1
|
Mainali N, Balasubramaniam M, Pahal S, Griffin WST, Shmookler Reis RJ, Ayyadevara S. Altered protein homeostasis in cardiovascular diseases contributes to Alzheimer's-like neuropathology. Basic Res Cardiol 2025:10.1007/s00395-025-01109-w. [PMID: 40332607 DOI: 10.1007/s00395-025-01109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. CVD is known to increase the risk of subsequent neurodegeneration but the mechanism(s) and proteins involved have yet to be elucidated. We previously showed that myocardial infarction (MI), induced in mice and compared to sham-MI mice, leads to increases in protein aggregation, endoplasmic reticulum (ER) stress in both heart and brain, and changes in proteostatic pathways. In this study, we further investigate the molecular mechanisms altered by induced MI in mice, which were also implicated by proteomics of postmortem human hippocampal aggregates from Alzheimer's disease (AD) and cardiovascular disease (CVD) patients, vs. age-matched controls (AMC). We utilized intra-aggregate crosslinking to identify protein-protein contacts or proximities, and thus to reconstruct aggregate "contactomes" (nonfunctional interactomes). We used leave-one-out analysis (LOOA) to determine the contribution of each protein to overall aggregate cohesion, and gene ontology meta-analyses of constituent proteins to define critical organelles, processes, and pathways that distinguish AD and/or CVD from AMC aggregates. We identified influential proteins in both AD and CVD aggregates, many of which are associated with pathways or processes previously implicated in neurodegeneration such as mitochondrial, oxidative, and endoplasmic-reticulum stress; protein aggregation and proteostasis; the ubiquitin proteasome system and autophagy; axonal transport; and synapses.
Collapse
Affiliation(s)
- Nirjal Mainali
- Bioinformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, 72205, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | | | - Sonu Pahal
- Bioinformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR, 72205, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - W Sue T Griffin
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, 72205, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Robert J Shmookler Reis
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, 72205, USA
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, 72205, USA.
- Department of Geriatrics, Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
2
|
Packer A, Corbett A, Arathimos R, Ballard C, Aarsland D, Hampshire A, Dima D, Creese B, Malanchini M, Powell TR. Limited evidence of a shared genetic relationship between C-reactive protein levels and cognitive function in older UK adults of European ancestry. FRONTIERS IN DEMENTIA 2023; 2:1093223. [PMID: 39081969 PMCID: PMC11285585 DOI: 10.3389/frdem.2023.1093223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2024]
Abstract
Introduction Previous studies have shown associations between cognitive function and C-reactive protein (CRP) levels in older adults. Few studies have considered the extent to which a genetic predisposition for higher CRP levels contributes to this association. Methods Data was analyzed from 7,817 UK participants aged >50 years as part of the PROTECT study, within which adults without dementia completed a comprehensive neuropsychological battery. We constructed a polygenic risk score (PRS-CRP) that explained 9.61% of the variance in serum CRP levels (p = 2.362 × 10-7) in an independent cohort. Regressions were used to explore the relationship between PRS-CRP and cognitive outcomes. Results We found no significant associations between PRS-CRP and any cognitive measures in the sample overall. In older participants (>62 years), we observed a significant positive association between PRS-CRP and self-ordered search score (i.e., spatial working memory). Conclusion Whilst our results indicate a weak positive relationship between PRS-CRP and spatial working memory that is specific to older adults, overall, there appears to be no strong effects of PRS-CRP on cognitive function.
Collapse
Affiliation(s)
- Amy Packer
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Anne Corbett
- College of Medicine & Health, St Luke's, University of Exeter, Exeter, United Kingdom
| | - Ryan Arathimos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Clive Ballard
- College of Medicine & Health, St Luke's, University of Exeter, Exeter, United Kingdom
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Adam Hampshire
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Danai Dima
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Psychology, School of Health and Psychological Sciences, City, University of London, London, United Kingdom
| | - Byron Creese
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Margherita Malanchini
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Timothy R. Powell
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
3
|
Zhang Y, Tatewaki Y, Nakase T, Liu Y, Tomita N, Thyreau B, Zheng H, Muranaka M, Takano Y, Nagasaka T, Taki Y. Impact of hs-CRP concentration on brain structure alterations and cognitive trajectory in Alzheimer's disease. Front Aging Neurosci 2023; 15:1227325. [PMID: 37593375 PMCID: PMC10427872 DOI: 10.3389/fnagi.2023.1227325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Present study was to investigate hs-CRP concentration, brain structural alterations, and cognitive function in the context of AD [Subjective cognitive decline (SCD), mild cognitive impairment (MCI), and AD]. Methods We retrospectively included 313 patients (Mean age = 76.40 years, 59 SCD, 101 MCI, 153 AD) in a cross-sectional analysis and 91 patients (Mean age = 75.83 years, 12 SCD, 43 MCI, 36 AD) in a longitudinal analysis. Multivariable linear regression was conducted to investigate the relationship between hs-CRP concentration and brain structural alterations, and cognitive function, respectively. Results Hs-CRP was positively associated with gray matter volume in the left fusiform (β = 0.16, pFDR = 0.023) and the left parahippocampal gyrus (β = 0.16, pFDR = 0.029). Post hoc analysis revealed that these associations were mainly driven by patients with MCI and AD. The interaction of diagnosis and CRP was significantly associated with annual cognitive changes (β = 0.43, p = 0.008). Among these patients with AD, lower baseline CRP was correlated with greater future cognitive decline (r = -0.41, p = 0.013). Conclusion Our study suggests that increased hs-CRP level may exert protective effect on brain structure alterations and future cognitive changes among patients already with cognitive impairment.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuko Tatewaki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
| | - Taizen Nakase
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
| | - Yingxu Liu
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Naoki Tomita
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
| | | | - Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Michiho Muranaka
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
| | - Yumi Takano
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
| | - Tatsuo Nagasaka
- Division of Radiology, Tohoku University Hospital, Sendai, Japan
| | - Yasuyuki Taki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Geriatric Medicine and Neuroimaging, Tohoku University Hospital, Sendai, Japan
- Smart-Aging Research Center, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
Lachner C, Day GS, Camsari GB, Kouri N, Ertekin-Taner N, Boeve BF, Labuzan SA, Lucas JA, Thompson EA, Siddiqui H, Crook JE, Cabrera-Rodriguez JN, Josephs KA, Petersen RC, Dickson DW, Reichard RR, Mielke MM, Knopman DS, Graff-Radford NR, Murray ME. Cancer and Vascular Comorbidity Effects on Dementia Risk and Neuropathology in the Oldest-Old. J Alzheimers Dis 2022; 90:405-417. [PMID: 36213996 PMCID: PMC9661335 DOI: 10.3233/jad-220440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Dementia, vascular disease, and cancer increase with age, enabling complex comorbid interactions. Understanding vascular and cancer contributions to dementia risk and neuropathology in oldest-old may improve risk modification and outcomes. OBJECTIVE Investigate the contributions of vascular factors and cancer to dementia and neuropathology. METHODS Longitudinal clinicopathologic study of prospectively followed Mayo Clinic participants dying≥95 years-old who underwent autopsy. Participants were stratified by dementia status and compared according to demographics, vascular risk factors, cancer, and neuropathology. RESULTS Participants (n = 161; 83% female; 99% non-Hispanic whites)≥95 years (95-106 years-old) with/without dementia did not differ based on demographics. APOE ɛ2 frequency was higher in no dementia (20/72 [28%]) versus dementia (11/88 [12%]; p = 0.03), but APOE ɛ4 frequency did not differ. Coronary artery disease was more frequent in no dementia (31/72 [43%]) versus dementia (23/89 [26%]; p = 0.03) associated with 56% lower dementia odds (odds ratio [OR] = 0.44 [confidence interval (CI) = 0.19-0.98]; p = 0.04) and fewer neuritic/diffuse plaques. Diabetes had an 8-fold increase in dementia odds (OR = 8.42 [CI = 1.39-163]; p = 0.02). Diabetes associated with higher cerebrovascular disease (Dickson score; p = 0.05). Cancer associated with 63% lower dementia odds (OR = 0.37 [CI = 0.17-0.78]; p < 0.01) and lower Braak stage (p = 0.01). CONCLUSION Cancer exposure in the oldest-old was associated with lower odds of dementia and tangle pathology, whereas history of coronary artery disease was associated with lower odds of dementia and amyloid-β plaque pathology. History of diabetes mellitus was associated with increased odds of dementia and cerebrovascular disease pathology. Cancer-related mechanisms and vascular risk factor reduction strategies may alter dementia risk and neuropathology in oldest-old.
Collapse
Affiliation(s)
- Christian Lachner
- Departments of Neurology, Mayo Clinic, Jacksonville, FL, USA,
Departments of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Gregory S. Day
- Departments of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Naomi Kouri
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Departments of Neurology, Mayo Clinic, Jacksonville, FL, USA,
Departments of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - John A. Lucas
- Departments of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Habeeba Siddiqui
- Departments of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Julia E. Crook
- Departments of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | | - R. Ross Reichard
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Michelle M. Mielke
- Departments of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Melissa E. Murray
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,Correspondence to: Melissa E. Murray, PhD, Associate Professor, Translational Neuropathology Laboratory, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Tel.: +1 904 953 1083; Fax: +1 904 953 7117; E-mail:
| |
Collapse
|
5
|
Katsel P, Fam P, Tan W, Khan S, Gama-Sosa M, De Gasperi R, Roussos P, Robinson A, Cooper I, Schnaider-Beeri M, Haroutunian V. Engagement of vascular early response genes typifies mild cognitive impairment. Alzheimers Dement 2022; 18:1357-1369. [PMID: 34758195 PMCID: PMC10878080 DOI: 10.1002/alz.12481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/07/2021] [Accepted: 08/11/2021] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Molecular responses in the brains of persons with mild cognitive impairment (MCI), the earliest transitional state between normal aging and early Alzheimer's disease (AD), are poorly understood. METHODS We examined AD-related neuropathology and transcriptome changes in the neocortex of individuals with MCI relative to controls and temporal responses to the mild hypoxia in mouse brains. RESULTS Subsets of vascular early response to hypoxia genes were upregulated in MCI prior to the buildup of AD neuropathology. Early activation of pro-angiogenic hypoxia-inducible factor signaling in response to mild hypoxia was detected in mouse brains similar to those that were altered in MCI. Protracted responses to hypoxia were characterized by activation of phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt)-the mammalian target of rapamycin (mTOR) pathways in brain microvessel isolates. DISCUSSION These findings suggest that cerebrovascular remodeling is an important antecedent to the development of dementia and a component of the homeostatic response to reduced oxygen tension in aging prior to the onset of AD.
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at
Mount Sinai, New York, New York, USA
| | - Peter Fam
- Department of Neuroscience, The Icahn School of Medicine at
Mount Sinai, New York, New York, USA
| | - Weilun Tan
- Department of Psychiatry, The Icahn School of Medicine at
Mount Sinai, New York, New York, USA
| | - Sonia Khan
- Department of Psychiatry, The Icahn School of Medicine at
Mount Sinai, New York, New York, USA
| | - Miguel Gama-Sosa
- Department of Psychiatry, The Icahn School of Medicine at
Mount Sinai, New York, New York, USA
| | - Rita De Gasperi
- Department of Psychiatry, The Icahn School of Medicine at
Mount Sinai, New York, New York, USA
| | - Panos Roussos
- Department of Psychiatry, The Icahn School of Medicine at
Mount Sinai, New York, New York, USA
- Genetics and Genomic Sciences, The Icahn School of Medicine
at Mount Sinai, New York, New York, USA
- Pamela Sklar Division of Psychiatric Genomics and Friedman
Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, New York,
USA
| | - Ari Robinson
- The Joseph Sagol Neuroscience Center Tel-Hashomer,
Ramat-Gan, Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center Tel-Hashomer,
Ramat-Gan, Israel
| | - Michal Schnaider-Beeri
- Department of Psychiatry, The Icahn School of Medicine at
Mount Sinai, New York, New York, USA
- The Joseph Sagol Neuroscience Center Tel-Hashomer,
Ramat-Gan, Israel
| | - Vahram Haroutunian
- Department of Psychiatry, The Icahn School of Medicine at
Mount Sinai, New York, New York, USA
- Department of Neuroscience, The Icahn School of Medicine at
Mount Sinai, New York, New York, USA
- Mental Illness Research, Education and Clinical Center
(MIRECC), James J Peters VA Medical Center, Bronx, New York, USA
| |
Collapse
|
6
|
Connolly MG, Bruce SR, Kohman RA. Exercise duration differentially effects age-related neuroinflammation and hippocampal neurogenesis. Neuroscience 2022; 490:275-286. [PMID: 35331843 PMCID: PMC9038708 DOI: 10.1016/j.neuroscience.2022.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
Abstract
The physiological effects of exercise vary as a function of frequency and length. However, research on the duration-dependent effects of exercise has focused primarily on young adults and less is known about the influence of exercise duration in the aged. The current study compared the effects of short-term and long-term running wheel access on hippocampal neurogenesis and neuroimmune markers in aged (19-23 months) male C57BL/6J mice. Aged mice were given 24-hour access to a running wheel for 14 days (short-term) or 51 days (long-term). Groups of non-running aged and young (5 months) mice served as comparison groups to detect age-related differences and effects of exercise. Long-term, but not short-term, exercise increased hippocampal neurogenesis as assessed by number of doublecortin (DCX) positive cells in the granular cell layer. Assessment of cytokines, receptors, and glial-activation markers showed the expected age-related increase compared to young controls. In the aged, exercise as a function of duration regulated select aspects of the neuroimmune profile. For instance, hippocampal expression of interleukin (IL)-10 was increased only following long-term exercise. While in contrast brain levels of IL-6 were reduced by both short- and long-term exercise. Additional findings showed that exercise does not modulate all aspects of age-related neuroinflammation and/or may have differential effects in hippocampal compared to brain samples. Overall, the data indicate that increasing exercise duration produces more robust effects on immune modulation and hippocampal neurogenesis.
Collapse
Affiliation(s)
- Meghan G Connolly
- University of Illinois Urbana-Champaign, Department of Animal Sciences, Champaign, IL, USA.
| | - Spencer R Bruce
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| | - Rachel A Kohman
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA.
| |
Collapse
|
7
|
Lewis NA, Knight JE. Longitudinal associations between C-reactive protein and cognitive performance in normative cognitive ageing and dementia. Age Ageing 2021; 50:2199-2205. [PMID: 34324642 DOI: 10.1093/ageing/afab152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND systemic inflammation appears to play an important role in the pathogenesis and expression of Alzheimer's disease and other dementias. Previous research has found that elevated levels of serum C-reactive protein (CRP) is associated with poorer cognitive functioning and increased risk for dementia. However, most studies are limited by single CRP measurements, which fail to capture long-term inflammatory exposures or dynamic changes in inflammation and cognition which may occur across repeated measurements. METHODS using data from 3,563 older adults aged 65-101 from the Health and Retirement Study, we examined bivariate changes in CRP and cognition measured repeatedly over a 10-year follow-up. Bivariate multilevel models estimated the effect of time-varying CRP on cognition among cognitively healthy older adults and in a subset of 427 participants who reported incident dementia onset during the follow-up period. RESULTS in cognitively healthy participants, CRP was associated with lower level of cognitive functioning, but not rate of change over time. This effect was significant in participants under 80 years of age (b = -0.09, standard error (SE) = 0.05, P = 0.04), but not in older participants. In participants with incident dementia, those with higher CRP experienced smaller rates of cognitive decline, leading up to dementia diagnosis. CONCLUSIONS elevated levels of CRP predict poorer cognition and increased dementia risk in cognitively healthy adults under the age of 80. Conversely, increased CRP may confer protective effects on cognition in the prodromal stage of dementia.
Collapse
Affiliation(s)
- Nathan A Lewis
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada
| | - Jamie E Knight
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
8
|
Wu C, Bendriem RM, Freed WJ, Lee CT. Transcriptome analysis of human dorsal striatum implicates attenuated canonical WNT signaling in neuroinflammation and in age-related impairment of striatal neurogenesis and synaptic plasticity. Restor Neurol Neurosci 2021; 39:247-266. [PMID: 34275915 DOI: 10.3233/rnn-211161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Motor and cognitive decline as part of the normal aging process is linked to alterations in synaptic plasticity and reduction of adult neurogenesis in the dorsal striatum. Neuroinflammation, particularly in the form of microglial activation, is suggested to contribute to these age-associated changes. OBJECTIVE AND METHODS To explore the molecular basis of alterations in striatal function during aging we analyzed RNA-Seq data for 117 postmortem human dorsal caudate samples and 97 putamen samples acquired through GTEx. RESULTS Increased expression of neuroinflammatory transcripts including TREM2, MHC II molecules HLA-DMB, HLA-DQA2, HLA-DPA1, HLA-DPB1, HLA-DMA and HLA-DRA, complement genes C1QA, C1QB, CIQC and C3AR1, and MHCI molecules HLA-B and HLA-F was identified. We also identified down-regulation of transcripts involved in neurogenesis, synaptogenesis, and synaptic pruning, including DCX, CX3CL1, and CD200, and the canonical WNTs WNT7A, WNT7B, and WNT8A. The canonical WNT signaling pathway has previously been shown to mediate adult neurogenesis and synapse formation and growth. Recent findings also highlight the link between WNT/β-catenin signaling and inflammation pathways. CONCLUSIONS These findings suggest that age-dependent attenuation of canonical WNT signaling plays a pivotal role in regulating striatal plasticity during aging. Dysregulation of WNT/β-catenin signaling via astrocyte-microglial interactions is suggested to be a novel mechanism that drives the decline of striatal neurogenesis and altered synaptic connectivity and plasticity, leading to a subsequent decrease in motor and cognitive performance with age. These findings may aid in the development of therapies targeting WNT/β-catenin signaling to combat cognitive and motor impairments associated with aging.
Collapse
Affiliation(s)
- Chun Wu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Raphael M Bendriem
- Brain and Mind Research Institute, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - William J Freed
- Department of Biology, Lebanon Valley College, Annville, PA, USA
| | - Chun-Ting Lee
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
9
|
Pantazopoulos H, Katsel P, Haroutunian V, Chelini G, Klengel T, Berretta S. Molecular signature of extracellular matrix pathology in schizophrenia. Eur J Neurosci 2021; 53:3960-3987. [PMID: 33070392 PMCID: PMC8359380 DOI: 10.1111/ejn.15009] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023]
Abstract
Growing evidence points to a critical involvement of the extracellular matrix (ECM) in the pathophysiology of schizophrenia (SZ). Decreases of perineuronal nets (PNNs) and altered expression of chondroitin sulphate proteoglycans (CSPGs) in glial cells have been identified in several brain regions. GWAS data have identified several SZ vulnerability variants of genes encoding for ECM molecules. Given the potential relevance of ECM functions to the pathophysiology of this disorder, it is necessary to understand the extent of ECM changes across brain regions, their region- and sex-specificity and which ECM components contribute to these changes. We tested the hypothesis that the expression of genes encoding for ECM molecules may be broadly disrupted in SZ across several cortical and subcortical brain regions and include key ECM components as well as factors such as ECM posttranslational modifications and regulator factors. Gene expression profiling of 14 neocortical brain regions, caudate, putamen and hippocampus from control subjects (n = 14/region) and subjects with SZ (n = 16/region) was conducted using Affymetrix microarray analysis. Analysis across brain regions revealed widespread dysregulation of ECM gene expression in cortical and subcortical brain regions in SZ, impacting several ECM functional key components. SRGN, CD44, ADAMTS1, ADAM10, BCAN, NCAN and SEMA4G showed some of the most robust changes. Region-, sex- and age-specific gene expression patterns and correlation with cognitive scores were also detected. Taken together, these findings contribute to emerging evidence for large-scale ECM dysregulation in SZ and point to molecular pathways involved in PNN decreases, glial cell dysfunction and cognitive impairment in SZ.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Department of Neurobiology and Anatomical SciencesUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Pavel Katsel
- Department of PsychiatryThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Department of NeuroscienceThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mental Illness Research Education ClinicalCenters of Excellence (MIRECC)JJ Peters VA Medical CenterBronxNYUSA
| | - Vahram Haroutunian
- Department of PsychiatryThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Department of NeuroscienceThe Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mental Illness Research Education ClinicalCenters of Excellence (MIRECC)JJ Peters VA Medical CenterBronxNYUSA
| | - Gabriele Chelini
- Translational Neuroscience LaboratoryMclean HospitalBelmontMAUSA
- Department of PsychiatryHarvard Medical SchoolBostonMAUSA
| | - Torsten Klengel
- Department of PsychiatryHarvard Medical SchoolBostonMAUSA
- Translational Molecular Genomics LaboratoryMclean HospitalBelmontMAUSA
- Department of PsychiatryUniversity Medical Center GöttingenGöttingenGermany
| | - Sabina Berretta
- Translational Neuroscience LaboratoryMclean HospitalBelmontMAUSA
- Department of PsychiatryHarvard Medical SchoolBostonMAUSA
- Program in NeuroscienceHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
10
|
Duggan MR, Parikh V. Microglia and modifiable life factors: Potential contributions to cognitive resilience in aging. Behav Brain Res 2021; 405:113207. [PMID: 33640394 PMCID: PMC8005490 DOI: 10.1016/j.bbr.2021.113207] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/27/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023]
Abstract
Given the increasing prevalence of age-related cognitive decline, it is relevant to consider the factors and mechanisms that might facilitate an individual's resiliency to such deficits. Growing evidence suggests a preeminent role of microglia, the prime mediator of innate immunity within the central nervous system. Human and animal investigations suggest aberrant microglial functioning and neuroinflammation are not only characteristic of the aged brain, but also might contribute to age-related dementia and Alzheimer's Disease. Conversely, accumulating data suggest that modifiable lifestyle factors (MLFs), such as healthy diet, exercise and cognitive engagement, can reliably afford cognitive benefits by potentially suppressing inflammation in the aging brain. The present review highlights recent advances in our understanding of the role for microglia in maintaining brain homeostasis and cognitive functioning in aging. Moreover, we propose an integrated, mechanistic model that postulates an individual's resiliency to cognitive decline afforded by MLFs might be mediated by the mitigation of aberrant microglia activation in aging, and subsequent suppression of neuroinflammation.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, United States
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, United States.
| |
Collapse
|
11
|
Hanas JS, Hocker JRS, Vannarath CA, Lerner MR, Blair SG, Lightfoot SA, Hanas RJ, Couch JR, Hershey LA. Distinguishing Alzheimer's Disease Patients and Biochemical Phenotype Analysis Using a Novel Serum Profiling Platform: Potential Involvement of the VWF/ADAMTS13 Axis. Brain Sci 2021; 11:brainsci11050583. [PMID: 33946285 PMCID: PMC8145311 DOI: 10.3390/brainsci11050583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
It is important to develop minimally invasive biomarker platforms to help in the identification and monitoring of patients with Alzheimer's disease (AD). Assisting in the understanding of biochemical mechanisms as well as identifying potential novel biomarkers and therapeutic targets would be an added benefit of such platforms. This study utilizes a simplified and novel serum profiling platform, using mass spectrometry (MS), to help distinguish AD patient groups (mild and moderate) and controls, as well as to aid in understanding of biochemical phenotypes and possible disease development. A comparison of discriminating sera mass peaks between AD patients and control individuals was performed using leave one [serum sample] out cross validation (LOOCV) combined with a novel peak classification valuation (PCV) procedure. LOOCV/PCV was able to distinguish significant sera mass peak differences between a group of mild AD patients and control individuals with a p value of 10-13. This value became non-significant (p = 0.09) when the same sera samples were randomly allocated between the two groups and reanalyzed by LOOCV/PCV. This is indicative of physiological group differences in the original true-pathology binary group comparison. Similarities and differences between AD patients and traumatic brain injury (TBI) patients were also discernable using this novel LOOCV/PCV platform. MS/MS peptide analysis was performed on serum mass peaks comparing mild AD patients with control individuals. Bioinformatics analysis suggested that cell pathways/biochemical phenotypes affected in AD include those involving neuronal cell death, vasculature, neurogenesis, and AD/dementia/amyloidosis. Inflammation, autoimmunity, autophagy, and blood-brain barrier pathways also appear to be relevant to AD. An impaired VWF/ADAMTS13 vasculature axis with connections to F8 (factor VIII) and LRP1 and NOTCH1 was indicated and is proposed to be important in AD development.
Collapse
Affiliation(s)
- Jay S. Hanas
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.R.S.H.); (C.A.V.); (R.J.H.)
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.R.L.); (S.G.B.)
- Veterans Administration Hospital, Oklahoma City, OK 73104, USA;
- Correspondence:
| | - James R. S. Hocker
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.R.S.H.); (C.A.V.); (R.J.H.)
| | - Christian A. Vannarath
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.R.S.H.); (C.A.V.); (R.J.H.)
| | - Megan R. Lerner
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.R.L.); (S.G.B.)
| | - Scott G. Blair
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.R.L.); (S.G.B.)
| | | | - Rushie J. Hanas
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.R.S.H.); (C.A.V.); (R.J.H.)
| | - James R. Couch
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.R.C.); (L.A.H.)
| | - Linda A. Hershey
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.R.C.); (L.A.H.)
| |
Collapse
|
12
|
Elmaleh DR, Farlow MR, Conti PS, Tompkins RG, Kundakovic L, Tanzi RE. Developing Effective Alzheimer's Disease Therapies: Clinical Experience and Future Directions. J Alzheimers Dis 2020; 71:715-732. [PMID: 31476157 PMCID: PMC6839593 DOI: 10.3233/jad-190507] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) clinical trials, focused on disease modifying drugs and conducted in patients with mild to moderate AD, as well as prodromal (early) AD, have failed to reach efficacy endpoints in improving cognitive function in most cases to date or have been terminated due to adverse events. Drugs that have reached clinical stage were reviewed using web resources (such as clinicaltrials.gov, alzforum.org, company press releases, and peer reviewed literature) to identify late stage (Phase II and Phase III) efficacy clinical trials and summarize reasons for their failure. For each drug, only the latest clinical trials and ongoing trials that aimed at improving cognitive function were included in the analysis. Here we highlight the potential reasons that have hindered clinical success, including clinical trial design and choice of outcome measures, heterogeneity of patient populations, difficulties in diagnosing and staging the disease, drug design, mechanism of action, and toxicity related to the long-term use. We review and suggest approaches for AD clinical trial design aimed at improving our ability to identify novel therapies for this devastating disease.
Collapse
Affiliation(s)
- David R Elmaleh
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.,AZTherapies Inc., Boston, MA, USA
| | - Martin R Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter S Conti
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ronald G Tompkins
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
13
|
Sharma V, Bryant C, Montero M, Creegan M, Slike B, Krebs SJ, Ratto-Kim S, Valcour V, Sithinamsuwan P, Chalermchai T, Eller MA, Bolton DL. Monocyte and CD4+ T-cell antiviral and innate responses associated with HIV-1 inflammation and cognitive impairment. AIDS 2020; 34:1289-1301. [PMID: 32598115 DOI: 10.1097/qad.0000000000002537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Mechanisms underlying immune activation and HIV-associated neurocognitive disorders (HAND) in untreated chronic infection remain unclear. The objective of this study was to identify phenotypic and transcriptional changes in blood monocytes and CD4 T cells in HIV-1-infected and uninfected individuals and elucidate processes associated with neurocognitive impairment. DESIGN A group of chronically HIV-1-infected Thai individuals (n = 19) were selected for comparison with healthy donor controls (n = 10). Infected participants were further classified as cognitively normal (n = 10) or with HAND (n = 9). Peripheral monocytes and CD4 T cells were phenotyped by flow cytometry and simultaneously isolated for multiplex qPCR-targeted gene expression profiling directly ex vivo. The frequency of HIV-1 RNA-positive cells was estimated by limiting dilution cell sorting. RESULTS Expression of genes and proteins involved in cellular activation and proinflammatory immune responses was increased in monocytes and CD4 T cells from HIV-1-infected relative to uninfected individuals. Gene expression profiles of both CD4 T cells and monocytes correlated with soluble markers of inflammation in the periphery (P < 0.05). By contrast, only modest differences in gene programs were observed between cognitively normal and HAND cases. These included increased monocyte surface CD169 protein expression relative to cognitively normal (P = 0.10), decreased surface CD163 expression relative to uninfected (P = 0.02) and cognitively normal (P = 0.06), and downregulation of EMR2 (P = 0.04) and STAT1 (P = 0.02) relative to cognitively normal. CONCLUSION Our data support a model of highly activated monocytes and CD4 T cells associated with inflammation in chronic HIV-1 infection, but impaired monocyte anti-inflammatory responses in HAND compared with cognitively normal.
Collapse
Affiliation(s)
- Vishakha Sharma
- aU.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring bHenry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda cThe EMMES Corporation, Rockville, Maryland dMemory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA eFaculty of Medicine, Phramongkutklao Hospital fSEARCH, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Singh H, Chawla V, Bala R, Dureja H. Current and Future of Alzheimer's Therapy with the Best Approach. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:691-697. [PMID: 32351189 DOI: 10.2174/1871527319666200430000538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/30/2020] [Accepted: 03/13/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION In spite of the steady progress in the understanding of the etiopathogenesis of Alzheimer's Disease (AD) for the last 50 years, exceptionally few long-standing drugs are, at present, used for AD therapy. New interventions that either prevent, slow or stop the disease are urgently warranted to overcome the growing AD burden. The aim of this narrative review is to summarize the currently existing preclinical and clinical evidence regarding new drug development and biomarkers for better understanding and focused management of AD. This article reviews the various potential and existing targets /receptors with valid biomarkers applied in recent years to address the early-stage tasks of the AD drug discovery process. A comprehensive literature search was conducted in the relevant databases to identify studies published in recent years. In conclusion, the new approaches seem to aim at examining the prospective neuroprotective activity of disease-modifying drugs in the presymptomatic phases of AD, using biomarkers that detect progression of the disease before the growth of overt dementia.
Collapse
Affiliation(s)
- Harminder Singh
- Department of Pharmacology, GGS Medical College, Faridkot, Punjab, India
| | - Viney Chawla
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Ritu Bala
- Department of Pharmacology, GGS Medical College, Faridkot, Punjab, India
| | - Harish Dureja
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
15
|
Katsel P, Haroutunian V. Is Alzheimer disease a failure of mobilizing immune defense? Lessons from cognitively fit oldest-old. DIALOGUES IN CLINICAL NEUROSCIENCE 2019; 21:7-19. [PMID: 31607776 PMCID: PMC6780355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Multifaceted evidence supports the hypothesis that inflammatory-immune mechanisms contribute to Alzheimer disease (AD) neuropathology and genetic association of several immune specific genes (TREM2, CR1, and CD33) suggests that maladaptive immune responses may be pivotal drivers of AD pathogenesis. We reviewed microglia-related data from postmortem AD studies and examined supporting evidence from AD animal models to answer the following questions: i) What is the temporal sequence of immune activation in AD progression and what is its impact on cognition? ii) Are there discordant, "primed", microglia responses in AD vs successful cognitive aging? iii) Does central nervous system (CNS) repair in aging depend on recruitment of the elements of cellular adaptive immune response such as effector T cells, and can the recruitment of systemic immune cells ameliorate AD neuropathology? iv) How effective are the immune-system-based therapeutic approaches currently employed for the treatment of AD?
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vahram Haroutunian
- Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
16
|
Katsel P, Haroutunian V. Is Alzheimer disease a failure of mobilizing immune defense? Lessons from cognitively fit oldest-old. DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 31607776 PMCID: PMC6780355 DOI: 10.31887/dcns.2019.21.1/vharoutunian] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Multifaceted evidence supports the hypothesis that inflammatory-immune mechanisms contribute to Alzheimer disease (AD) neuropathology and genetic association of several immune specific genes (TREM2, CR1, and CD33) suggests that maladaptive immune responses may be pivotal drivers of AD pathogenesis. We reviewed microglia-related data from postmortem AD studies and examined supporting evidence from AD animal models to answer the following questions: i) What is the temporal sequence of immune activation in AD progression and what is its impact on cognition? ii) Are there discordant, “primed”, microglia responses in AD vs successful cognitive aging? iii) Does central nervous system (CNS) repair in aging depend on recruitment of the elements of cellular adaptive immune response such as effector T cells, and can the recruitment of systemic immune cells ameliorate AD neuropathology? iv) How effective are the immune-system-based therapeutic approaches currently employed for the treatment of AD?
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vahram Haroutunian
- Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
17
|
Parahippocampal gyrus expression of endothelial and insulin receptor signaling pathway genes is modulated by Alzheimer's disease and normalized by treatment with anti-diabetic agents. PLoS One 2018; 13:e0206547. [PMID: 30383799 PMCID: PMC6211704 DOI: 10.1371/journal.pone.0206547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
A large body of literature links risk of cognitive decline, mild cognitive impairment (MCI) and dementia with Type 2 Diabetes (T2D) or pre-diabetes. Accumulating evidence implicates a close relationship between the brain insulin receptor signaling pathway (IRSP) and the accumulation of amyloid beta and hyperphosphorylated and conformationally abnormal tau. We showed previously that the neuropathological features of Alzheimer's disease (AD were reduced in patients with diabetes who were treated with insulin and oral antidiabetic medications. To understand better the neurobiological substrates of T2D and T2D medications in AD, we examined IRSP and endothelial cell markers in the parahippocampal gyrus of controls (N = 30), of persons with AD (N = 19), and of persons with AD and T2D, who, in turn, had been treated with anti-diabetic drugs (insulin and or oral agents; N = 34). We studied the gene expression of selected members of the IRSP and selective endothelial cell markers in bulk postmortem tissue from the parahippocampal gyrus and in endothelial cell enriched isolates from the same brain region. The results indicated that there are considerable abnormalities and reductions in gene expression (bulk tissue homogenates and endothelial cell isolates) in the parahippocampal gyri of persons with AD that map directly to genes associated with the microvasculature and the IRSP. Our results also showed that the numbers of abnormally expressed microvasculature and IRSP associated genes in diabetic AD donors who had been treated with anti-diabetic agents were reduced significantly. These findings suggest that anti-diabetic treatments may reduce or normalize compromised microvascular and IRSP functions in AD.
Collapse
|
18
|
Gabin JM, Saltvedt I, Tambs K, Holmen J. The association of high sensitivity C-reactive protein and incident Alzheimer disease in patients 60 years and older: The HUNT study, Norway. IMMUNITY & AGEING 2018; 15:4. [PMID: 29387136 PMCID: PMC5776764 DOI: 10.1186/s12979-017-0106-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/28/2017] [Indexed: 01/20/2023]
Abstract
Background With ageing, long-standing inflammation can be destructive, contributing to development of several disorders, among these Alzheimer’s disease (AD). C-reactive protein (CRP) is a relatively stable peripheral inflammatory marker, but in previous studies the association between highly sensitive CRP (hsCRP) and AD have shown inconsistent results. This study examines the association between AD and hsCRP in blood samples taken up to 15 years prior to the diagnoses of 52 persons with AD amongst a total of 2150 persons ≥60 years of age. Results Data from Norway’s Nord-Trøndelag Health Study (HUNT 2) and the Health and Memory Study (HMS) were linked. The participants had an average age of 73 years, and diagnosed with AD up to 15 years [mean 8.0 (±3.9)] following hsCRP measurement. Logistic regression models showed an adverse association between hsCRP and AD in participants aged 60-70.5 (odds ratio: 2.37, 95% CI: 1.01-5.58). Conversely, in participants aged 70.6-94, there was an inverse association between hsCRP and AD (odds ratio: 0.39, 95% CI: 0.19-0.84). When applying multivariate models the findings were significant in individuals diagnosed 0.4-7 years after the hsCRP was measured; and attenuated when AD was diagnosed more than seven years following hsCRP measurement. Conclusions Our study is in line with previous studies indicating a shift in the association between hsCRP and AD by age: in adults (60-70.5 years) there is an adverse association, while in seniors (>70.6 years) there is an inverse association. If our findings can be replicated, a focus on why a more active peripheral immune response may have a protective role in individuals ≥70 years should be further examined.
Collapse
Affiliation(s)
- Jessica Mira Gabin
- 1HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Forskningsveien 2, 7600 Levanger, Norway
| | - Ingvild Saltvedt
- 2Department of Neuromedicine and Movement science, NTNU, the Faculty of Medicine and Health, Post Office Box 8905, 7491 Trondheim, Norway.,3Department of Geriatrics, St. Olav University Hospital, Post Office Box 3250, 7006 Trondheim, Norway
| | - Kristian Tambs
- 4Division of Mental Health, Norwegian Institute of Public Health, Post Office Box 4404, Nydalen, 0403 Oslo, Norway
| | - Jostein Holmen
- 1HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Forskningsveien 2, 7600 Levanger, Norway
| |
Collapse
|
19
|
Katsel P, Roussos P, Pletnikov M, Haroutunian V. Microvascular anomaly conditions in psychiatric disease. Schizophrenia - angiogenesis connection. Neurosci Biobehav Rev 2017; 77:327-339. [PMID: 28396239 PMCID: PMC5497758 DOI: 10.1016/j.neubiorev.2017.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/31/2022]
Abstract
Schizophrenia (SZ) is a severe mental disorder with unknown etiology and elusive neuropathological and neurobiological features have been a focus of many theoretical hypotheses and empirical studies. Current genetic and neurobiology information relevant to SZ implicates neuronal developmental and synaptic plasticity abnormalities, and neurotransmitter, microglial and oligodendrocytes dysfunction. Several recent theories have highlighted the neurovascular unit as a potential contributor to the pathophysiology of SZ. We explored the biological plausibility of a link between SZ and the neurovascular system by examining insights gained from genetic, neuroimaging and postmortem studies, which include gene expression and neuropathology analyses. We also reviewed information from animal models of cerebral angiogenesis in order to understand better the complex interplay between angiogenic and neurotrophic factors in development, vascular endothelium/blood brain barrier remodeling and maintenance, all of which contribute to sustaining adequate regional blood flow and safeguarding normal brain function. Microvascular and hemodynamic alterations in SZ highlight the importance of further research and reveal the neurovascular unit as a potential therapeutic target in SZ.
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Panos Roussos
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| | - Mikhail Pletnikov
- Departments of Psychiatry, Neuroscience, Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vahram Haroutunian
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
20
|
Katsel P, Roussos P, Pletnikov M, Haroutunian V. Microvascular anomaly conditions in psychiatric disease. Schizophrenia - angiogenesis connection. Neurosci Biobehav Rev 2017. [PMID: 28396239 DOI: 10.1016/j.neubiorev.2017.04.003)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Schizophrenia (SZ) is a severe mental disorder with unknown etiology and elusive neuropathological and neurobiological features have been a focus of many theoretical hypotheses and empirical studies. Current genetic and neurobiology information relevant to SZ implicates neuronal developmental and synaptic plasticity abnormalities, and neurotransmitter, microglial and oligodendrocytes dysfunction. Several recent theories have highlighted the neurovascular unit as a potential contributor to the pathophysiology of SZ. We explored the biological plausibility of a link between SZ and the neurovascular system by examining insights gained from genetic, neuroimaging and postmortem studies, which include gene expression and neuropathology analyses. We also reviewed information from animal models of cerebral angiogenesis in order to understand better the complex interplay between angiogenic and neurotrophic factors in development, vascular endothelium/blood brain barrier remodeling and maintenance, all of which contribute to sustaining adequate regional blood flow and safeguarding normal brain function. Microvascular and hemodynamic alterations in SZ highlight the importance of further research and reveal the neurovascular unit as a potential therapeutic target in SZ.
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Panos Roussos
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| | - Mikhail Pletnikov
- Departments of Psychiatry, Neuroscience, Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vahram Haroutunian
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
21
|
Lachen-Montes M, Zelaya MV, Segura V, Fernández-Irigoyen J, Santamaría E. Progressive modulation of the human olfactory bulb transcriptome during Alzheimer´s disease evolution: novel insights into the olfactory signaling across proteinopathies. Oncotarget 2017; 8:69663-69679. [PMID: 29050232 PMCID: PMC5642507 DOI: 10.18632/oncotarget.18193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/07/2017] [Indexed: 01/01/2023] Open
Abstract
Alzheimer´s disease (AD) is characterized by progressive dementia, initially presenting olfactory dysfunction. Despite the olfactory bulb (OB) is the first central structure of the olfactory pathway, we lack a complete molecular characterization of the transcriptional events that occurs in this olfactory area during AD progression. To address this gap in knowledge, we have assessed the genome-wide expression in postmortem OBs from subjects with varying degree of AD pathology. A stage-dependent deregulation of specific pathways was observed, revealing transmembrane transport, and neuroinflammation as part of the functional modules that are disrupted across AD grading. Potential drivers of neurodegeneration predicted by network-driven transcriptomics were monitored across different types of dementia, including progressive supranuclear palsy (PSP), mixed dementia, and frontotemporal lobar degeneration (FTLD). Epidermal growth factor receptor (EGFR) expression was significantly increased in the OB of AD and mixed dementia subjects. Moreover, a significant increment in the activation of signal transducer and activator of transcription 3 (STAT3) was exclusively detected in advanced AD stages, whereas total STAT3 levels were specifically overexpressed in mixed dementia. Furthermore, transcription factors deregulated in the OB of mixed dementia subjects such as cAMP Responsive Element Binding Protein 1 (CREB1) and AP-1 Transcription Factor Subunit (c-Jun) were not differentially modulated at olfactory level across AD grading. On the other hand, olfactory expression of this signal transducer panel was unchanged in PSP and FTLD subjects. Taken together, this study unveils cross-disease similarities and differences for specific signal transducers, providing mechanistic clues to the intriguing divergence of AD pathology across proteinopathies.
Collapse
Affiliation(s)
- Mercedes Lachen-Montes
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain.,IDISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María Victoria Zelaya
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain.,IDISNA, Navarra Institute for Health Research, Pamplona, Spain.,Pathological Anatomy Department, Navarra Hospital Complex, Pamplona, Spain
| | - Víctor Segura
- IDISNA, Navarra Institute for Health Research, Pamplona, Spain.,Bioinformatics Unit, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain.,IDISNA, Navarra Institute for Health Research, Pamplona, Spain.,Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain.,IDISNA, Navarra Institute for Health Research, Pamplona, Spain.,Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| |
Collapse
|
22
|
Wang M, Roussos P, McKenzie A, Zhou X, Kajiwara Y, Brennand KJ, De Luca GC, Crary JF, Casaccia P, Buxbaum JD, Ehrlich M, Gandy S, Goate A, Katsel P, Schadt E, Haroutunian V, Zhang B. Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer's disease. Genome Med 2016; 8:104. [PMID: 27799057 PMCID: PMC5088659 DOI: 10.1186/s13073-016-0355-3] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/14/2016] [Indexed: 11/25/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the most common form of dementia, characterized by progressive cognitive impairment and neurodegeneration. However, despite extensive clinical and genomic studies, the molecular basis of AD development and progression remains elusive. Methods To elucidate molecular systems associated with AD, we developed a large scale gene expression dataset from 1053 postmortem brain samples across 19 cortical regions of 125 individuals with a severity spectrum of dementia and neuropathology of AD. We excluded brain specimens that evidenced neuropathology other than that characteristic of AD. For the first time, we performed a pan-cortical brain region genomic analysis, characterizing the gene expression changes associated with a measure of dementia severity and multiple measures of the severity of neuropathological lesions associated with AD (neuritic plaques and neurofibrillary tangles) and constructing region-specific co-expression networks. We rank-ordered 44,692 gene probesets, 1558 co-expressed gene modules and 19 brain regions based upon their association with the disease traits. Results The neurobiological pathways identified through these analyses included actin cytoskeleton, axon guidance, and nervous system development. Using public human brain single-cell RNA-sequencing data, we computed brain cell type-specific marker genes for human and determined that many of the abnormally expressed gene signatures and network modules were specific to oligodendrocytes, astrocytes, and neurons. Analysis based on disease severity suggested that: many of the gene expression changes, including those of oligodendrocytes, occurred early in the progression of disease, making them potential translational/treatment development targets and unlikely to be mere bystander result of degeneration; several modules were closely linked to cognitive compromise with lesser association with traditional measures of neuropathology. The brain regional analyses identified temporal lobe gyri as sites associated with the greatest and earliest gene expression abnormalities. Conclusions This transcriptomic network analysis of 19 brain regions provides a comprehensive assessment of the critical molecular pathways associated with AD pathology and offers new insights into molecular mechanisms underlying selective regional vulnerability to AD at different stages of the progression of cognitive compromise and development of the canonical neuropathological lesions of AD. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0355-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, New York, NY, 10029, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, New York, NY, 10029, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Psychiatry, JJ Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Andrew McKenzie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, New York, NY, 10029, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, New York, NY, 10029, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Yuji Kajiwara
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kristen J Brennand
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Gabriele C De Luca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - John F Crary
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Patrizia Casaccia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, New York, NY, 10029, USA.,Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Joseph D Buxbaum
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Michelle Ehrlich
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA.,Departments of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
| | - Sam Gandy
- Psychiatry, JJ Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA.,Departments of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA.,The Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
| | - Alison Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, New York, NY, 10029, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Departments of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA.,The Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA
| | - Pavel Katsel
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Psychiatry, JJ Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, New York, NY, 10029, USA.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Vahram Haroutunian
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Psychiatry, JJ Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA. .,Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,The Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA.
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1470 Madison Avenue, New York, NY, 10029, USA. .,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
23
|
Kajiwara Y, McKenzie A, Dorr N, Gama Sosa MA, Elder G, Schmeidler J, Dickstein DL, Bozdagi O, Zhang B, Buxbaum JD. The human-specific CASP4 gene product contributes to Alzheimer-related synaptic and behavioural deficits. Hum Mol Genet 2016; 25:4315-4327. [PMID: 27516385 DOI: 10.1093/hmg/ddw265] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/09/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022] Open
Abstract
Recent studies have indicated that innate immune signalling molecules are involved in late-onset Alzheimer's disease (LOAD) risk. Amyloid beta (Aβ) accumulates in AD brain, and has been proposed to act as a trigger of innate immune responses. Caspase-4 is an important part of the innate immune response. We recently characterized transgenic mice carrying human CASP4, and observed that the mice manifested profound innate immune responses to lipopolysaccharide (LPS). Since these inflammatory processes are important in the aetiology of AD, we have now analysed the correlation of expression of caspase-4 in human brain with AD risk genes, and studied caspase-4 effects on AD-related phenotypes in APPswe/PS1deltaE9 (APP/PS1) mice. We observed that the expression of caspase-4 was strongly correlated with AD risk genes including TYROBP, TREM2, CR1, PSEN1, MS4A4A and MS4A6A in LOAD brains. Caspase-4 expression was upregulated in CASP4/APP/PS1 mice in a region-specific manner, including hippocampus and prefrontal cortex. In APP/PS1 mice, caspase-4 expression led to impairments in the reversal phase of a Barnes maze task and in hippocampal synaptic plasticity, without affecting soluble or aggregated Aβ levels. Caspase-4 was expressed predominantly in microglial cells, and in the presence of CASP4, more microglia were clustered around amyloid plaques. Furthermore, our data indicated that caspase-4 modulates microglial cells in a manner that increases proinflammatory processes. We propose that microglial caspase-4 expression contributes to the cognitive impairments in AD, and that further study of caspase-4 will enhance our understanding of AD pathogenesis and may lead to novel therapeutic targets in AD.
Collapse
Affiliation(s)
| | - Andrew McKenzie
- Department of Genetics and Genomic Sciences.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | | | | | - Gregory Elder
- Department of Psychiatry.,Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA.,Department of Neurology
| | | | - Dara L Dickstein
- Department of Neuroscience.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Bin Zhang
- Department of Genetics and Genomic Sciences.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Joseph D Buxbaum
- Department of Psychiatry .,Department of Genetics and Genomic Sciences.,Department of Neuroscience.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
24
|
Lazarczyk MJ, Kemmler JE, Eyford BA, Short JA, Varghese M, Sowa A, Dickstein DR, Yuk FJ, Puri R, Biron KE, Leist M, Jefferies WA, Dickstein DL. Major Histocompatibility Complex class I proteins are critical for maintaining neuronal structural complexity in the aging brain. Sci Rep 2016; 6:26199. [PMID: 27229916 PMCID: PMC4882527 DOI: 10.1038/srep26199] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/27/2016] [Indexed: 12/19/2022] Open
Abstract
Major histocompatibility complex class I (MHCI) proteins have been implicated in neuronal function through the modulation of neuritogenesis, synaptogenesis, synaptic plasticity, and memory consolidation during development. However, the involvement of MHCI in the aged brain is unclear. Here we demonstrate that MHCI deficiency results in significant dendritic atrophy along with an increase in thin dendritic spines and a reduction in stubby spines in the hippocampus of aged (12 month old) mice. Ultrastructural analyses revealed a decrease in spine head diameter and post synaptic density (PSD) area, as well as an increase in overall synapse density, and non-perforated, small spines. Interestingly, we found that the changes in synapse density and morphology appear relatively late (after the age of 6 months). Finally, we found a significant age dependent increase in the levels of the glutamate receptor, GluN2B in aged MHCI knockout mice, with no change in GluA2/3, VGluT1, PSD95 or synaptophysin. These results indicate that MHCI may be also be involved in maintaining brain integrity at post-developmental stages notably in the modulation of neuronal and spine morphology and synaptic function during non-pathological aging which could have significant implications for cognitive function.
Collapse
Affiliation(s)
- Maciej J Lazarczyk
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Mental Health and Psychiatry, Division of General Psychiatry, University Hospitals of Geneva, Faculty of Medicine of the University of Geneva, Geneva, Switzerland
| | - Julia E Kemmler
- University of Konstanz, Doerenkamp-Zbinden, Universitätsstrasse. 10, 78457 Konstanz, Germany
| | - Brett A Eyford
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Jennifer A Short
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Merina Varghese
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Allison Sowa
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel R Dickstein
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Frank J Yuk
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rishi Puri
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kaan E Biron
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada.,Department of Microbiology and Immunology, University of British Columbia, 1365-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Marcel Leist
- University of Konstanz, Doerenkamp-Zbinden, Universitätsstrasse. 10, 78457 Konstanz, Germany
| | - Wilfred A Jefferies
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada.,Department of Microbiology and Immunology, University of British Columbia, 1365-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.,Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.,Department of Zoology, University of British Columbia, 2370-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada.,Department of Medical Genetics, 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Dara L Dickstein
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
25
|
Roussos P, Katsel P, Fam P, Tan W, Purohit DP, Haroutunian V. The triggering receptor expressed on myeloid cells 2 (TREM2) is associated with enhanced inflammation, neuropathological lesions and increased risk for Alzheimer's dementia. Alzheimers Dement 2015; 11:1163-70. [PMID: 25499537 PMCID: PMC4461564 DOI: 10.1016/j.jalz.2014.10.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/25/2014] [Accepted: 10/27/2014] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The objective of this study was to elucidate the relationship between the triggering receptor expressed on myeloid cells 2 (TREM2) risk variant, neuropathological lesions, alterations in gene and protein expression, and the severity of neuroinflammation. METHODS The genetic association study of the R47 H TREM2 variant with Alzheimer's disease (AD), neuropathology, and changes in TREM2 and TYRO protein tyrosine kinase-binding protein (TYROBP) gene and protein expression, and neuroinflammatory markers. RESULTS The TREM2 variant is associated with: (i) AD (odds ratio: 4.76; P = .014); (ii) increased density of amyloid plaques and neurofibrillary tangles in multiple brain regions; (iii) increased TREM2 (P = .041) and TYROBP (P = .006) gene expression; (iv) decreased TREM2 protein levels (P = .016); and (v) upregulation of proinflammatory cytokines (regulated on activation, normal T cell expressed and secreted [RANTES] and interferon [IFN] gamma) (P = .003) and nominal downregulation of protective markers (α2-macroglobulin, interleukin 4 or IL-4, and ApoA1) (P = .018). DISCUSSION These findings link the TREM2 missense mutation with specific molecular abnormalities and increases in neuropathological lesions in the human brain.
Collapse
Affiliation(s)
- Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Pavel Katsel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Fam
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weilun Tan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dushyant P Purohit
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
26
|
Talwar P, Sinha J, Grover S, Rawat C, Kushwaha S, Agarwal R, Taneja V, Kukreti R. Dissecting Complex and Multifactorial Nature of Alzheimer's Disease Pathogenesis: a Clinical, Genomic, and Systems Biology Perspective. Mol Neurobiol 2015; 53:4833-64. [PMID: 26351077 DOI: 10.1007/s12035-015-9390-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/11/2015] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by loss of memory and other cognitive functions. AD can be classified into familial AD (FAD) and sporadic AD (SAD) based on heritability and into early onset AD (EOAD) and late onset AD (LOAD) based on age of onset. LOAD cases are more prevalent with genetically complex architecture. In spite of significant research focused on understanding the etiological mechanisms, search for diagnostic biomarker(s) and disease-modifying therapy is still on. In this article, we aim to comprehensively review AD literature on established etiological mechanisms including role of beta-amyloid and apolipoprotein E (APOE) along with promising newer etiological factors such as epigenetic modifications that have been associated with AD suggesting its multifactorial nature. As genomic studies have recently played a significant role in elucidating AD pathophysiology, a systematic review of findings from genome-wide linkage (GWL), genome-wide association (GWA), genome-wide expression (GWE), and epigenome-wide association studies (EWAS) was conducted. The availability of multi-dimensional genomic data has further coincided with the advent of computational and network biology approaches in recent years. Our review highlights the importance of integrative approaches involving genomics and systems biology perspective in elucidating AD pathophysiology. The promising newer approaches may provide reliable means of early and more specific diagnosis and help identify therapeutic interventions for LOAD.
Collapse
Affiliation(s)
- Puneet Talwar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi, India.,Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India
| | - Juhi Sinha
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India
| | - Sandeep Grover
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India.,Department of Paediatrics, Division of Pneumonology-Immunology, Charité University Medical Centre, Berlin, Germany
| | - Chitra Rawat
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi, India.,Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India
| | - Suman Kushwaha
- Institute of Human Behaviour and Allied Sciences (IHBAS), Delhi, India
| | - Rachna Agarwal
- Institute of Human Behaviour and Allied Sciences (IHBAS), Delhi, India
| | - Vibha Taneja
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Ritushree Kukreti
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi, India. .,Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India.
| |
Collapse
|
27
|
Zhang ZG, Li Y, Ng CT, Song YQ. Inflammation in Alzheimer's Disease and Molecular Genetics: Recent Update. Arch Immunol Ther Exp (Warsz) 2015; 63:333-44. [PMID: 26232392 DOI: 10.1007/s00005-015-0351-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/03/2015] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a complex age-related neurodegenerative disorder of the central nervous system. Since the first description of AD in 1907, many hypotheses have been established to explain its causes. The inflammation theory is one of them. Pathological and biochemical studies of brains from AD individuals have provided solid evidence of the activation of inflammatory pathways. Furthermore, people with long-term medication of anti-inflammatory drugs have shown a reduced risk to develop the disease. After three decades of genetic study in AD, dozens of loci harboring genetic variants influencing inflammatory pathways in AD patients has been identified through genome-wide association studies (GWAS). The most well-known GWAS risk factor that is responsible for immune response and inflammation in AD development should be APOE ε4 allele. However, a growing number of other GWAS risk AD candidate genes in inflammation have recently been discovered. In the present study, we try to review the inflammation in AD and immunity-associated GWAS risk genes like HLA-DRB5/DRB1, INPP5D, MEF2C, CR1, CLU and TREM2.
Collapse
Affiliation(s)
- Zhi-Gang Zhang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | - Yan Li
- Energy Research Institute of Shandong Academy of Sciences, Jinan, Shandong, People's Republic of China
| | - Cheung Toa Ng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China. .,State Key Laboratory for Cognitive and Brain Sciences, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China.
| |
Collapse
|
28
|
Steardo L, Bronzuoli MR, Iacomino A, Esposito G, Steardo L, Scuderi C. Does neuroinflammation turn on the flame in Alzheimer's disease? Focus on astrocytes. Front Neurosci 2015; 9:259. [PMID: 26283900 PMCID: PMC4518161 DOI: 10.3389/fnins.2015.00259] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/10/2015] [Indexed: 12/18/2022] Open
Abstract
Data from animal models and Alzheimer's disease (AD) subjects provide clear evidence for an activation of inflammatory pathways during the pathogenetic course of such illness. Biochemical and neuropathological studies highlighted an important cause/effect relationship between inflammation and AD progression, revealing a wide range of genetic, cellular, and molecular changes associated with the pathology. In this context, glial cells have been proved to exert a crucial role. These cells, in fact, undergo important morphological and functional changes and are now considered to be involved in the onset and progression of AD. In particular, astrocytes respond quickly to pathology with changes that have been increasingly recognized as a continuum, with potentially beneficial and/or negative consequences. Although it is now clear that activated astrocytes trigger the neuroinflammatory process, however, the precise mechanisms have not been completely elucidated. Neuroinflammation is certainly a multi-faceted and complex phenomenon and, especially in the early stages, exerts a reparative intent. However, for reasons not yet all well known, this process goes beyond the physiologic control and contributes to the exacerbation of the damage. Here we scrutinize some evidence supporting the role of astrocytes in the neuroinflammatory process and the possibility that these cells could be considered a promising target for future AD therapies.
Collapse
Affiliation(s)
- Luca Steardo
- Department of Psychiatry, University of Naples SUNNaples, Italy
| | - Maria R. Bronzuoli
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of RomeRome, Italy
| | - Aniello Iacomino
- Faculty of Psychology, University of Rome “G. Marconi”Rome, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of RomeRome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of RomeRome, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of RomeRome, Italy
| |
Collapse
|
29
|
Zhao W, Wang J, Varghese M, Ho L, Mazzola P, Haroutunian V, Katsel PL, Gibson GE, Levine S, Dubner L, Pasinetti GM. Impaired mitochondrial energy metabolism as a novel risk factor for selective onset and progression of dementia in oldest-old subjects. Neuropsychiatr Dis Treat 2015; 11:565-74. [PMID: 25784811 PMCID: PMC4356684 DOI: 10.2147/ndt.s74898] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recent evidence shows that Alzheimer disease (AD) dementia in the oldest-old subjects was associated with significantly less amyloid plaque and fibrillary tangle neuropathology than in the young-old population. In this study, using quantitative (q) PCR studies, we validated genome-wide microarray RNA studies previously conducted by our research group. We found selective downregulation of mitochondrial energy metabolism genes in the brains of oldest-old, but not young-old, AD dementia cases, despite a significant lack of classic AD neuropathology features. We report a significant decrease of genes associated with mitochondrial pyruvate metabolism, the tricarboxylic acid cycle (TCA), and glycolytic pathways. Moreover, significantly higher levels of nitrotyrosylated (3-NT)-proteins and 4-hydroxy-2-nonenal (HNE) adducts, which are indexes of cellular protein oxidation and lipid peroxidation, respectively, were detected in the brains of oldest-old subjects at high risk of developing AD, possibly suggesting compensatory mechanisms. These findings support the hypothesis that although oldest-old AD subjects, characterized by significantly lower AD neuropathology than young-old AD subjects, have brain mitochondrial metabolism impairment, which we hypothesize may selectively contribute to the development of dementia. Outcomes from this study provide novel insights into the molecular mechanisms underlying clinical dementia in young-old and oldest-old AD subjects and provide novel strategies for AD prevention and treatment in oldest-old dementia cases.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA ; Geriatric Research Education Clinical Center - James J Peter VA Medical Center, Bronx, NY, USA
| | - Jun Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA ; Geriatric Research Education Clinical Center - James J Peter VA Medical Center, Bronx, NY, USA
| | - Merina Varghese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lap Ho
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA ; Geriatric Research Education Clinical Center - James J Peter VA Medical Center, Bronx, NY, USA
| | - Paolo Mazzola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA ; Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - Vahram Haroutunian
- Geriatric Research Education Clinical Center - James J Peter VA Medical Center, Bronx, NY, USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pavel L Katsel
- Geriatric Research Education Clinical Center - James J Peter VA Medical Center, Bronx, NY, USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gary E Gibson
- Department of Neurology and Neuroscience, Weill Cornell Medical College, Burke Medical Research Institute, New York, NY, USA
| | - Samara Levine
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren Dubner
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA ; Geriatric Research Education Clinical Center - James J Peter VA Medical Center, Bronx, NY, USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA ; Department of Geriatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
30
|
Wichmann MA, Cruickshanks KJ, Carlsson CM, Chappell R, Fischer ME, Klein BEK, Klein R, Tsai MY, Schubert CR. Long-term systemic inflammation and cognitive impairment in a population-based cohort. J Am Geriatr Soc 2014; 62:1683-91. [PMID: 25123210 DOI: 10.1111/jgs.12994] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Evidence suggests inflammation is associated with cognitive impairment, but previous epidemiological studies have reported conflicting results. DESIGN Prospective population-based cohort. SETTING Epidemiology of Hearing Loss Study participants. PARTICIPANTS Individuals without cognitive impairment in 1998-2000 (N = 2,422; 1,947 with necessary data). MEASUREMENTS Cognitive impairment (Mini-Mental State Examination score <24 or diagnosis of dementia) was ascertained in 1998-2000, 2003-2005, and 2009-2010. Serum C-reactive protein (CRP) and interleukin-6 (IL-6) were measured in 1988-1990, 1998-2000, and 2009-2010; tumor necrosis factor-alpha was measured from 1998-2000. RESULTS Participants with high CRP in 1988-1990 and 1998-2000 had lower risk of cognitive impairment than those with low CRP at both time points (hazard ratio (HR) = 0.46, 95% confidence interval (CI) = 0.26-0.80). Risk did not differ according to 10-year IL-6 profile or baseline inflammation category in the whole cohort. In sensitivity analyses restricted to statin nonusers, those with high IL-6 at both times had greater risk of cognitive impairment than those with low IL-6 at both times (HR = 3.35, 95% CI = 1.09-10.30). In secondary analyses, each doubling of IL-6 change over 20 years was associated with greater odds of cognitive impairment in 2009-2010 in the whole cohort (odds ratio (OR) = 1.40, 95% CI = 1.04-1.89), whereas a doubling of CRP change over 20 years was associated with cognitive impairment only in statin nonusers (OR = 1.32, 95% CI = 1.06-1.65). CONCLUSION With data collected over 20 years, this study demonstrated greater likelihood of cognitive impairment in individuals with repeated high or increasing IL-6. The inconsistent CRP findings may reflect effects of statin medications, survival effects, or adverse effects associated with chronically low CRP. Further studies of long-term inflammation and cognitive impairment are needed.
Collapse
Affiliation(s)
- Margarete A Wichmann
- Department of Population Health Sciences, University of Wisconsin, Madison, Wisconsin; Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin, Madison, Wisconsin; Institute on Aging, University of Wisconsin, Madison, Wisconsin
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Humphries C, Kohli MA. Rare Variants and Transcriptomics in Alzheimer disease. CURRENT GENETIC MEDICINE REPORTS 2014; 2:75-84. [PMID: 25045597 DOI: 10.1007/s40142-014-0035-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer disease (AD) is the most common dementia in the elderly, still without effective treatment. Early-onset AD (EOAD) is caused by mutations in the genes APP, PSEN1 and PSEN2. Genome-wide association studies have identified >20 late-onset AD (LOAD) susceptibility genes with common variants of small risk, with the exception of APOE. We review rare susceptibility variants in LOAD with larger effects that have been recently identified in the EOAD gene APP and the newly discovered AD genes TREM2 and PLD3. Human genetic studies now consistently support the amyloid hypothesis of AD for both EOAD and LOAD. Moreover, they identified biological processes that overlap with human transcriptomics studies in AD across different tissues, such as inflammation, cytoskeletal organization, synaptic functions, etc. Transcriptomic profiles of pre-symptomatic AD-associated variant carriers already reflect specific molecular mechanisms reminiscent to those of AD patients. This might provide an avenue for personalized medicine.
Collapse
Affiliation(s)
- Crystal Humphries
- Department of Human Genetics, John T. Macdonald Foundation, University of Miami, Miller School of Medicine, 1501 NW 10th Avenue (BRB-531), Miami, FL 33136, USA ; John P. Hussman Institute for Human Genomics (HIHG), University of Miami, Miller School of Medicine, 1501 NW 10th Avenue (BRB-531), Miami, FL 33136, USA
| | - Martin A Kohli
- John P. Hussman Institute for Human Genomics (HIHG), University of Miami, Miller School of Medicine, 1501 NW 10th Avenue (BRB-531), Miami, FL 33136, USA
| |
Collapse
|
32
|
Akbarian S, Beeri MS, Haroutunian V. Epigenetic determinants of healthy and diseased brain aging and cognition. JAMA Neurol 2013; 70:711-8. [PMID: 23571692 DOI: 10.1001/jamaneurol.2013.1459] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A better understanding of normal and diseased brain aging and cognition will have a significant public health impact, given that the oldest-old persons older than 85 years of age represent the fastest-growing segment in the population in developed countries, with more than 30 million new cases of dementia predicted to occur worldwide each year by 2040. Dysregulation of gene expression and, more generally, genome organization and function are thought to contribute to age-related declines in cognition. Remarkably, nearly all neuronal nuclei that reside in an aged brain had permanently exited from the cell cycle during prenatal development, and DNA methylation and histone modifications and other molecular constituents of the epigenome are likely to play a critical role in the maintenance of neuronal health and function throughout the entire lifespan. Here, we provide an overview of age-related changes in the brain's chromatin structures, highlight potential epigenetic drug targets for cognitive decline and age-related neurodegenerative disease, and discuss opportunities and challenges when studying epigenetic biomarkers in aging research.
Collapse
Affiliation(s)
- Schahram Akbarian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | |
Collapse
|
33
|
Cell cycle checkpoint abnormalities during dementia: A plausible association with the loss of protection against oxidative stress in Alzheimer's disease [corrected]. PLoS One 2013; 8:e68361. [PMID: 23861893 PMCID: PMC3702571 DOI: 10.1371/journal.pone.0068361] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/03/2013] [Indexed: 12/26/2022] Open
Abstract
Background Increasing evidence suggests an association between neuronal cell cycle (CCL) events and the processes that underlie neurodegeneration in Alzheimer’s disease (AD). Elevated levels of oxidative stress markers and mitochondrial dysfunction are also among early events in AD. Recent studies have reported the role of CCL checkpoint proteins and tumor suppressors, such as ATM and p53 in the control of glycolysis and oxidative metabolism in cancer, but their involvement in AD remains uncertain. Methods and Findings In this postmortem study, we measured gene expression levels of eight CCL checkpoint proteins in the superior temporal cortex (STC) of persons with varying severities of AD dementia and compare them to those of cognitively normal controls. To assess whether the CCL changes associated with cognitive impairment in AD are specific to dementia, gene expression of the same proteins was also measured in STC of persons with schizophrenia (SZ), which is also characterized by mitochondrial dysfunction. The expression of CCL-checkpoint and DNA damage response genes: MDM4, ATM and ATR was strongly upregulated and associated with progression of dementia (cognitive dementia rating, CDR), appearing as early as questionable or mild dementia (CDRs 0.5–1). In addition to gene expression changes, the downstream target of ATM-p53 signaling - TIGAR, a p53-inducible protein, the activation of which can regulate energy metabolism and protect against oxidative stress was progressively decreased as severity of dementia evolved, but it was unaffected in subjects with SZ. In contrast to AD, different CCL checkpoint proteins, which include p53, CHEK1 and BRCA1 were significantly downregulated in SZ. Conclusions These results support the activation of an ATM signaling and DNA damage response network during the progression of AD dementia, while the progressive decrease in the levels of TIGAR suggests loss of protection initiated by ATM-p53 signaling against intensifying oxidative stress in AD.
Collapse
|
34
|
Gardner RC, Valcour V, Yaffe K. Dementia in the oldest old: a multi-factorial and growing public health issue. ALZHEIMERS RESEARCH & THERAPY 2013; 5:27. [PMID: 23809176 PMCID: PMC3706944 DOI: 10.1186/alzrt181] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The population of oldest old, or people aged 85 and older, is growing rapidly. A better understanding of dementia in this population is thus of increasing national and global importance. In this review, we describe the major epidemiological studies, prevalence, clinical presentation, neuropathological and imaging features, risk factors, and treatment of dementia in the oldest old. Prevalence estimates for dementia among those aged 85+ ranges from 18 to 38%. The most common clinical syndromes are Alzheimer's dementia, vascular dementia, and mixed dementia from multiple etiologies. The rate of progression appears to be slower than in the younger old. Single neuropathological entities such as Alzheimer's dementia and Lewy body pathology appear to have declining relevance to cognitive decline, while mixed pathology with Alzheimer's disease, vascular disease (especially cortical microinfarcts), and hippocampal sclerosis appear to have increasing relevance. Neuroimaging data are sparse. Risk factors for dementia in the oldest old include a low level of education, poor mid-life general health, low level of physical activity, depression, and delirium, whereas apolipoprotein E genotype, late-life hypertension, hyperlipidemia, and elevated peripheral inflammatory markers appear to have less relevance. Treatment approaches require further study, but the oldest old may be more prone to negative side effects compared with younger patients and targeted therapies may be less efficacious since single pathologies are less frequent. We also highlight the limitations and challenges of research in this area, including the difficulty of defining functional decline, a necessary component for a dementia diagnosis, the lack of normative neuropsychological data, and other shortcomings inherent in existing diagnostic criteria. In summary, our understanding of dementia in the oldest old has advanced dramatically in recent years, but more research is needed, particularly among varied racial, ethnic, and socioeconomic groups, and with respect to biomarkers such as neuroimaging, modifiable risk factors, and therapy.
Collapse
Affiliation(s)
- Raquel C Gardner
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane - Box 1207, San Francisco, CA 94158, USA
| | - Victor Valcour
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane - Box 1207, San Francisco, CA 94158, USA ; Division of Geriatric Medicine, Department of Medicine, University of California, San Francisco, 675 Nelson Rising Lane - Box 1207, San Francisco, CA 94158, USA
| | - Kristine Yaffe
- Department of Psychiatry, Neurology, Epidemiology and Biostatistics, School of Medicine, University of California, 4150 Clement Street - Box 181, San Francisco, CA 94121, USA ; Veterans Affairs Medical Center, 4150 Clement Street - Box 181, San Francisco, CA 94121, USA
| |
Collapse
|
35
|
Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2013; 2:a006346. [PMID: 22315714 DOI: 10.1101/cshperspect.a006346] [Citation(s) in RCA: 695] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biochemical and neuropathological studies of brains from individuals with Alzheimer disease (AD) provide clear evidence for an activation of inflammatory pathways, and long-term use of anti-inflammatory drugs is linked with reduced risk to develop the disease. As cause and effect relationships between inflammation and AD are being worked out, there is a realization that some components of this complex molecular and cellular machinery are most likely promoting pathological processes leading to AD, whereas other components serve to do the opposite. The challenge will be to find ways of fine tuning inflammation to delay, prevent, or treat AD.
Collapse
Affiliation(s)
- Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305-5235, USA; Geriatric Research Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | |
Collapse
|
36
|
Winkler JM, Fox HS. Transcriptome meta-analysis reveals a central role for sex steroids in the degeneration of hippocampal neurons in Alzheimer's disease. BMC SYSTEMS BIOLOGY 2013; 7:51. [PMID: 23803348 PMCID: PMC3702487 DOI: 10.1186/1752-0509-7-51] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 06/19/2013] [Indexed: 11/12/2022]
Abstract
Background Alzheimer’s disease is the most prevalent form of dementia. While a number of transcriptomic studies have been performed on the brains of Alzheimer’s specimens, no clear picture has emerged on the basis of neuronal transcriptional alterations linked to the disease. Therefore we performed a meta-analysis of studies comparing hippocampal neurons in Alzheimer’s disease to controls. Results Homeostatic processes, encompassing control of gene expression, apoptosis, and protein synthesis, were identified as disrupted during Alzheimer’s disease. Focusing on the genes carrying out these functions, a protein-protein interaction network was produced for graph theory and cluster exploration. This approach identified the androgen and estrogen receptors as key components and regulators of the disrupted homeostatic processes. Conclusions Our systems biology approach was able to identify the importance of the androgen and estrogen receptors in not only homeostatic cellular processes but also the role of other highly central genes in Alzheimer’s neuronal dysfunction. This is important due to the controversies and current work concerning hormone replacement therapy in postmenopausal women, and possibly men, as preventative approaches to ward off this neurodegenerative disorder.
Collapse
Affiliation(s)
- Jessica M Winkler
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | |
Collapse
|
37
|
Bilkei-Gorzo A. The endocannabinoid system in normal and pathological brain ageing. Philos Trans R Soc Lond B Biol Sci 2013; 367:3326-41. [PMID: 23108550 DOI: 10.1098/rstb.2011.0388] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensively studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective effects and regulating glial responses. This review centres around this less-studied area, focusing on the cellular and molecular mechanisms underlying the protective effect of the cannabinoid system in brain ageing. The progression of ageing is largely determined by the balance between detrimental, pro-ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators of mitochondrial activity, as anti-oxidants and as modulators of clearance processes protect neurons on the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the progression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed by cannabinoids, suggesting that they may also influence the ageing process on the system level. In good agreement with the hypothesized beneficial role of cannabinoid system activity against brain ageing, it was shown that animals lacking CB1 receptors show early onset of learning deficits associated with age-related histological and molecular changes. In preclinical models of neurodegenerative disorders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as therapeutic tools is either inconclusive or still missing.
Collapse
|
38
|
Gandy S, Haroutunian V, DeKosky ST, Sano M, Schadt EE. CR1 and the "vanishing amyloid" hypothesis of Alzheimer's disease. Biol Psychiatry 2013; 73:393-5. [PMID: 23399469 PMCID: PMC3600375 DOI: 10.1016/j.biopsych.2013.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 01/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Sam Gandy
- Department of Psychiatry and Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
| | | | | | | | | |
Collapse
|
39
|
Antonell A, Lladó A, Altirriba J, Botta-Orfila T, Balasa M, Fernández M, Ferrer I, Sánchez-Valle R, Molinuevo JL. A preliminary study of the whole-genome expression profile of sporadic and monogenic early-onset Alzheimer's disease. Neurobiol Aging 2013; 34:1772-8. [PMID: 23369545 DOI: 10.1016/j.neurobiolaging.2012.12.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/26/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative dementia. Approximately 10% of cases present at an age of onset before 65 years old, which in turn can be monogenic familial AD (FAD) or sporadic early-onset AD (sEOAD). Mutations in PSEN1, PSEN2, and APP genes have been linked with FAD. The aim of our study is to describe the brain whole-genome RNA expression profile of the posterior cingulate area in sEOAD and FAD caused by PSEN1 mutations (FAD-PSEN1). Fourteen patients (7 sEOAD and 7 FAD-PSEN1) and 7 neurologically healthy control subjects were selected and whole-genome expression was measured using Affymetrix Human Gene 1.1 microarrays. We identified statistically significant expression changes in sEOAD and FAD-PSEN1 brains with respect to control subjects (3183 and 3350 differentially expressed genes [DEG] respectively, false discovery rate-corrected p < 0.05). Of them, 1916 DEG were common between the 2 comparisons. We did not identify DEG between sEOAD and FAD-PSEN1. Microarray data were validated through real-time quantitative polymerase chain reaction. In silico analysis of DEG revealed an alteration in biological pathways related to intracellular signaling pathways (particularly calcium signaling), neuroactive ligand-receptor interactions, axon guidance, and long-term potentiation in both groups of patients. In conclusion, the altered biological final pathways in sEOAD and FAD-PSEN1 are mainly related with cell signaling cascades, synaptic plasticity, and learning and memory processes. We hypothesize that these 2 groups of early-onset AD with distinct etiologies and likely different could present a neurodegenerative process with potential different pathways that might converge in a common and similar final stage of the disease.
Collapse
Affiliation(s)
- Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nabar NR, Yuan F, Lin X, Wang L, Bai G, Mayl J, Li Y, Zhou SF, Wang J, Cai J, Cao C. Cell therapy: a safe and efficacious therapeutic treatment for Alzheimer's disease in APP+PS1 mice. PLoS One 2012; 7:e49468. [PMID: 23226497 PMCID: PMC3513317 DOI: 10.1371/journal.pone.0049468] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/09/2012] [Indexed: 01/10/2023] Open
Abstract
Previously, our lab was the first to report the use of antigen-sensitized dendritic cells as a vaccine against Alzheimer's disease (AD). In preparation of this vaccine, we sensitized the isolated dendritic cells ex vivo with Aβ peptide, and administered these sensitized dendritic cells as a therapeutic agent. This form of cell therapy has had success in preventing and/or slowing the rate of cognitive decline when administered prior to the appearance of Aβ plaques in PDAPP mice, but has not been tested in 2 × Tg models. Herein, we test the efficacy and safety of this vaccine in halting and reversing Alzheimer's pathology in 9-month-old APP + PS1 mice. The results showed that administration of this vaccine elicits a long-lasting antibody titer, which correlated well with a reduction of Aβ burden upon histological analysis. Cognitive function in transgenic responders to the vaccine was rescued to levels similar to those found in non-transgenic mice, indicating that the vaccine is capable of providing therapeutic benefit in APP+PS1 mice when administered after the onset of AD pathology. The vaccine also shows indications of circumventing past safety problems observed in AD immunotherapy, as Th1 pro-inflammatory cytokines were not elevated after long-term vaccine administration. Moreover, microhemorrhaging and T-cell infiltration into the brain are not observed in any of the treated subjects. All in all, this vaccine has many advantages over contemporary vaccines against Alzheimer's disease, and may lead to a viable treatment for the disease in the future.
Collapse
Affiliation(s)
- Neel R. Nabar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| | - Fang Yuan
- Chinese People Liberty Army General Hospital, Beijing, China
- Third Military Medical University, Chongqing, China
| | - Xiaoyang Lin
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| | - Li Wang
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| | - Ge Bai
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Jonathan Mayl
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| | - Yaqiong Li
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
| | | | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
41
|
Silverman JM, Schmeidler J, Beeri MS, Rosendorff C, Sano M, Grossman HT, Carrión-Baralt JR, Bespalova IN, West R, Haroutunian V. C-reactive protein and familial risk for dementia: a phenotype for successful cognitive aging. Neurology 2012; 79:1116-23. [PMID: 22895578 DOI: 10.1212/wnl.0b013e3182698c89] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Identifying phenotypes for successful cognitive aging, intact cognition into late-old age (>age 75), can help identify genes and neurobiological systems that may lead to interventions against and prevention of late-life cognitive impairment. The association of C-reactive protein (CRP) with cognitive impairment and dementia, observed primarily in young-elderly samples, appears diminished or reversed in late-old age (75+ years). A family history study determined if high CRP levels in late-old aged cognitively intact probands are associated with a reduced risk of dementia in their first-degree family members, suggesting a familial successful cognitive aging phenotype. METHODS The primary sample was 1,329 parents and siblings of 277 cognitively intact male veteran probands at least 75 years old. The replication sample was 202 relatives of 51 cognitively intact community-ascertained probands at least 85 years old. Relatives were assessed for dementia by proband informant interview. Their hazard ratio (HR) for dementia as a function of the proband's log-transformed CRP was calculated using the proportional hazards model. RESULTS Covarying for key demographics, higher CRP in probands was strongly associated with lower risk of dementia in relatives (HR = 0.55 [95% confidence interval (CI) 0.41, 0.74], p < 0.02). The replication sample relationship was in the same direction, stronger in magnitude, and also significant (HR = 0.15 [95% CI 0.06, 0.37], p < 0.0001). CONCLUSIONS Relatives of successful cognitive aging individuals with high levels of CRP are relatively likely to remain free of dementia. High CRP in successful cognitive aging individuals may constitute a phenotype for familial-and thus possibly genetic-successful cognitive aging.
Collapse
Affiliation(s)
- Jeremy M Silverman
- Department of Psychiatry, Mount Sinai School of Medicine, New York, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cooper-Knock J, Kirby J, Ferraiuolo L, Heath PR, Rattray M, Shaw PJ. Gene expression profiling in human neurodegenerative disease. Nat Rev Neurol 2012; 8:518-30. [PMID: 22890216 DOI: 10.1038/nrneurol.2012.156] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcriptome study in neurodegenerative disease has advanced considerably in the past 5 years. Increasing scientific rigour and improved analytical tools have led to more-reproducible data. Many transcriptome analysis platforms assay the expression of the entire genome, enabling a complete biological context to be captured. Gene expression profiling (GEP) is, therefore, uniquely placed to discover pathways of disease pathogenesis, potential therapeutic targets, and biomarkers. This Review summarizes microarray human GEP studies in the common neurodegenerative diseases amyotrophic lateral sclerosis (ALS), Parkinson disease (PD) and Alzheimer disease (AD). Several interesting reports have compared pathological gene expression in different patient groups, disease stages and anatomical areas. In all three diseases, GEP has revealed dysregulation of genes related to neuroinflammation. In ALS and PD, gene expression related to RNA splicing and protein turnover is disrupted, and several studies in ALS support involvement of the cytoskeleton. GEP studies have implicated the ubiquitin-proteasome system in PD pathogenesis, and have provided evidence of mitochondrial dysfunction in PD and AD. Lastly, in AD, a possible role for dysregulation of intracellular signalling pathways, including calcium signalling, has been highlighted. This Review also provides a discussion of methodological considerations in microarray sample preparation and data analysis.
Collapse
Affiliation(s)
- Johnathan Cooper-Knock
- Academic Unit of Neurology, Sheffield Institute for Translational Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | | | | | | | | | | |
Collapse
|
43
|
Beeri MS, Haroutunian V, Schmeidler J, Sano M, Fam P, Kavanaugh A, Barr AM, Honer WG, Katsel P. Synaptic protein deficits are associated with dementia irrespective of extreme old age. Neurobiol Aging 2011; 33:1125.e1-8. [PMID: 22206847 DOI: 10.1016/j.neurobiolaging.2011.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 03/21/2011] [Accepted: 08/16/2011] [Indexed: 11/30/2022]
Abstract
Recent evidence shows that despite high incidence of dementia in the very old, they exhibit significantly lower levels of Alzheimer's disease (AD) neuropathology relative to younger persons with dementia. The levels and distributions of some synaptic proteins have been found to be associated with dementia severity, even in the oldest-old, but the molecular and functional nature of these deficits have not been studied in detail. The objective of this study was to assess the relationship of dementia with gene and protein expression of a panel of synaptic markers associated with different synaptic functions in young-, middle-, and oldest-old individuals. The protein and messenger RNA (mRNA) levels of 7 synaptic markers (complexin-1, complexin-2, synaptophysin, synaptobrevin, syntaxin, synaptosomal-associated protein 25 (SNAP-25), and septin-5) were compared in the brains of nondemented and demented individuals ranging from 70 to 103 years of age. One hundred eleven brains were selected to have either no significant neuropathology or only AD-associated pathology (neuritic plaques [NPs] and neurofibrillary tangles [NFTs]). The cohort was then stratified into tertiles as young-old (70-81 years old), middle-old (82-88), and oldest-old (89-103). The brains of persons with dementia evidenced significantly lower levels of gene and protein expression of synaptic markers regardless of age. Importantly, dementia was associated with reductions in all measured synaptic markers irrespective of their role(s) in synaptic function. Although other dementia-associated hallmarks of AD neuropathology (neuritic plaques and neurofibrillary tangles) become less prominent with increasing age, synaptic marker abnormalities in dementia remain constant with increasing age and may represent an independent substrate of dementia spanning all ages.
Collapse
|
44
|
Abstract
Altered oligodendrocyte structure and function is implicated in major psychiatric illnesses, including low cell number and reduced oligodendrocyte-specific gene expression in major depressive disorder (MDD). These features are also observed in the unpredictable chronic mild stress (UCMS) rodent model of the illness, suggesting that they are consequential to environmental precipitants; however, whether oligodendrocyte changes contribute causally to low emotionality is unknown. Focusing on 2'-3'-cyclic nucleotide 3'-phosphodiesterase (Cnp1), a crucial component of axoglial communication dysregulated in the amygdala of MDD subjects and UCMS-exposed mice, we show that altered oligodendrocyte integrity can have an unexpected functional role in affect regulation. Mice lacking Cnp1 (knockout, KO) displayed decreased anxiety- and depressive-like symptoms (i.e., low emotionality) compared with wild-type animals, a phenotypic difference that increased with age (3-9 months). This phenotype was accompanied by increased motor activity, but was evident before neurodegenerative-associated motor coordination deficits (≤ 9-12 months). Notably, Cnp1(KO) mice were less vulnerable to developing a depressive-like syndrome after either UCMS or chronic corticosterone exposure. Cnp1(KO) mice also displayed reduced fear expression during extinction, despite normal amygdala c-Fos induction after acute stress, together implicating dysfunction of an amygdala-related neural network, and consistent with proposed mechanisms for stress resiliency. However, the Cnp1(KO) behavioral phenotype was also accompanied by massive upregulation of oligodendrocyte- and immune-related genes in the basolateral amygdala, suggesting an attempt at functional compensation. Together, we demonstrate that the lack of oligodendrocyte-specific Cnp1 leads to resilient emotionality. However, combined with substantial molecular changes and late-onset neurodegeneration, these results suggest the low Cnp1 seen in MDD may cause unsustainable and maladaptive molecular compensations contributing to the disease pathophysiology.
Collapse
|
45
|
Association of ApoE and LRP mRNA levels with dementia and AD neuropathology. Neurobiol Aging 2011; 33:628.e1-628.e14. [PMID: 21676498 DOI: 10.1016/j.neurobiolaging.2011.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 03/21/2011] [Accepted: 04/29/2011] [Indexed: 11/21/2022]
Abstract
Inheritance of the ε4 allele of apolipoprotein E (ApoE) is the only confirmed and consistently replicated risk factor for late onset Alzheimer's disease (AD). ApoE is also a key ligand for low-density lipoprotein (LDL) receptor-related protein (LRP), a major neuronal low-density lipoprotein receptor. Despite the considerable converging evidence that implicates ApoE and LRP in the pathogenesis of AD, the precise mechanism by which ApoE and LRP modulate the risk for AD remains elusive. Moreover, studies investigating expression of ApoE and LRP in AD brain have reported variable and contradictory results. To overcome these inconsistencies, we studied the mRNA expression of ApoE and LRP in the postmortem brain of persons who died at different stages of dementia and AD-associated neuropathology relative to controls by quantitative polymerase chain reaction (qPCR) and Western blotting analyses. Clinical dementia rating scores were used as a measure of dementia severity, whereas, Braak neuropathological staging and neuritic plaque density were used as indexes of the neuropathological progression of AD. ApoE and LRP mRNA expression was significantly elevated in the postmortem inferior temporal gyrus (area 20) and the hippocampus from individuals with dementia compared with those with intact cognition. In addition to their strong association with the progression of cognitive dysfunction, LRP and ApoE mRNA levels were also positively correlated with increasing neuropathological hallmarks of AD. Additionally, Western blot analysis of ApoE protein expression in the hippocampus showed that the differential expression observed at the transcriptional level is also reflected at the protein level. Given the critical role played by LRP and ApoE in amyloid beta (Aβ) and cholesterol trafficking, increased expression of LRP and ApoE may not only disrupt cholesterol homeostasis but may also contribute to some of the neurobiological features of AD, including plaque deposition.
Collapse
|
46
|
Beeri MS, Schmeidler J, Lesser GT, Maroukian M, West R, Leung S, Wysocki M, Perl DP, Purohit DP, Haroutunian V. Corticosteroids, but not NSAIDs, are associated with less Alzheimer neuropathology. Neurobiol Aging 2011; 33:1258-64. [PMID: 21458888 DOI: 10.1016/j.neurobiolaging.2011.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 12/22/2010] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
The objective of this study was to test the hypothesis that corticosteroid and nonsteroidal anti-inflammatory drug (NSAID) medications are associated with less global and regional Alzheimer's disease (AD) neuropathology. This postmortem study was based on 694 brains of subjects from the Mount Sinai School of Medicine Brain Bank who did not have neuropathologies other than neuritic plaques (NPs), neurofibrillary tangles (NFTs), or cerebrovascular disease. Densities of NPs and of NFTs were assessed in several neocortical regions and in the hippocampus, entorhinal cortex, and amygdala. Counts of NPs in several neocortical regions were also assessed. For each neuropathology measure, analyses of covariance controlling for age at death and sex compared subjects who received only corticosteroids (n = 54) or those who received only NSAIDs (n = 56) to the same comparison group, subjects who received neither (n = 576). Subjects receiving corticosteroids had significantly lower ratings and counts of NPs for all neuropathological measures, and NFTs overall and in the cerebral cortex and amygdala. In contrast, no measures were significant for subjects who received NSAIDs. Use of corticosteroids was associated with approximately 50% fewer NPs and NFTs in most brain regions examined, compared with nonmedicated subjects. In contrast, use of NSAIDs was not substantially associated with the reductions in hallmark lesions of AD. Because corticosteroids have anti-inflammatory as well as a myriad of other neurobiological effects, more direct studies in model systems could reveal novel therapeutic targets and mechanisms for AD lesion reduction.
Collapse
|
47
|
Rees Clayton EM, Todd M, Dowd JB, Aiello AE. The impact of bisphenol A and triclosan on immune parameters in the U.S. population, NHANES 2003-2006. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:390-6. [PMID: 21062687 PMCID: PMC3060004 DOI: 10.1289/ehp.1002883] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 11/09/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Exposure to environmental toxicants is associated with numerous disease outcomes, many of which involve underlying immune and inflammatory dysfunction. OBJECTIVES To address the gap between environmental exposures and immune dysfunction, we investigated the association of two endocrine-disrupting compounds (EDCs) with markers of immune function. METHODS Using data from the 2003-2006 National Health and Nutrition Examination Survey, we compared urinary bisphenol A (BPA) and triclosan levels with serum cytomegalovirus (CMV) antibody levels and diagnosis of allergies or hay fever in U.S. adults and children ≥ 6 years of age. We used multivariate ordinary least squares linear regression models to examine the association of BPA and triclosan with CMV antibody titers, and multivariate logistic regression models to investigate the association of these chemicals with allergy or hay fever diagnosis. Statistical models were stratified by age (< 18 years and ≥ 18 years). RESULTS In analyses adjusted for age, sex, race, body mass index, creatinine levels, family income, and educational attainment, in the ≥ 18-year age group, higher urinary BPA levels were associated with higher CMV antibody titers (p < 0.001). In the < 18-year age group, lower levels of BPA were associated with higher CMV antibody titers (p < 0.05). However, triclosan, but not BPA, showed a positive association with allergy or hay fever diagnosis. In the < 18-year age group, higher levels of triclosan were associated with greater odds of having been diagnosed with allergies or hay fever (p < 0.01). CONCLUSIONS EDCs such as BPA and triclosan may negatively affect human immune function as measured by CMV antibody levels and allergy or hay fever diagnosis, respectively, with differential consequences based on age. Additional studies should be done to investigate these findings.
Collapse
Affiliation(s)
- Erin M. Rees Clayton
- Department of Epidemiology and Center for Social Epidemiology and Population Health, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Megan Todd
- Institute for Demographic Research, City University of New York, New York, New York, USA
- Woodrow Wilson School of Public and International Affairs and Office of Population Research, Princeton University, Princeton, New Jersey, USA
| | - Jennifer Beam Dowd
- Institute for Demographic Research, City University of New York, New York, New York, USA
- School of Public Health, Hunter College, City University of New York, New York, New York, USA
| | - Allison E. Aiello
- Department of Epidemiology and Center for Social Epidemiology and Population Health, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Address correspondence to A.E. Aiello, Center for Social Epidemiology and Population Health, University of Michigan School of Public Health, 1415 Washington Heights, Room 3663, Ann Arbor, MI 48109-2029 USA. Telephone: (734) 615-9213. Fax: (734) 763-5706. E-mail:
| |
Collapse
|
48
|
Influence of physical exercise on neuroimmunological functioning and health: aging and stress. Neurotox Res 2010; 20:69-83. [PMID: 20953749 DOI: 10.1007/s12640-010-9224-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/16/2010] [Accepted: 09/21/2010] [Indexed: 12/20/2022]
Abstract
Chronic and acute stress, with associated pathophysiology, are implicated in a variety of disease states, with neuroimmunological dysregulation and inflammation as major hazards to health and functional sufficiency. Psychosocial stress and negative affect are linked to elevations in several inflammatory biomarkers. Immunosenescence, the deterioration of immune competence observed in the aged aspect of the life span, linked to a dramatic rise in morbidity and susceptibility to diseases with fatal outcomes, alters neuroimmunological function and is particularly marked in the neurodegenerative disorders, e.g., Parkinson's disease and diabetes. Physical exercise diminishes inflammation and elevates agents and factors involved in immunomodulatory function. Both the alleviatory effects of life-long physical activity upon multiple cancer forms and the palliative effects of physical activity for individuals afflicted by cancer offer advantages in health intervention. Chronic conditions of stress and affective dysregulation are associated with neuroimmunological insufficiency and inflammation, contributing to health risk and mortality. Physical exercise regimes have induced manifest anti-inflammatory benefits, mediated possibly by brain-derived neurotrophic factor. The epidemic proportions of metabolic disorders, obesity, and diabetes demand attention; several variants of exercise regimes have been found repeatedly to induce both prevention and improvement under both laboratory and clinical conditions. Physical exercise offers a unique non-pharmacologic intervention incorporating multiple activity regimes, e.g., endurance versus resistance exercise that may be adapted to conform to the particular demands of diagnosis, intervention and prognosis inherent to the staging of autoimmune disorders and related conditions.
Collapse
|
49
|
Stozicka Z, Zilka N, Novak P, Kovacech B, Bugos O, Novak M. Genetic background modifies neurodegeneration and neuroinflammation driven by misfolded human tau protein in rat model of tauopathy: implication for immunomodulatory approach to Alzheimer's disease. J Neuroinflammation 2010; 7:64. [PMID: 20937161 PMCID: PMC2958906 DOI: 10.1186/1742-2094-7-64] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 10/12/2010] [Indexed: 11/25/2022] Open
Abstract
Background Numerous epidemiological studies demonstrate that genetic background modifies the onset and the progression of Alzheimer's disease and related neurodegenerative disorders. The efficacious influence of genetic background on the disease pathway of amyloid beta has been meticulously described in rodent models. Since the impact of genetic modifiers on the neurodegenerative and neuroinflammatory cascade induced by misfolded tau protein is yet to be elucidated, we have addressed the issue by using transgenic lines expressing the same human truncated tau protein in either spontaneously hypertensive rat (SHR) or Wistar-Kyoto (WKY) genetic background. Methods Brains of WKY and SHR transgenic rats in the terminal stage of phenotype and their age-matched non-transgenic littermates were examined by means of immunohistochemistry and unbiased stereology. Basic measures of tau-induced neurodegeneration (load of neurofibrillary tangles) and neuroinflammation (number of Iba1-positive microglia, their activated morphology, and numbers of microglia immunoreactive for MHCII and astrocytes immunoreactive for GFAP) were quantified with an optical fractionator in brain areas affected by neurofibrillary pathology (pons, medulla oblongata). The stereological data were evaluated using two-way ANOVA and Student's t-test. Results Tau neurodegeneration (neurofibrillary tangles (NFTs), axonopathy) and neuroinflammation (microgliosis, astrocytosis) appeared in both WKY and SHR transgenic rats. Although identical levels of transgene expression in both lines were present, terminally-staged WKY transgenic rats displayed significantly lower final NFT loads than their SHR transgenic counterparts. Interestingly, microglial responses showed a striking difference between transgenic lines. Only 1.6% of microglia in SHR transgenic rats expressed MHCII in spite of having a robust phagocytic phenotype, whereas in WKY transgenic rats, 23.2% of microglia expressed MHCII despite displaying a considerably lower extent of transformation into phagocytic phenotype. Conclusions These results show that the immune response represents a pivotal and genetically variable modifying factor that is able to influence vulnerability to neurodegeneration. Therefore, targeted immunomodulation could represent a prospective therapeutic approach to Alzheimer's disease.
Collapse
Affiliation(s)
- Zuzana Stozicka
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
50
|
Increased expression of RXRα in dementia: an early harbinger for the cholesterol dyshomeostasis? Mol Neurodegener 2010; 5:36. [PMID: 20843353 PMCID: PMC2949865 DOI: 10.1186/1750-1326-5-36] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 09/15/2010] [Indexed: 12/23/2022] Open
Abstract
Background Cholesterol content of cerebral membranes is tightly regulated by elaborate mechanisms that balance the level of cholesterol synthesis, uptake and efflux. Among the conventional regulatory elements, a recent research focus has been nuclear receptors, a superfamily of ligand-activated transcription factors providing an indispensable regulatory framework in controlling cholesterol metabolism pathway genes. The mechanism of transcriptional regulation by nuclear receptors such as LXRs involves formation of heterodimers with RXRs. LXR/RXR functions as a sensor of cellular cholesterol concentration and mediates cholesterol efflux by inducing the transcription of key cholesterol shuffling vehicles namely, ATP-binding cassette transporter A1 (ABCA1) and ApoE. Results In the absence of quantitative data from humans, the relevance of expression of nuclear receptors and their involvement in cerebral cholesterol homeostasis has remained elusive. In this work, new evidence is provided from direct analysis of human postmortem brain gene and protein expression suggesting that RXRα, a key regulator of cholesterol metabolism is differentially expressed in individuals with dementia. Importantly, RXRα expression showed strong association with ABCA1 and ApoE gene expression, particularly in AD vulnerable regions. Conclusions These findings suggest that LXR/RXR-induced upregulation of ABCA1 and ApoE levels may be the molecular determinants of cholesterol dyshomeostasis and of the accompanying dementia observed in AD.
Collapse
|