221. [PMID: 29926541 PMCID: PMC6030666 DOI: 10.4046/trd.2017.0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/01/2017] [Accepted: 11/01/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The number of immigrants with tuberculosis (TB) increases each year in South Korea. Determining the transmission dynamics based on whole genome sequencing (WGS) to cluster the strains has been challenging. METHODS WGS, annotation refinement, and orthology assignment for the GenBank accession number acquisition were performed on two clinical isolates from Chinese immigrants. In addition, the genomes of the two isolates were compared with the genomes of Mycobacterium tuberculosis isolates, from two native Korean and five native Chinese individuals using a phylogenetic topology tree based on the Multiple Alignment of Conserved Genomic Sequence with Rearrangements (Mauve) package. RESULTS The newly assigned accession numbers for two clinical isolates were CP020381.2 (a Korean-Chinese from Yanbian Province) and CP022014.1 (a Chinese from Shandong Province), respectively. Mauve alignment classified all nine TB isolates into a discriminative collinear set with matched regions. The phylogenetic analysis revealed a rooted phylogenetic tree grouping the nine strains into two lineages: strains from Chinese individuals and strains from Korean individuals. CONCLUSION Phylogenetic trees based on the Mauve alignments were supposed to be useful in revealing the dynamics of TB transmission from immigrants in South Korea, which can provide valuable information for scaling up the TB screening policy for immigrants.
Collapse
Affiliation(s)
- Sungweon Ryoo
- Clinical Research Centre, Masan National Tuberculosis Hospital, Changwon, Korea
| | | | - Jee Youn Oh
- Division of Pulmonary, Sleep, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Byeong Ki Kim
- Division of Pulmonary, Sleep, and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Young Kim
- Division of Pulmonary, Sleep, and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Je Hyeong Kim
- Division of Pulmonary, Sleep, and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Chol Shin
- Division of Pulmonary, Sleep, and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Seung Heon Lee
- Division of Pulmonary, Sleep, and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea.
| |
Collapse
|
19
|
Accuracy of whole genome sequencing versus phenotypic (MGIT) and commercial molecular tests for detection of drug-resistant Mycobacterium tuberculosis isolated from patients in Brazil and Mozambique. Tuberculosis (Edinb) 2018; 110:59-67. [DOI: 10.1016/j.tube.2018.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/26/2018] [Accepted: 04/03/2018] [Indexed: 02/05/2023]
|
20
|
Azadi D, Motallebirad T, Ghaffari K, Shojaei H. Mycobacteriosis and Tuberculosis: Laboratory Diagnosis. Open Microbiol J 2018; 12:41-58. [PMID: 29785215 PMCID: PMC5897959 DOI: 10.2174/1874285801812010041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/11/2018] [Accepted: 03/15/2018] [Indexed: 12/22/2022] Open
Abstract
Background Tuberculosis is one of the most important infectious diseases that has claimed its victims throughout much of known human history. With Koch's discovery of the tubercle bacillus as the etiologic agent of the disease, his sanitary and hygienic measures, which were based on his discovery and the development of a vaccine against tuberculosis by Albert Calmette and Camille Guérin in 1921, an attenuated Mycobacterium bovis strain, bacilli Calmette-Guérin (BCG), and the discovery of the first antibiotic against tuberculosis, streptomycin by Selman Waksman in 1943, soon led to the opinion that appropriate control measures had become available for tuberculosis and it had been assumed that the disease could ultimately be eradicated.The emergence of resistant strains of this bacteria and widespread distribution of the disease in the world, and the emergence of the AIDS epidemic destroyed any possibility of global control of tuberculosis in the foreseeable future. Objectives The purpose of this review is to highlight the current scientific literature on mycobacterial infections and provide an overview on the laboratory diagnosis of tuberculosis and non-tuberculosis infections based on conventional phenotypic and modern molecular assays. Method In this study, a number of 65 papers comprising 20 reviews, 9 case reports, and 36 original research in association with mycobacteriosis and the laboratory diagnosis of mycobacterial infections, were reviewed. Results Based on our analysis on the published documents methods applied for the laboratory diagnosis of tuberculosis are continually assessed and developed in order to achieve more rapid, less expensive, and accurate results. Acid-fast staining and culture for mycobacteria remain at the core of any diagnostic algorithm with the sensitivity of 20-70% and specificity of 95-98% for AFB microscopy and the sensitivity of 95% and the specificity of 98% for culture based diagnosis. Following growth in culture, molecular tests such as nucleic acid hybridization probes and DNA sequencing may be used for definitive species identification. Nucleic acid amplification methods provide the means for direct detection of Mycobacterium tuberculosis in respiratory specimens without the prerequisite to isolate or culture the organism, leading to more rapid diagnosis and better patient care. Conclusion As the researchers in a developing country, we strongly believe that despite significant advances in laboratory capacity, in many countries reliable confirmation of suspected mycobacterial diseases is hindered by a lack of knowledge on proper standardized methods, sufficient funds, suitably trained staff and laboratory supplies.
Collapse
Affiliation(s)
- Davood Azadi
- Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Tahereh Motallebirad
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan Iran
| | - Kazem Ghaffari
- Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Hasan Shojaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan Iran
| |
Collapse
|
21
|
Rockwood N, Sirgel F, Streicher E, Warren R, Meintjes G, Wilkinson RJ. Low Frequency of Acquired Isoniazid and Rifampicin Resistance in Rifampicin-Susceptible Pulmonary Tuberculosis in a Setting of High HIV-1 Infection and Tuberculosis Coprevalence. J Infect Dis 2017; 216:632-640. [PMID: 28934422 PMCID: PMC5815623 DOI: 10.1093/infdis/jix337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/14/2017] [Indexed: 02/03/2023] Open
Abstract
Background We estimated the incidence of acquired isoniazid and rifampicin resistance in rifampicin-susceptible tuberculosis in a setting of high human immunodeficiency virus type 1 (HIV-1) infection and tuberculosis coprevalence. Methods GeneXpert MTB/RIF–confirmed patients with rifampicin-susceptible tuberculosis were recruited at antituberculosis treatment initiation in Khayelitsha, South Africa. Liquid culture and adherence assessment were performed at 2 and 5–6 months. MTBDRplus was performed on mycobacteria-positive cultures to ascertain acquired drug resistance (ADR). Spoligotyping and whole-genome sequencing were performed to ascertain homogeneity between baseline isolates and isolates with ADR. Baseline isolates were retrospectively tested for isoniazid monoresistance. An electronic database review was performed to ascertain tuberculosis recurrences. Results A total of 306 participants (62% with HIV-1 coinfection, of whom 71% received antiretroviral therapy) were recruited. Ascertainment of outcomes was complete for 284 participants. Five acquired a resistant Mycobacterium tuberculosis strain during or subsequent to treatment. One strain was confirmed to have ADR, 2 were confirmed as causing exogenous reinfection, and 2 were unrecoverable for genotyping. Incident ADR was estimated to have ranged from 0.3% (95% confidence interval [CI], .1%–1.9%; 1 of 284 participants) to 1% (95% CI, .2%–3%; 3 of 284 participants). Seventeen of 279 baseline isolates (6.1%; 95% CI, 3.6%–9.6%) had isoniazid monoresistance (13 of 17 had an inhA promoter mutation), but 0 of 17 had amplified resistance. Conclusions Treatment with standardized antituberculosis regimens dosed daily throughout, high uptake of antiretroviral therapy, and low prevalence of isoniazid monoresistance were associated with a low frequency of ADR.
Collapse
Affiliation(s)
- Neesha Rockwood
- Department of Medicine, Imperial College.,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town
| | - Frederick Sirgel
- Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Elizabeth Streicher
- Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Robin Warren
- Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Graeme Meintjes
- Department of Medicine, Imperial College.,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town
| | - Robert J Wilkinson
- Department of Medicine, Imperial College.,Francis Crick Institute, London, United Kingdom.,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town
| |
Collapse
|
22
|
Shaping the niche in macrophages: Genetic diversity of the M. tuberculosis complex and its consequences for the infected host. Int J Med Microbiol 2017; 308:118-128. [PMID: 28969988 DOI: 10.1016/j.ijmm.2017.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Pathogenic mycobacteria of the Mycobacterium tuberculosis complex (MTBC) have co-evolved with their individual hosts and are able to transform the hostile environment of the macrophage into a permissive cellular habitat. The impact of MTBC genetic variability has long been considered largely unimportant in TB pathogenesis. Members of the MTBC can now be distinguished into three major phylogenetic groups consisting of 7 phylogenetic lineages and more than 30 so called sub-lineages/subgroups. MTBC genetic diversity indeed influences the transmissibility and virulence of clinical MTBC isolates as well as the immune response and the clinical outcome. Here we review the genetic diversity and epidemiology of MTBC strains and describe the current knowledge about the host immune response to infection with MTBC clinical isolates using human and murine experimental model systems in vivo and in vitro. We discuss the role of innate cytokines in detail and portray two in our group recently developed approaches to characterize the intracellular niches of MTBC strains. Characterizing the niches and deciphering the strategies of MTBC strains to transform an antibacterial effector cell into a permissive cellular habitat offers the opportunity to identify strain- and lineage-specific key factors which may represent targets for novel antimicrobial or host directed therapies for tuberculosis.
Collapse
|
23
|
Abstract
The tuberculosis agent Mycobacterium tuberculosis has undergone a long and selective evolution toward human infection and represents one of the most widely spread pathogens due to its efficient aerosol-mediated human-to-human transmission. With the availability of more and more genome sequences, the evolutionary trajectory of this obligate pathogen becomes visible, which provides us with new insights into the molecular events governing evolution of the bacterium and its ability to accumulate drug-resistance mutations. In this review, we summarize recent developments in mycobacterial research related to this matter that are important for a better understanding of the current situation and future trends and developments in the global epidemiology of tuberculosis, as well as for possible public health intervention possibilities.
Collapse
|
24
|
Duarte TA, Nery JS, Boechat N, Pereira SM, Simonsen V, Oliveira M, Gomes MGM, Penha-Gonçalves C, Barreto ML, Barbosa T. A systematic review of East African-Indian family of Mycobacterium tuberculosis in Brazil. Braz J Infect Dis 2017; 21:317-324. [PMID: 28238627 PMCID: PMC9427636 DOI: 10.1016/j.bjid.2017.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/10/2017] [Indexed: 01/17/2023] Open
Abstract
Introduction The Mycobacterium tuberculosis East African-Indian (EAI) spoligotyping family (belonging to lineage 1, Indo-Oceanic, defined by the region of deletion RD239) is distributed worldwide, but is more prevalent in Southeast Asia, India, and East Africa. Studies in Latin America have rarely identified EAI. In this study, we describe the occurrence of the EAI family in Brazil. Methods EAI was identified in a systematic literature review of genetic diversity studies pertaining to M. tuberculosis in Brazil, as well as in a survey conducted in Salvador, Bahia, located in the northeastern region of this country. Results The EAI6-BGD1 spoligotyping family and the EAI5 Spoligotype International Type (SIT) 1983 clade were the most frequently reported, with wide distribution of this particular clade described in Brazil. The distribution of other EAI spoligotyping patterns with broader worldwide distribution was restricted to the southeastern region of the country. Conclusions EAI may be endemic at a low frequency in Brazil, with some clades indicating increased fitness with respect to this population.
Collapse
|
25
|
Fiebig L, Kohl TA, Popovici O, Mühlenfeld M, Indra A, Homorodean D, Chiotan D, Richter E, Rüsch-Gerdes S, Schmidgruber B, Beckert P, Hauer B, Niemann S, Allerberger F, Haas W. A joint cross-border investigation of a cluster of multidrug-resistant tuberculosis in Austria, Romania and Germany in 2014 using classic, genotyping and whole genome sequencing methods: lessons learnt. ACTA ACUST UNITED AC 2017; 22:30439. [PMID: 28106529 PMCID: PMC5404487 DOI: 10.2807/1560-7917.es.2017.22.2.30439] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022]
Abstract
Molecular surveillance of multidrug-resistant tuberculosis (MDR-TB) using 24-loci MIRU-VNTR in the European Union suggests the occurrence of international transmission. In early 2014, Austria detected a molecular MDR-TB cluster of five isolates. Links to Romania and Germany prompted the three countries to investigate possible cross-border MDR-TB transmission jointly. We searched genotyping databases, genotyped additional isolates from Romania, used whole genome sequencing (WGS) to infer putative transmission links, and investigated pairwise epidemiological links and patient mobility. Ten isolates from 10 patients shared the same 24-loci MIRU-VNTR pattern. Within this cluster, WGS defined two subgroups of four patients each. The first comprised an MDR-TB patient from Romania who had sought medical care in Austria and two patients from Austria. The second comprised patients, two of them epidemiologically linked, who lived in three different countries but had the same city of provenance in Romania. Our findings strongly suggested that the two cases in Austrian citizens resulted from a newly introduced MDR-TB strain, followed by domestic transmission. For the other cases, transmission probably occurred in the same city of provenance. To prevent further MDR-TB transmission, we need to ensure universal access to early and adequate therapy and collaborate closely in tuberculosis care beyond administrative borders.
Collapse
Affiliation(s)
- Lena Fiebig
- Respiratory Infections Unit, Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany.,These authors contributed equally to this work
| | - Thomas A Kohl
- These authors contributed equally to this work.,Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Odette Popovici
- National Institute of Public Health - National Center for Communicable Diseases Surveillance and Control, Bucharest, Romania
| | | | - Alexander Indra
- Austrian Reference Laboratory for Mycobacteria, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Daniela Homorodean
- Clinical Hospital of Pneumology, Tuberculosis National Reference Laboratory, Cluj-Napoca, Romania
| | | | | | - Sabine Rüsch-Gerdes
- National Reference Center (NRC) for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Beatrix Schmidgruber
- Tuberculosis Patient Service, Health Service of the City of Vienna, Vienna, Austria
| | - Patrick Beckert
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany.,German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck, Borstel, Germany
| | - Barbara Hauer
- Respiratory Infections Unit, Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany.,National Reference Center (NRC) for Mycobacteria, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck, Borstel, Germany
| | - Franz Allerberger
- Austrian Reference Laboratory for Mycobacteria, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Walter Haas
- Respiratory Infections Unit, Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
26
|
Some Synonymous and Nonsynonymous gyrA Mutations in Mycobacterium tuberculosis Lead to Systematic False-Positive Fluoroquinolone Resistance Results with the Hain GenoType MTBDR sl Assays. Antimicrob Agents Chemother 2017; 61:AAC.02169-16. [PMID: 28137812 PMCID: PMC5365657 DOI: 10.1128/aac.02169-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/16/2017] [Indexed: 11/20/2022] Open
Abstract
In this study, using the Hain GenoType MTBDRsl assays (versions 1 and 2), we found that some nonsynonymous and synonymous mutations in gyrA in Mycobacterium tuberculosis result in systematic false-resistance results to fluoroquinolones by preventing the binding of wild-type probes. Moreover, such mutations can prevent the binding of mutant probes designed for the identification of specific resistance mutations. Although these mutations are likely rare globally, they occur in approximately 7% of multidrug-resistant tuberculosis strains in some settings.
Collapse
|
27
|
Pfeiffer W, Braun J, Burchell J, Witte CL, Rideout BA. Whole-genome analysis of mycobacteria from birds at the San Diego Zoo. PLoS One 2017; 12:e0173464. [PMID: 28267758 PMCID: PMC5340394 DOI: 10.1371/journal.pone.0173464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/22/2017] [Indexed: 11/25/2022] Open
Abstract
Methods Mycobacteria isolated from more than 100 birds diagnosed with avian mycobacteriosis at the San Diego Zoo and its Safari Park were cultured postmortem and had their whole genomes sequenced. Computational workflows were developed and applied to identify the mycobacterial species in each DNA sample, to find single-nucleotide polymorphisms (SNPs) between samples of the same species, to further differentiate SNPs between as many as three different genotypes within a single sample, and to identify which samples are closely clustered genomically. Results Nine species of mycobacteria were found in 123 samples from 105 birds. The most common species were Mycobacterium avium and Mycobacterium genavense, which were in 49 and 48 birds, respectively. Most birds contained only a single mycobacterial species, but two birds contained a mixture of two species. The M. avium samples represent diverse strains of M. avium avium and M. avium hominissuis, with many pairs of samples differing by hundreds or thousands of SNPs across their common genome. By contrast, the M. genavense samples are much closer genomically; samples from 46 of 48 birds differ from each other by less than 110 SNPs. Some birds contained two, three, or even four genotypes of the same bacterial species. Such infections were found in 4 of 49 birds (8%) with M. avium and in 11 of 48 birds (23%) with M. genavense. Most were mixed infections, in which the bird was infected by multiple mycobacterial strains, but three infections with two genotypes differing by ≤ 10 SNPs were likely the result of within-host evolution. The samples from 31 birds with M. avium can be grouped into nine clusters within which any sample is ≤ 12 SNPs from at least one other sample in the cluster. Similarly, the samples from 40 birds with M. genavense can be grouped into ten such clusters. Information about these genomic clusters is being used in an ongoing, companion study of mycobacterial transmission to help inform management of bird collections.
Collapse
Affiliation(s)
- Wayne Pfeiffer
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Josephine Braun
- Wildlife Disease Laboratories, San Diego Zoo Global, San Diego, California, United States of America
| | - Jennifer Burchell
- Wildlife Disease Laboratories, San Diego Zoo Global, San Diego, California, United States of America
| | - Carmel L. Witte
- Wildlife Disease Laboratories, San Diego Zoo Global, San Diego, California, United States of America
| | - Bruce A. Rideout
- Wildlife Disease Laboratories, San Diego Zoo Global, San Diego, California, United States of America
| |
Collapse
|
28
|
Freidlin PJ, Nissan I, Luria A, Goldblatt D, Schaffer L, Kaidar-Shwartz H, Chemtob D, Dveyrin Z, Head SR, Rorman E. Structure and variation of CRISPR and CRISPR-flanking regions in deleted-direct repeat region Mycobacterium tuberculosis complex strains. BMC Genomics 2017; 18:168. [PMID: 28201993 PMCID: PMC5310062 DOI: 10.1186/s12864-017-3560-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/07/2017] [Indexed: 12/16/2022] Open
Abstract
Background CRISPR and CRISPR-flanking genomic regions are important for molecular epidemiology of Mycobacterium tuberculosis complex (MTBC) strains, and potentially for adaptive immunity to phage and plasmid DNA, and endogenous roles in the bacterium. Genotyping in the Israel National Mycobacterium Reference Center Tel-Aviv of over 1500 MTBC strains from 2008–2013 showed three strains with validated negative 43-spacer spoligotypes, that is, with putatively deleted direct repeat regions (deleted-DR/CRISPR regions). Two isolates of each of three negative spoligotype MTBC (a total of 6 isolates) were subjected to Next Generation Sequencing (NGS). As positive controls, NGS was performed for three intact-DR isolates belonging to T3_Eth, the largest multiple-drug-resistant (MDR)-containing African-origin cluster in Israel. Other controls consisted of NGS reads and complete whole genome sequences from GenBank for 20 intact-DR MTBC and for 1 deleted-DR MTBC strain recognized as CAS by its defining RD deletion. Results NGS reads from negative spoligotype MTBC mapped to reference H37Rv NC_000962.3 suggested that the DR/CRISPR regions were completely deleted except for retention of the middle IS6110 mobile element. Clonally specific deletion of CRISPR-flanking genes also was observed, including deletion of at least cas2 and cas1 genes. Genomic RD deletions defined lineages corresponding to the major spoligotype families Beijing, EAI, and Haarlem, consistent with 24 loci MIRU-VNTR profiles. Analysis of NGS reads, and analysis of contigs obtained by manual PCR confirmed that all 43 gold standard DR/CRISPR spacers were missing in the deleted-DR genomes. Conclusions Although many negative spoligotype strains are recorded as spoligotype-international-type (SIT) 2669 in the SITVIT international database, this is the first time to our knowledge that it has been shown that negative spoligotype strains are found in at least 4 different 24 loci MIRU-VNTR and RD deletion families. We report for the first time negative spoligotype-associated total loss of CRISPR region spacers and repeats, with accompanying clonally specific loss of flanking genes, including at least CRISPR-associated genes cas2 and cas1. Since cas1 deleted E.coli shows increased sensitivity to DNA damage and impaired chromosomal segregation, we discussed the possibility of a similar phenotype in the deleted-DR strains and Beijing family strains as both lack the cas1 gene. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3560-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul Jeffrey Freidlin
- National Mycobacterium Reference Center, National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel.
| | - Israel Nissan
- National Mycobacterium Reference Center, National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel
| | - Anna Luria
- National Mycobacterium Reference Center, National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel.,current address: Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Drora Goldblatt
- National Mycobacterium Reference Center, National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel
| | | | - Hasia Kaidar-Shwartz
- National Mycobacterium Reference Center, National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel
| | - Daniel Chemtob
- Department of Tuberculosis and AIDS, Ministry of Health, Jerusalem, Israel
| | - Zeev Dveyrin
- National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel
| | | | - Efrat Rorman
- National Public Health Laboratory Tel Aviv, Ministry of Health, Tel Aviv, Israel
| |
Collapse
|
29
|
The Evolution of Strain Typing in the Mycobacterium tuberculosis Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:43-78. [PMID: 29116629 DOI: 10.1007/978-3-319-64371-7_3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is a contagious disease with a complex epidemiology. Therefore, molecular typing (genotyping) of Mycobacterium tuberculosis complex (MTBC) strains is of primary importance to effectively guide outbreak investigations, define transmission dynamics and assist global epidemiological surveillance of the disease. Large-scale genotyping is also needed to get better insights into the biological diversity and the evolution of the pathogen. Thanks to its shorter turnaround and simple numerical nomenclature system, mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) typing, based on 24 standardized plus 4 hypervariable loci, optionally combined with spoligotyping, has replaced IS6110 DNA fingerprinting over the last decade as a gold standard among classical strain typing methods for many applications. With the continuous progress and decreasing costs of next-generation sequencing (NGS) technologies, typing based on whole genome sequencing (WGS) is now increasingly performed for near complete exploitation of the available genetic information. However, some important challenges remain such as the lack of standardization of WGS analysis pipelines, the need of databases for sharing WGS data at a global level, and a better understanding of the relevant genomic distances for defining clusters of recent TB transmission in different epidemiological contexts. This chapter provides an overview of the evolution of genotyping methods over the last three decades, which culminated with the development of WGS-based methods. It addresses the relative advantages and limitations of these techniques, indicates current challenges and potential directions for facilitating standardization of WGS-based typing, and provides suggestions on what method to use depending on the specific research question.
Collapse
|
30
|
Genomic Epidemiology of Tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:79-93. [DOI: 10.1007/978-3-319-64371-7_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Ei PW, Aung WW, Lee JS, Choi GE, Chang CL. Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods. J Korean Med Sci 2016; 31:1673-1683. [PMID: 27709842 PMCID: PMC5056196 DOI: 10.3346/jkms.2016.31.11.1673] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/06/2016] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units-variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications.
Collapse
Affiliation(s)
- Phyu Win Ei
- Advanced Molecular Research Centre, Department of Medical Research, Yangon, Myanmar
| | - Wah Wah Aung
- Advanced Molecular Research Centre, Department of Medical Research, Yangon, Myanmar
| | - Jong Seok Lee
- International Tuberculosis Research Center, Changwon, Korea
| | - Go Eun Choi
- Institute of Convergence Bio-Health, Dong-A University, Busan, Korea
| | - Chulhun L Chang
- Department of Laboratory Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea.
| |
Collapse
|
32
|
Methodological and Clinical Aspects of the Molecular Epidemiology of Mycobacterium tuberculosis and Other Mycobacteria. Clin Microbiol Rev 2016; 29:239-90. [PMID: 26912567 DOI: 10.1128/cmr.00055-15] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Molecular typing has revolutionized epidemiological studies of infectious diseases, including those of a mycobacterial etiology. With the advent of fingerprinting techniques, many traditional concepts regarding transmission, infectivity, or pathogenicity of mycobacterial bacilli have been revisited, and their conventional interpretations have been challenged. Since the mid-1990s, when the first typing methods were introduced, a plethora of other modalities have been proposed. So-called molecular epidemiology has become an essential subdiscipline of modern mycobacteriology. It serves as a resource for understanding the key issues in the epidemiology of tuberculosis and other mycobacterial diseases. Among these issues are disclosing sources of infection, quantifying recent transmission, identifying transmission links, discerning reinfection from relapse, tracking the geographic distribution and clonal expansion of specific strains, and exploring the genetic mechanisms underlying specific phenotypic traits, including virulence, organ tropism, transmissibility, or drug resistance. Since genotyping continues to unravel the biology of mycobacteria, it offers enormous promise in the fight against and prevention of the diseases caused by these pathogens. In this review, molecular typing methods for Mycobacterium tuberculosis and nontuberculous mycobacteria elaborated over the last 2 decades are summarized. The relevance of these methods to the epidemiological investigation, diagnosis, evolution, and control of mycobacterial diseases is discussed.
Collapse
|
33
|
Qi Q, Toll-Riera M, Heilbron K, Preston GM, MacLean RC. The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa. Proc Biol Sci 2016; 283:rspb.2015.2452. [PMID: 26763710 PMCID: PMC4721101 DOI: 10.1098/rspb.2015.2452] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Antibiotic resistance carries a fitness cost that must be overcome in order for resistance to persist over the long term. Compensatory mutations that recover the functional defects associated with resistance mutations have been argued to play a key role in overcoming the cost of resistance, but compensatory mutations are expected to be rare relative to generally beneficial mutations that increase fitness, irrespective of antibiotic resistance. Given this asymmetry, population genetics theory predicts that populations should adapt by compensatory mutations when the cost of resistance is large, whereas generally beneficial mutations should drive adaptation when the cost of resistance is small. We tested this prediction by determining the genomic mechanisms underpinning adaptation to antibiotic-free conditions in populations of the pathogenic bacterium Pseudomonas aeruginosa that carry costly antibiotic resistance mutations. Whole-genome sequencing revealed that populations founded by high-cost rifampicin-resistant mutants adapted via compensatory mutations in three genes of the RNA polymerase core enzyme, whereas populations founded by low-cost mutants adapted by generally beneficial mutations, predominantly in the quorum-sensing transcriptional regulator gene lasR. Even though the importance of compensatory evolution in maintaining resistance has been widely recognized, our study shows that the roles of general adaptation in maintaining resistance should not be underestimated and highlights the need to understand how selection at other sites in the genome influences the dynamics of resistance alleles in clinical settings.
Collapse
Affiliation(s)
- Qin Qi
- Department of Zoology, University of Oxford, Oxford, UK Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Macarena Toll-Riera
- Department of Zoology, University of Oxford, Oxford, UK Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Karl Heilbron
- Department of Zoology, University of Oxford, Oxford, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
34
|
Antusheva E, Mironuk O, Tarasova I, Eliseev P, Plusnina G, Ridell M, Larsson LO, Mariyandyshev A. Outbreak of tuberculosis in a closed setting: views on transmission based on results from molecular and conventional methods. J Hosp Infect 2016; 93:187-90. [DOI: 10.1016/j.jhin.2016.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/12/2016] [Indexed: 11/16/2022]
|
35
|
Rapid Drug Susceptibility Testing of Drug-Resistant Mycobacterium tuberculosis Isolates Directly from Clinical Samples by Use of Amplicon Sequencing: a Proof-of-Concept Study. J Clin Microbiol 2016; 54:2058-67. [PMID: 27225403 PMCID: PMC4963505 DOI: 10.1128/jcm.00535-16] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/19/2016] [Indexed: 11/20/2022] Open
Abstract
Increasingly complex drug-resistant tuberculosis (DR-TB) is a major global health concern and one of the primary reasons why TB is now the leading infectious cause of death worldwide. Rapid characterization of a DR-TB patient's complete drug resistance profile would facilitate individualized treatment in place of empirical treatment, improve treatment outcomes, prevent amplification of resistance, and reduce the transmission of DR-TB. The use of targeted next-generation sequencing (NGS) to obtain drug resistance profiles directly from patient sputum samples has the potential to enable comprehensive evidence-based treatment plans to be implemented quickly, rather than in weeks to months, which is currently needed for phenotypic drug susceptibility testing (DST) results. In this pilot study, we evaluated the performance of amplicon sequencing of Mycobacterium tuberculosis DNA from patient sputum samples using a tabletop NGS technology and automated data analysis to provide a rapid DST solution (the Next Gen-RDST assay). One hundred sixty-six out of 176 (94.3%) sputum samples from the Republic of Moldova yielded complete Next Gen-RDST assay profiles for 7 drugs of interest. We found a high level of concordance of our Next Gen-RDST assay results with phenotypic DST (97.0%) and pyrosequencing (97.8%) results from the same clinical samples. Our Next Gen-RDST assay was also able to estimate the proportion of resistant-to-wild-type alleles down to mixtures of ≤1%, which demonstrates the ability to detect very low levels of resistant variants not detected by pyrosequencing and possibly below the threshold for phenotypic growth methods. The assay as described here could be used as a clinical or surveillance tool.
Collapse
|
36
|
Whole genome sequencing of Mycobacterium tuberculosis for detection of recent transmission and tracing outbreaks: A systematic review. Tuberculosis (Edinb) 2016; 98:77-85. [DOI: 10.1016/j.tube.2016.02.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 11/23/2022]
|
37
|
Does Choice Matter? Reference-Based Alignment for Molecular Epidemiology of Tuberculosis. J Clin Microbiol 2016; 54:1891-1895. [PMID: 27076659 DOI: 10.1128/jcm.00364-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/05/2016] [Indexed: 11/20/2022] Open
Abstract
When using genome sequencing for molecular epidemiology, short sequence reads are aligned to an arbitrary reference strain to detect single nucleotide polymorphisms. We investigated whether reference genome selection influences epidemiological inferences of Mycobacterium tuberculosis transmission by aligning sequence reads from 162 closely related lineage 4 (Euro-American) isolates to 7 different genomes. Phylogenetic trees were consistent with use of all but the most divergent genomes, suggesting that reference choice can be based on considerations other than M. tuberculosis lineage.
Collapse
|
38
|
Hatherell HA, Colijn C, Stagg HR, Jackson C, Winter JR, Abubakar I. Interpreting whole genome sequencing for investigating tuberculosis transmission: a systematic review. BMC Med 2016; 14:21. [PMID: 27005433 PMCID: PMC4804562 DOI: 10.1186/s12916-016-0566-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/23/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Whole genome sequencing (WGS) is becoming an important part of epidemiological investigations of infectious diseases due to greater resolution and cost reductions compared to traditional typing approaches. Many public health and clinical teams will increasingly use WGS to investigate clusters of potential pathogen transmission, making it crucial to understand the benefits and assumptions of the analytical methods for investigating the data. We aimed to understand how different approaches affect inferences of transmission dynamics and outline limitations of the methods. METHODS We comprehensively searched electronic databases for studies that presented methods used to interpret WGS data for investigating tuberculosis (TB) transmission. Two authors independently selected studies for inclusion and extracted data. Due to considerable methodological heterogeneity between studies, we present summary data with accompanying narrative synthesis rather than pooled analyses. RESULTS Twenty-five studies met our inclusion criteria. Despite the range of interpretation tools, the usefulness of WGS data in understanding TB transmission often depends on the amount of genetic diversity in the setting. Where diversity is small, distinguishing re-infections from relapses may be impossible; interpretation may be aided by the use of epidemiological data, examining minor variants and deep sequencing. Conversely, when within-host diversity is large, due to genetic hitchhiking or co-infection of two dissimilar strains, it is critical to understand how it arose. Greater understanding of microevolution and mixed infection will enhance interpretation of WGS data. CONCLUSIONS As sequencing studies have sampled more intensely and integrated multiple sources of information, the understanding of TB transmission and diversity has grown, but there is still much to be learnt about the origins of diversity that will affect inferences from these data. Public health teams and researchers should combine epidemiological, clinical and WGS data to strengthen investigations of transmission.
Collapse
Affiliation(s)
- Hollie-Ann Hatherell
- CoMPLEX, University College London, London, WC1E 6BT, UK. .,Centre for Infectious Disease Epidemiology, Infection and Population Health, University College London, London, WC1E 6JB, UK.
| | - Caroline Colijn
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
| | - Helen R Stagg
- Centre for Infectious Disease Epidemiology, Infection and Population Health, University College London, London, WC1E 6JB, UK
| | - Charlotte Jackson
- Centre for Infectious Disease Epidemiology, Infection and Population Health, University College London, London, WC1E 6JB, UK
| | - Joanne R Winter
- Centre for Infectious Disease Epidemiology, Infection and Population Health, University College London, London, WC1E 6JB, UK
| | - Ibrahim Abubakar
- Centre for Infectious Disease Epidemiology, Infection and Population Health, University College London, London, WC1E 6JB, UK.,Medical Research Council Clinical Trials Unit, 125 Kingsway, London, WC2B 6NH, UK
| |
Collapse
|
39
|
Genomic Analysis of Bacterial Outbreaks. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Sekizuka T, Yamashita A, Murase Y, Iwamoto T, Mitarai S, Kato S, Kuroda M. TGS-TB: Total Genotyping Solution for Mycobacterium tuberculosis Using Short-Read Whole-Genome Sequencing. PLoS One 2015; 10:e0142951. [PMID: 26565975 PMCID: PMC4643978 DOI: 10.1371/journal.pone.0142951] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/28/2015] [Indexed: 11/18/2022] Open
Abstract
Whole-genome sequencing (WGS) with next-generation DNA sequencing (NGS) is an increasingly accessible and affordable method for genotyping hundreds of Mycobacterium tuberculosis (Mtb) isolates, leading to more effective epidemiological studies involving single nucleotide variations (SNVs) in core genomic sequences based on molecular evolution. We developed an all-in-one web-based tool for genotyping Mtb, referred to as the Total Genotyping Solution for TB (TGS-TB), to facilitate multiple genotyping platforms using NGS for spoligotyping and the detection of phylogenies with core genomic SNVs, IS6110 insertion sites, and 43 customized loci for variable number tandem repeat (VNTR) through a user-friendly, simple click interface. This methodology is implemented with a KvarQ script to predict MTBC lineages/sublineages and potential antimicrobial resistance. Seven Mtb isolates (JP01 to JP07) in this study showing the same VNTR profile were accurately discriminated through median-joining network analysis using SNVs unique to those isolates. An additional IS6110 insertion was detected in one of those isolates as supportive genetic information in addition to core genomic SNVs. The results of in silico analyses using TGS-TB are consistent with those obtained using conventional molecular genotyping methods, suggesting that NGS short reads could provide multiple genotypes to discriminate multiple strains of Mtb, although longer NGS reads (≥300-mer) will be required for full genotyping on the TGS-TB web site. Most available short reads (~100-mer) can be utilized to discriminate the isolates based on the core genome phylogeny. TGS-TB provides a more accurate and discriminative strain typing for clinical and epidemiological investigations; NGS strain typing offers a total genotyping solution for Mtb outbreak and surveillance. TGS-TB web site: https://gph.niid.go.jp/tgs-tb/.
Collapse
Affiliation(s)
- Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
| | - Akifumi Yamashita
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
| | - Yoshiro Murase
- Molecular Epidemiology Division, The Research Institute of Tuberculosis/Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Chuo-ku, Kobe, Japan
| | - Satoshi Mitarai
- Bacteriology Division, Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Seiya Kato
- Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
41
|
Azé J, Sola C, Zhang J, Lafosse-Marin F, Yasmin M, Siddiqui R, Kremer K, van Soolingen D, Refrégier G. Genomics and Machine Learning for Taxonomy Consensus: The Mycobacterium tuberculosis Complex Paradigm. PLoS One 2015; 10:e0130912. [PMID: 26154264 PMCID: PMC4496040 DOI: 10.1371/journal.pone.0130912] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/25/2015] [Indexed: 11/18/2022] Open
Abstract
Infra-species taxonomy is a prerequisite to compare features such as virulence in different pathogen lineages. Mycobacterium tuberculosis complex taxonomy has rapidly evolved in the last 20 years through intensive clinical isolation, advances in sequencing and in the description of fast-evolving loci (CRISPR and MIRU-VNTR). On-line tools to describe new isolates have been set up based on known diversity either on CRISPRs (also known as spoligotypes) or on MIRU-VNTR profiles. The underlying taxonomies are largely concordant but use different names and offer different depths. The objectives of this study were 1) to explicit the consensus that exists between the alternative taxonomies, and 2) to provide an on-line tool to ease classification of new isolates. Genotyping (24-VNTR, 43-spacers spoligotypes, IS6110-RFLP) was undertaken for 3,454 clinical isolates from the Netherlands (2004-2008). The resulting database was enlarged with African isolates to include most human tuberculosis diversity. Assignations were obtained using TB-Lineage, MIRU-VNTRPlus, SITVITWEB and an algorithm from Borile et al. By identifying the recurrent concordances between the alternative taxonomies, we proposed a consensus including 22 sublineages. Original and consensus assignations of the all isolates from the database were subsequently implemented into an ensemble learning approach based on Machine Learning tool Weka to derive a classification scheme. All assignations were reproduced with very good sensibilities and specificities. When applied to independent datasets, it was able to suggest new sublineages such as pseudo-Beijing. This Lineage Prediction tool, efficient on 15-MIRU, 24-VNTR and spoligotype data is available on the web interface “TBminer.” Another section of this website helps summarizing key molecular epidemiological data, easing tuberculosis surveillance. Altogether, we successfully used Machine Learning on a large dataset to set up and make available the first consensual taxonomy for human Mycobacterium tuberculosis complex. Additional developments using SNPs will help stabilizing it.
Collapse
Affiliation(s)
- Jérôme Azé
- LIRMM UM CNRS, UMR 5506, 860 rue de St Priest, 34095 Montpellier cedex 5, France
| | - Christophe Sola
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Bât 400, 91405 Orsay cedex, France
| | - Jian Zhang
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Bât 400, 91405 Orsay cedex, France
| | - Florian Lafosse-Marin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Bât 400, 91405 Orsay cedex, France
| | - Memona Yasmin
- Pakistan Institute for Engineering and Applied Sciences (PIEAS), Lehtrar Road, Nilore, Islamabad, Pakistan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box # 577, Jhang Road, Faisalabad, Pakistan
| | - Rubina Siddiqui
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box # 577, Jhang Road, Faisalabad, Pakistan
| | - Kristin Kremer
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Dick van Soolingen
- National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
- Department of Pulmonary Diseases and Department of Microbiology, Radbout University Nijmegen Medical Centre, University Lung Centre Dekkerswald, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Guislaine Refrégier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, rue Gregor Mendel, Bât 400, 91405 Orsay cedex, France
- * E-mail:
| |
Collapse
|
42
|
Desikan S, Narayanan S. Genetic markers, genotyping methods & next generation sequencing in Mycobacterium tuberculosis. Indian J Med Res 2015; 141:761-74. [PMID: 26205019 PMCID: PMC4525401 DOI: 10.4103/0971-5916.160695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Indexed: 11/26/2022] Open
Abstract
Molecular epidemiology (ME) is one of the main areas in tuberculosis research which is widely used to study the transmission epidemics and outbreaks of tubercle bacilli. It exploits the presence of various polymorphisms in the genome of the bacteria that can be widely used as genetic markers. Many DNA typing methods apply these genetic markers to differentiate various strains and to study the evolutionary relationships between them. The three widely used genotyping tools to differentiate Mycobacterium tuberculosis strains are IS6110 restriction fragment length polymorphism (RFLP), spacer oligotyping (Spoligotyping), and mycobacterial interspersed repeat units - variable number of tandem repeats (MIRU-VNTR). A new prospect towards ME was introduced with the development of whole genome sequencing (WGS) and the next generation sequencing (NGS) methods, where the entire genome is sequenced that not only helps in pointing out minute differences between the various sequences but also saves time and the cost. NGS is also found to be useful in identifying single nucleotide polymorphisms (SNPs), comparative genomics and also various aspects about transmission dynamics. These techniques enable the identification of mycobacterial strains and also facilitate the study of their phylogenetic and evolutionary traits.
Collapse
Affiliation(s)
- Srinidhi Desikan
- Department of Immunology, National Institute of Research in Tuberculosis (ICMR), Chennai, India
| | - Sujatha Narayanan
- Department of Immunology, National Institute of Research in Tuberculosis (ICMR), Chennai, India
| |
Collapse
|
43
|
Saavedra-Campos M, Welfare W, Cleary P, Sails A, Burkitt A, Hungerford D, Okereke E, Acheson P, Petrovic M. Identifying areas and risk groups with localisedMycobacterium tuberculosistransmission in northern England from 2010 to 2012: spatiotemporal analysis incorporating highly discriminatory genotyping data. Thorax 2015; 71:742-8. [DOI: 10.1136/thoraxjnl-2014-206416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/30/2015] [Indexed: 02/04/2023]
|
44
|
Regmi SM, Chaiprasert A, Kulawonganunchai S, Tongsima S, Coker OO, Prammananan T, Viratyosin W, Thaipisuttikul I. Whole genome sequence analysis of multidrug-resistant Mycobacterium tuberculosis Beijing isolates from an outbreak in Thailand. Mol Genet Genomics 2015; 290:1933-41. [DOI: 10.1007/s00438-015-1048-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 04/07/2015] [Indexed: 12/11/2022]
|
45
|
A microbiological revolution meets an ancient disease: improving the management of tuberculosis with genomics. Clin Microbiol Rev 2015; 28:523-39. [PMID: 25810419 DOI: 10.1128/cmr.00124-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) is an ancient disease with an enormous global impact. Despite declining global incidence, the diagnosis, phenotyping, and epidemiological investigation of TB require significant clinical microbiology laboratory resources. Current methods for the detection and characterization of Mycobacterium tuberculosis consist of a series of laboratory tests varying in speed and performance, each of which yields incremental information about the disease. Since the sequencing of the first M. tuberculosis genome in 1998, genomic tools have aided in the diagnosis, treatment, and control of TB. Here we summarize genomics-based methods that are positioned to be introduced in the modern clinical TB laboratory, and we highlight how recent advances in genomics will improve the detection of antibiotic resistance-conferring mutations and the understanding of M. tuberculosis transmission dynamics and epidemiology. We imagine the future TB clinic as one that relies heavily on genomic interrogation of the M. tuberculosis isolate, allowing for more rapid diagnosis of TB and real-time monitoring of outbreak emergence.
Collapse
|
46
|
Periwal V, Patowary A, Vellarikkal SK, Gupta A, Singh M, Mittal A, Jeyapaul S, Chauhan RK, Singh AV, Singh PK, Garg P, Katoch VM, Katoch K, Chauhan DS, Sivasubbu S, Scaria V. Comparative whole-genome analysis of clinical isolates reveals characteristic architecture of Mycobacterium tuberculosis pangenome. PLoS One 2015; 10:e0122979. [PMID: 25853708 PMCID: PMC4390332 DOI: 10.1371/journal.pone.0122979] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/26/2015] [Indexed: 11/18/2022] Open
Abstract
The tubercle complex consists of closely related mycobacterium species which appear to be variants of a single species. Comparative genome analysis of different strains could provide useful clues and insights into the genetic diversity of the species. We integrated genome assemblies of 96 strains from Mycobacterium tuberculosis complex (MTBC), which included 8 Indian clinical isolates sequenced and assembled in this study, to understand its pangenome architecture. We predicted genes for all the 96 strains and clustered their respective CDSs into homologous gene clusters (HGCs) to reveal a hard-core, soft-core and accessory genome component of MTBC. The hard-core (HGCs shared amongst 100% of the strains) was comprised of 2,066 gene clusters whereas the soft-core (HGCs shared amongst at least 95% of the strains) comprised of 3,374 gene clusters. The change in the core and accessory genome components when observed as a function of their size revealed that MTBC has an open pangenome. We identified 74 HGCs that were absent from reference strains H37Rv and H37Ra but were present in most of clinical isolates. We report PCR validation on 9 candidate genes depicting 7 genes completely absent from H37Rv and H37Ra whereas 2 genes shared partial homology with them accounting to probable insertion and deletion events. The pangenome approach is a promising tool for studying strain specific genetic differences occurring within species. We also suggest that since selecting appropriate target genes for typing purposes requires the expected target gene be present in all isolates being typed, therefore estimating the core-component of the species becomes a subject of prime importance.
Collapse
Affiliation(s)
- Vinita Periwal
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi—110007, India
- Academy of Scientific & Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi 110001, India
| | - Ashok Patowary
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi—110007, India
| | - Shamsudheen Karuthedath Vellarikkal
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi—110007, India
- Academy of Scientific & Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi 110001, India
| | - Anju Gupta
- Open Source Drug Discovery Unit, Council of Scientific and Industrial Research (CSIR), Anusandhan Bhavan, 2 Rafi Marg, New Delhi 110001, India
| | - Meghna Singh
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi—110007, India
- Academy of Scientific & Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi 110001, India
| | - Ashish Mittal
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi—110007, India
| | - Shamini Jeyapaul
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi—110007, India
| | - Rajendra Kumar Chauhan
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi—110007, India
| | - Ajay Vir Singh
- National JALMA Institute of Leprosy and other Mycobacterial Diseases, Post Box No.101,Tajganj, Agra-282001, India
| | - Pravin Kumar Singh
- National JALMA Institute of Leprosy and other Mycobacterial Diseases, Post Box No.101,Tajganj, Agra-282001, India
| | - Parul Garg
- National JALMA Institute of Leprosy and other Mycobacterial Diseases, Post Box No.101,Tajganj, Agra-282001, India
| | - Viswa Mohan Katoch
- National JALMA Institute of Leprosy and other Mycobacterial Diseases, Post Box No.101,Tajganj, Agra-282001, India
| | - Kiran Katoch
- National JALMA Institute of Leprosy and other Mycobacterial Diseases, Post Box No.101,Tajganj, Agra-282001, India
| | - Devendra Singh Chauhan
- National JALMA Institute of Leprosy and other Mycobacterial Diseases, Post Box No.101,Tajganj, Agra-282001, India
| | - Sridhar Sivasubbu
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi—110007, India
- * E-mail: (VS); (SS)
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi—110007, India
- * E-mail: (VS); (SS)
| |
Collapse
|
47
|
Okumura K, Kato M, Kirikae T, Kayano M, Miyoshi-Akiyama T. Construction of a virtual Mycobacterium tuberculosis consensus genome and its application to data from a next generation sequencer. BMC Genomics 2015; 16:218. [PMID: 25879806 PMCID: PMC4425900 DOI: 10.1186/s12864-015-1368-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although Mycobacterium tuberculosis isolates are consisted of several different lineages and the epidemiology analyses are usually assessed relative to a particular reference genome, M. tuberculosis H37Rv, which might introduce some biased results. Those analyses are essentially based genome sequence information of M. tuberculosis and could be performed in sillico in theory, with whole genome sequence (WGS) data available in the databases and obtained by next generation sequencers (NGSs). As an approach to establish higher resolution methods for such analyses, whole genome sequences of the M. tuberculosis complexes (MTBCs) strains available on databases were aligned to construct virtual reference genome sequences called the consensus sequence (CS), and evaluated its feasibility in in sillico epidemiological analyses. RESULTS The consensus sequence (CS) was successfully constructed and utilized to perform phylogenetic analysis, evaluation of read mapping efficacy, which is crucial for detecting single nucleotide polymorphisms (SNPs), and various MTBC typing methods virtually including spoligotyping, VNTR, Long sequence polymorphism and Beijing typing. SNPs detected based on CS, in comparison with H37Rv, were utilized in concatemer-based phylogenetic analysis to determine their reliability relative to a phylogenetic tree based on whole genome alignment as the gold standard. Statistical comparison of phylogenic trees based on CS with that of H37Rv indicated the former showed always better results that that of later. SNP detection and concatenation with CS was advantageous because the frequency of crucial SNPs distinguishing among strain lineages was higher than those of H37Rv. The number of SNPs detected was lower with the consensus than with the H37Rv sequence, resulting in a significant reduction in computational time. Performance of each virtual typing was satisfactory and accorded with those published when those are available. CONCLUSIONS These results indicated that virtual CS constructed from genome sequence data is an ideal approach as a reference for MTBC studies.
Collapse
Affiliation(s)
- Kayo Okumura
- Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Masako Kato
- Department of Infectious Diseases, National Center for Global Health and Medicine, 1-21-1, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Teruo Kirikae
- Department of Infectious Diseases, National Center for Global Health and Medicine, 1-21-1, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Mitsunori Kayano
- Department of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Tohru Miyoshi-Akiyama
- Department of Infectious Diseases, National Center for Global Health and Medicine, 1-21-1, Shinjuku-ku, Tokyo, 162-8655, Japan.
| |
Collapse
|
48
|
Regmi SM, Coker OO, Kulawonganunchai S, Tongsima S, Prammananan T, Viratyosin W, Thaipisuttikul I, Chaiprasert A. Polymorphisms in drug-resistant-related genes shared among drug-resistant and pan-susceptible strains of sequence type 10, Beijing family of Mycobacterium tuberculosis. Int J Mycobacteriol 2015; 4:67-72. [DOI: 10.1016/j.ijmyco.2014.11.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/02/2014] [Indexed: 10/24/2022] Open
|
49
|
|
50
|
Pouseele H, Supply P. Accurate Whole-Genome Sequencing-Based Epidemiological Surveillance of Mycobacterium Tuberculosis. METHODS IN MICROBIOLOGY 2015. [DOI: 10.1016/bs.mim.2015.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|