1
|
Nguyen TT, Tamai M, Harama D, Kagami K, Komatsu C, Kasai S, Akahane K, Goi K, Inukai T. Sensitivity to Tyrosine Kinase Inhibitors in a Human Philadelphia Chromosome-Positive (Ph+) Leukemia Model With the T315I-Inclusive Compound Mutation. Cureus 2024; 16:e76538. [PMID: 39872583 PMCID: PMC11772067 DOI: 10.7759/cureus.76538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2024] [Indexed: 01/30/2025] Open
Abstract
The T315I-inclusive compound mutation, the multiple mutations including the T315I mutation on the same BCR::ABL1 gene, confers resistance to diverse tyrosine kinase inhibitors (TKIs). Development of the F311I/T315I compound mutation has been reported in chronic myeloid leukemia patients who sequentially showed clinical resistance to imatinib and dasatinib. The establishment of a human leukemia model with the T315I-inclusive compound mutation remains an experimental challenge. Here, we introduced the F311I/T315I compound mutation into the intrinsic BCR::ABL1 gene of a human TKI-sensitive Philadelphia chromosome-positive leukemia cell line via homologous recombination using the CRISPR/Cas9 system and obtained three types of sublines: the F311I mutation alone, the T315I mutation alone, and the F311I/T315I compound mutation. The F311I subline was sensitive to dasatinib but moderately resistant to imatinib and nilotinib, while the T315I subline and the F311I/T315I subline were highly resistant to these TKIs. Notably, the T315I subline and the F311I/T315I subline were sensitive to therapeutic concentrations of ponatinib, although more resistant than the F311I subline. Moreover, the T315 subline and the F311I/T315 subline were sensitive to asciminib at therapeutic concentration, as was the F311I subline. This is the first human leukemia model in which the impact of the T315I-inclusive compound mutation on TKI sensitivity was directly confirmed.
Collapse
Affiliation(s)
- Thao T Nguyen
- Department of Pediatrics, University of Yamanashi, Chuo, JPN
| | - Minori Tamai
- Department of Pediatrics, University of Yamanashi, Chuo, JPN
| | - Daisuke Harama
- Department of Pediatrics, University of Yamanashi, Chuo, JPN
| | - Keiko Kagami
- Department of Pediatrics, University of Yamanashi, Chuo, JPN
| | - Chiaki Komatsu
- Department of Pediatrics, University of Yamanashi, Chuo, JPN
| | - Shin Kasai
- Department of Pediatrics, University of Yamanashi, Chuo, JPN
| | - Koshi Akahane
- Department of Pediatrics, University of Yamanashi, Chuo, JPN
| | - Kumiko Goi
- Department of Pediatrics, University of Yamanashi, Chuo, JPN
| | - Takeshi Inukai
- Department of Pediatrics, University of Yamanashi, Chuo, JPN
| |
Collapse
|
2
|
Tamai M, Fujisawa S, Nguyen TTT, Komatsu C, Kagami K, Kamimoto K, Omachi K, Kasai S, Harama D, Watanabe A, Akahane K, Goi K, Naka K, Kaname T, Teshima T, Inukai T. Creation of Philadelphia chromosome by CRISPR/Cas9-mediated double cleavages on BCR and ABL1 genes as a model for initial event in leukemogenesis. Cancer Gene Ther 2023; 30:38-50. [PMID: 35999358 PMCID: PMC9842507 DOI: 10.1038/s41417-022-00522-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 01/21/2023]
Abstract
The Philadelphia (Ph) chromosome was the first translocation identified in leukemia. It is supposed to be generated by aberrant ligation between two DNA double-strand breaks (DSBs) at the BCR gene located on chromosome 9q34 and the ABL1 gene located on chromosome 22q11. Thus, mimicking the initiation process of translocation, we induced CRISPR/Cas9-mediated DSBs simultaneously at the breakpoints of the BCR and ABL1 genes in a granulocyte-macrophage colony-stimulating factor (GM-CSF) dependent human leukemia cell line. After transfection of two single guide RNAs (sgRNAs) targeting intron 13 of the BCR gene and intron 1 of the ABL1 gene, a factor-independent subline was obtained. In the subline, p210 BCR::ABL1 and its reciprocal ABL1::BCR fusions were generated as a result of balanced translocation corresponding to the Ph chromosome. Another set of sgRNAs targeting intron 1 of the BCR gene and intron 1 of the ABL1 gene induced a factor-independent subline expressing p190 BCR::ABL1. Both p210 and p190 BCR::ABL1 induced factor-independent growth by constitutively activating intracellular signaling pathways for transcriptional regulation of cell cycle progression and cell survival that are usually regulated by GM-CSF. These observations suggested that simultaneous DSBs at the BCR and ABL1 gene breakpoints are initiation events for oncogenesis in Ph+ leukemia. (200/200 words).
Collapse
Affiliation(s)
- Minori Tamai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Shinichi Fujisawa
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Hokkaido, Japan
| | - Thao T T Nguyen
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Chiaki Komatsu
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Keiko Kagami
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kenji Kamimoto
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| | - Kohei Omachi
- Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Shin Kasai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Daisuke Harama
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Atsushi Watanabe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kumiko Goi
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kazuhito Naka
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takanori Teshima
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Hokkaido, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
3
|
Dal Molin A, Tretti Parenzan C, Gaffo E, Borin C, Boldrin E, Meyer LH, te Kronnie G, Bresolin S, Bortoluzzi S. Discovery of fusion circular RNAs in leukemia with KMT2A::AFF1 rearrangements by the new software CircFusion. Brief Bioinform 2022; 24:6965906. [PMID: 36585787 PMCID: PMC9851293 DOI: 10.1093/bib/bbac589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/12/2022] [Accepted: 12/02/2022] [Indexed: 01/01/2023] Open
Abstract
Chromosomal translocations in cancer genomes, key players in many types of cancers, generate chimeric proteins that drive oncogenesis. Genomes with chromosomal rearrangements can also produce fusion circular RNAs (f-circRNAs) by backsplicing of chimeric transcripts, as first shown in leukemias with PML::RARα and KMT2A::MLLT3 translocations and later in solid cancers. F-circRNAs contribute to the oncogenic processes and reinforce the oncogenic activity of chimeric proteins. In leukemia with KMT2A::AFF1 (MLL::AF4) fusions, we previously reported specific alterations of circRNA expression, but nothing was known about f-circRNAs. Due to the presence of two chimeric sequences, fusion and backsplice junctions, the identification of f-circRNAs with available tools is challenging, possibly resulting in the underestimation of this RNA species, especially when the breakpoint is not known. We developed CircFusion, a new software tool to detect linear fusion transcripts and f-circRNAs from RNA-seq data, both in samples for which the breakpoints are known and when the information about the joined exons is missing. CircFusion can detect linear and circular chimeric transcripts deriving from the main and reciprocal translocations also in the presence of multiple breakpoints, which are common in malignant cells. Benchmarking tests on simulated and real datasets of cancer samples with previously experimentally determined f-circRNAs showed that CircFusion provides reliable predictions and outperforms available methods for f-circRNA detection. We discovered and validated novel f-circRNAs in acute leukemia harboring KMT2A::AFF1 rearrangements, leading the way to future functional studies aimed to unveil their role in this malignancy.
Collapse
Affiliation(s)
- Anna Dal Molin
- Corresponding authors: Anna Dal Molin, Department of Molecular Medicine, University of Padova, Via G. Colombo, 3 - 35131, Padova, Italy. Tel.: +39 049 827 6502; Fax: +39 049 827 6209. ; Stefania Bortoluzzi, Associate Professor of Applied Biology.Department of Molecular Medicine, University of Padova, Via G. Colombo, 3 - 35131, Padova, Italy. Tel.: +39 049 827 6502; Fax: +39 049 827 6209.
| | | | - Enrico Gaffo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Cristina Borin
- Department of Molecular Medicine, University of Padova, Padova, Italy,Onco-Hematology, Stem Cell Transplant and Gene Therapy Laboratory, IRP-Istituto di Ricerca Pediatrica, Padova, Italy
| | - Elena Boldrin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany,Department of Molecular Medicine, University of Padova, Padova, Italy,Department of Biology, University of Padova, Padova, Italy
| | - Lueder H Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | | | | | - Stefania Bortoluzzi
- Corresponding authors: Anna Dal Molin, Department of Molecular Medicine, University of Padova, Via G. Colombo, 3 - 35131, Padova, Italy. Tel.: +39 049 827 6502; Fax: +39 049 827 6209. ; Stefania Bortoluzzi, Associate Professor of Applied Biology.Department of Molecular Medicine, University of Padova, Via G. Colombo, 3 - 35131, Padova, Italy. Tel.: +39 049 827 6502; Fax: +39 049 827 6209.
| |
Collapse
|
4
|
Mian AA, Zafar U, Ahmed SMA, Ottmann OG, Lalani ENMA. Oncogene-independent resistance in Philadelphia chromosome - positive (Ph +) acute lymphoblastic leukemia (ALL) is mediated by activation of AKT/mTOR pathway. Neoplasia 2021; 23:1016-1027. [PMID: 34403880 PMCID: PMC8368770 DOI: 10.1016/j.neo.2021.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) such as imatinib, nilotinib, dasatinib, and ponatinib have significantly improved the life expectancy of Philadelphia chromosome-positive (Ph+) acute lymphocytic leukemia (ALL) patients; however, resistance to TKIs remains a major clinical challenge. Point mutations in the tyrosine kinase domain (TKD) of BCR-ABL1 have emerged as the predominant cause of acquired resistance. In approximately 30% of patients, the mechanism of resistance to TKIs remains elusive. This study aimed to investigate mechanisms of nonmutational resistance in Ph+ ALL. Here we report the development of a nonmutational resistance cell line SupB15-RT; conferring resistance to approved ABL kinase inhibitors (AKIs) and allosteric inhibitors GNF-2, ABL001, and crizotinib, except for dasatinib (IC90 50nM), a multitarget kinase inhibitor. We found that the AKT/mTOR pathway is activated in these cells and their proliferation inhibited by Torin-1 with an IC50 of 24.7 nM. These observations were confirmed using 3 different ALL patient-derived long term cultures (PDLTCs): (1) HP (BCR-ABL1 negative), (2) PH (BCR-ABL1 positive and responsive to TKIs) and (3) BV (BCR-ABL1 positive and nonmutational resistant to TKIs). Furthermore, Torin-1 and NVP-BEZ235 induced apoptosis in PH and BV cells but not in HP cells. Our experiments provide evidence of the involvement of AKT/mTOR pathway in the evolution of nonmutational resistance in Ph+ ALL which will assist in developing novel targeted therapy for Ph+ ALL patients with BCR-ABL1 independent nonmutational resistance.
Collapse
Affiliation(s)
- Afsar Ali Mian
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi, Pakistan.
| | - Usva Zafar
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi, Pakistan
| | | | | | - El-Nasir M A Lalani
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
5
|
Lukes J, Potuckova E, Sramkova L, Stary J, Starkova J, Trka J, Votava F, Zuna J, Zaliova M. Two novel fusion genes, AIF1L-ETV6 and ABL1-AIF1L, result together with ETV6-ABL1 from a single chromosomal rearrangement in acute lymphoblastic leukemia with prenatal origin. Genes Chromosomes Cancer 2018; 57:471-477. [PMID: 29726059 DOI: 10.1002/gcc.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 01/19/2023] Open
Abstract
Fusion genes resulting from chromosomal rearrangements represent a hallmark of childhood acute lymphoblastic leukemia (ALL). Unlike more common fusion genes generated via simple reciprocal chromosomal translocations, formation of the ETV6-ABL1 fusion gene requires 3 DNA breaks and usually results from an interchromosomal insertion. We report a child with ALL in which a single interchromosomal insertion led to the formation of ETV6-ABL1 and 2 novel fusion genes: AIF1L-ETV6 and ABL1-AIF1L. We demonstrate the prenatal origin of this complex chromosomal rearrangement, which apparently initiated the leukemogenic process, by successful backtracking of the ETV6-ABL1 fusion into the patient's archived neonatal blood. We cloned coding sequences of AIF1L-ETV6 and ABL1-AIF1L in-frame fusion transcripts from the patient's leukemic blasts and we show that the chimeric protein containing the DNA binding domain of ETV6 is expressed from the AIF1L-ETV6 transcript and localized in both the cytoplasm and nucleus of transfected HEK293T cells. Transcriptomic and genomic profiling of the diagnostic bone marrow sample revealed Ph-like gene expression signature and loss of the IKZF1 and CDKN2A/B genes, the typical genetic lesions accompanying ETV6-ABL1-positive ALL. The prenatal origin of the rearrangement confirms that ETV6-ABL1 is not sufficient to cause overt leukemia, even when combined with the 2 novel fusions. We did not find the AIF1L-ETV6 and ABL1-AIF1L fusions in other ETV6-ABL1-positive ALL. Nevertheless, functional studies would be needed to establish the biological role of AIF1L-ETV6 and ABL1-AIF1L and to determine whether they contribute to leukemogenesis and/or to the final leukemia phenotype.
Collapse
Affiliation(s)
- Julius Lukes
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eliska Potuckova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lucie Sramkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Jan Stary
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Julia Starkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Trka
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Felix Votava
- Department of Pediatrics, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Zuna
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Marketa Zaliova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
6
|
Alikian M, Gale RP, Apperley JF, Foroni L. Molecular techniques for the personalised management of patients with chronic myeloid leukaemia. BIOMOLECULAR DETECTION AND QUANTIFICATION 2017; 11:4-20. [PMID: 28331814 PMCID: PMC5348117 DOI: 10.1016/j.bdq.2017.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 12/28/2016] [Accepted: 01/18/2017] [Indexed: 12/25/2022]
Abstract
Chronic myeloid leukemia (CML) is the paradigm for targeted cancer therapy. RT-qPCR is the gold standard for monitoring response to tyrosine kinase-inhibitor (TKI) therapy based on the reduction of blood or bone marrow BCR-ABL1. Some patients with CML and very low or undetectable levels of BCR-ABL1 transcripts can stop TKI-therapy without CML recurrence. However, about 60 percent of patients discontinuing TKI-therapy have rapid leukaemia recurrence. This has increased the need for more sensitive and specific techniques to measure residual CML cells. The clinical challenge is to determine when it is safe to stop TKI-therapy. In this review we describe and critically evaluate the current state of CML clinical management, different technologies used to monitor measurable residual disease (MRD) focus on comparingRT-qPCR and new methods entering clinical practice. We discuss advantages and disadvantages of new methods.
Collapse
Key Words
- ABL1, Abelson murine leukaemia virus
- ALL, acute lymphoblastic leukaemia
- AP, accelerated phase
- ARQ, armored RNA Quant
- ATP, adenosine triphosphate
- BC, blast crisis
- BCR, breakpoint cluster region
- BM, bone marrow
- BMT, bone marrow transplantation
- Bp, base pair
- CAP, College of American Pathology
- CES, capillary electrophoresis sequencing
- CML
- CML, chronic myeloid leukaemia
- CMR, complete molecular response/remission
- CP, chronic phase
- DESTINY, De-Escalation and Stopping Treatment of Imatinib, Nilotinib or sprYcel in Chronic Myeloid Leukaemia
- DNA, deoxyribonucleic acid
- EAC, Europe Against Cancer
- ELN, European Leukaemia Net
- EURO-SKI, European Stop Tyrosine Kinase Inhibitor Study
- GUSB, glucuronidase beta gene
- IC, inhibotory concentration
- IRIS, interferon and cytarabine versus STI571
- IS, International Scale
- InDels, insertions and deletions
- KDa, Kilo Dalton
- Kbp, Kilo Base Pairs
- LPC, leukemic progenitor cells
- LSC, leukemic stem cell
- LoD, limit of detection
- LoQ, limit of quantification
- M-bcr, major-breakpoint cluster region
- MMR, major molecular response/remission
- MR, deep molecular response/remission
- MRD
- MRD, minimal residual disease
- Mbp, mega base pair
- Molecular monitoring
- NCCN, National Comprehensive Cancer Network
- NEQAS, National External Quality Assessement Service
- NGS
- NGS, next generation sequencing
- NTC, No Template Control
- PB, Peripheral Blood
- PCR, Polymerase Chain Reaction
- PFS, Progression Free Survival
- Ph, Philadelpia
- Q-PCR, quantitative polymerase chain reaction
- QC, Quality Control
- RT, reverse transcription
- RT-dPCR, reverse transcription-digital polymerase chain reaction
- RT-qPCR, reverse transcription-quantitative polymerase chain reaction
- SCT, stem cell transplant
- SMRT, single-molecule real-time sequencing
- STIM, stop imatinib
- TKD, tyrosine kinase domain
- TKI, tyrosine kinase inhibitor
- WHO, World Health Organisation
- ZMW, zero-mode wave-guided
- allo-SCT, Allogeneic Stem Cell Transplantation
- cDNA, coding or complimentary DNA
- dMIQE, Minimum Information for Publication of Quantitative Digital PCR Experiments
- dPCR
- dPCR, digital polymerase chain reaction
- emPCR, emulsion PCR
- gDNA, genomic deoxyribonucleic acid
- m-bcr, minor-breakpoint cluster region
- mRNA, messenger RNA
- nM, manomolar
- μ-bcr, micro-breakpoint cluster region
- μg, microgram
- μl, microliter
Collapse
Affiliation(s)
- Mary Alikian
- Centre for Haematology, Department of Medicine, Imperial College London Hammersmith Hospital, London UK; Imperial Molecular Pathology, Imperial College Healthcare Trust, Hammersmith Hospital, London, UK
| | - Robert Peter Gale
- Centre for Haematology, Department of Medicine, Imperial College London Hammersmith Hospital, London UK
| | - Jane F Apperley
- Centre for Haematology, Department of Medicine, Imperial College London Hammersmith Hospital, London UK
| | - Letizia Foroni
- Centre for Haematology, Department of Medicine, Imperial College London Hammersmith Hospital, London UK
| |
Collapse
|
7
|
Marschalek R. Systematic Classification of Mixed-Lineage Leukemia Fusion Partners Predicts Additional Cancer Pathways. Ann Lab Med 2017; 36:85-100. [PMID: 26709255 PMCID: PMC4713862 DOI: 10.3343/alm.2016.36.2.85] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/26/2015] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
Chromosomal translocations of the human mixed-lineage leukemia (MLL) gene have been analyzed for more than 20 yr at the molecular level. So far, we have collected about 80 direct MLL fusions (MLL-X alleles) and about 120 reciprocal MLL fusions (X-MLL alleles). The reason for the higher amount of reciprocal MLL fusions is that the excess is caused by 3-way translocations with known direct fusion partners. This review is aiming to propose a solution for an obvious problem, namely why so many and completely different MLL fusion alleles are always leading to the same leukemia phenotypes (ALL, AML, or MLL). This review is aiming to explain the molecular consequences of MLL translocations, and secondly, the contribution of the different fusion partners. A new hypothesis will be posed that can be used for future research, aiming to find new avenues for the treatment of this particular leukemia entity.
Collapse
Affiliation(s)
- Rolf Marschalek
- Institute of Pharmaceutical Biology/DCAL, Goethe-University of Frankfurt, Biocenter, Frankfurt/Main, Germany.
| |
Collapse
|
8
|
Abstract
Ewing sarcoma is a cancer of bone and soft tissue in children that is characterized by a chromosomal translocation involving EWS and an Ets family transcription factor, most commonly FLI-1. The EWS-FLI-1 fusion oncogene is widely believed to play a central role in Ewing sarcoma. The EWS-FLI-1 gene product regulates the expression of a number of genes important for cancer progression, can transform mouse cells such as NIH3T3 and C3H10T1/2, and is necessary for proliferation and tumorigenicity of Ewing sarcoma cells, suggesting that EWS-FLI-1 is the causative oncogene. However, a variety of evidence also suggest that EWS-FLI-1 alone cannot fully explain the Ewing sarcomagenesis. Here we report that FLI-1-EWS, a fusion gene reciprocal to EWS-FLI-1, is frequently expressed in Ewing sarcoma. We present evidence suggesting that endogenous FLI-1-EWS is required for Ewing sarcoma growth and that FLI-1-EWS cooperates with EWS-FLI-1 in human mesenchymal stem cells, putative cells of origin of Ewing sarcoma, through abrogation of the proliferation arrest induced by EWS- FLI-1.
Collapse
|
9
|
The functional interplay between the t(9;22)-associated fusion proteins BCR/ABL and ABL/BCR in Philadelphia chromosome-positive acute lymphatic leukemia. PLoS Genet 2015; 11:e1005144. [PMID: 25919613 PMCID: PMC4412790 DOI: 10.1371/journal.pgen.1005144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 03/15/2015] [Indexed: 12/20/2022] Open
Abstract
The hallmark of Philadelphia chromosome positive (Ph+) leukemia is the BCR/ABL kinase, which is successfully targeted by selective ATP competitors. However, inhibition of BCR/ABL alone is unable to eradicate Ph+ leukemia. The t(9;22) is a reciprocal translocation which encodes not only for the der22 (Philadelphia chromosome) related BCR/ABL, but also for der9 related ABL/BCR fusion proteins, which can be detected in 65% of patients with chronic myeloid leukemia (CML) and 100% of patients with Ph+ acute lymphatic leukemia (ALL). ABL/BCRs are oncogenes able to influence the lineage commitment of hematopoietic progenitors. Aim of this study was to further disclose the role of p96ABL/BCR for the pathogenesis of Ph+ ALL. The co-expression of p96ABL/BCR enhanced the kinase activity and as a consequence, the transformation potential of p185BCR/ABL. Targeting p96ABL/BCR by RNAi inhibited growth of Ph+ ALL cell lines and Ph+ ALL patient-derived long-term cultures (PD-LTCs). Our in vitro and in vivo stem cell studies further revealed a functional hierarchy of p96ABL/BCR and p185BCR/ABL in hematopoietic stem cells. Co-expression of p96ABL/BCR abolished the capacity of p185BCR/ABL to induce a CML-like disease and led to the induction of ALL. Taken together our here presented data reveal an important role of p96ABL/BCR for the pathogenesis of Ph+ ALL. The t(9;22) is a reciprocal translocation, which causes chronic myeloid leukemia (CML) and a subset of high risk acute lymphatic leukemia (ALL). The derivative chromosome 22 is the so called Philadelphia chromosome (Ph) which encodes the BCR/ABL kinase. Targeting BCR/ABL by selective ATP competitors, such as imatinib or nilotinib, is a well validated therapeutic concept, but unable to definitively eradicate the disease. Little is known about the role of the fusion protein encoded by the reciprocal derivative chromosome 9, the ABL/BCR. In models of Ph+ ALL we show that the functional interplay between ABL/BCR and BCR/ABL not only increases the transformation potential of BCR/ABL but is also indispensable for the growth and survival of Ph+ ALL leukemic cells. The presence of ABL/BCR changed the phenotype of the leukemia most likely due to its capacity to influence the stem cell population as shown by our in vivo data. Taken together our here presented data reveal an important role of p96ABL/BCR for the pathogenesis of Ph+ ALL.
Collapse
|
10
|
Vonka V, Petráčková M. Immunology of chronic myeloid leukemia: current concepts and future goals. Expert Rev Clin Immunol 2015; 11:511-22. [PMID: 25728856 DOI: 10.1586/1744666x.2015.1019474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although chronic myeloid leukemia is a rare malignancy, it has developed into a model system for the study of a variety of aspects of cancer biology and immunology. The introduction of tyrosine kinase inhibitors has resulted in a significant prolongation of the survival rates of chronic myeloid leukemia patients but has not resulted in a cure. There is a growing conviction that this aim can be achieved through immunotherapy. For this concept to be successful, a considerable increase in the present understanding of chronic myeloid leukemia immunology is required. The authors attempt to review and evaluate the current findings that demonstrate a number of immunological aberrations in patients prior to the start of any therapy and their normalization after achieving remission. They also discuss the recent clinical trials with experimental therapeutic vaccines and then present their own strategy on how to address the problem.
Collapse
Affiliation(s)
- Vladimír Vonka
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague 2, Czech Republic
| | | |
Collapse
|
11
|
Hu Q, Yuan Y, Wang C. Structural and functional studies of FKHR-PAX3, a reciprocal fusion gene of the t(2;13) chromosomal translocation in alveolar rhabdomyosarcoma. PLoS One 2013; 8:e68065. [PMID: 23799156 PMCID: PMC3683129 DOI: 10.1371/journal.pone.0068065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/23/2013] [Indexed: 12/14/2022] Open
Abstract
Alveolar rhabdomyosarcoma (ARMS) is an aggressive pediatric cancer of skeletal muscle. More than 70% of ARMS tumors carry balanced t(2;13) chromosomal translocation that leads to the production of two novel fusion genes, PAX3-FKHR and FKHR-PAX3. While the PAX3-FKHR gene has been intensely studied, the reciprocal FKHR-PAX3 gene has rarely been described. We report here the cloning and functional characterization of the FKHR-PAX3 gene as the first step towards a better understanding of its potential impact on ARMS biology. From RH30 ARMS cells, we detected and isolated three versions of FKHR-PAX3 cDNAs whose C-terminal sequences corresponded to PAX3c, PAX3d, and PAX3e isoforms. Unlike the nuclear-specific localization of PAX3-FKHR, the reciprocal FKHR-PAX3 proteins stayed predominantly in the cytoplasm. FKHR-PAX3 potently inhibited myogenesis in both non-transformed myoblast cells and ARMS cells. We showed that FKHR-PAX3 was not a classic oncogene but could act as a facilitator in oncogenic pathways by stabilizing PAX3-FKHR expression, enhancing cell proliferation, clonogenicity, anchorage-independent growth, and matrix adhesion in vitro, and accelerating the onset of tumor formation in xenograft mouse model in vivo. In addition to these pro-oncogenic behaviors, FKHR-PAX3 also negatively affected cell migration and invasion in vitro and lung metastasis in vivo. Taken together, these functional characteristics suggested that FKHR-PAX3 might have a critical role in the early stage of ARMS development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Adhesion
- Cell Differentiation
- Cell Movement
- Cell Proliferation
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 2/genetics
- Forkhead Box Protein O1
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Male
- Mice
- Mice, Nude
- Molecular Sequence Data
- Muscle Neoplasms/genetics
- Muscle Neoplasms/metabolism
- Muscle Neoplasms/pathology
- Myoblasts/metabolism
- NIH 3T3 Cells
- Neoplasm Transplantation
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- PAX3 Transcription Factor
- Paired Box Transcription Factors/genetics
- Paired Box Transcription Factors/metabolism
- Protein Transport
- Rhabdomyosarcoma, Alveolar/genetics
- Rhabdomyosarcoma, Alveolar/metabolism
- Rhabdomyosarcoma, Alveolar/secondary
- Transcriptional Activation
- Translocation, Genetic
Collapse
Affiliation(s)
- Qiande Hu
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yewen Yuan
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Chiayeng Wang
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
12
|
Tau protein kinases: involvement in Alzheimer's disease. Ageing Res Rev 2013; 12:289-309. [PMID: 22742992 DOI: 10.1016/j.arr.2012.06.003] [Citation(s) in RCA: 467] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/21/2012] [Accepted: 06/06/2012] [Indexed: 02/07/2023]
Abstract
Tau phosphorylation is regulated by a balance between tau kinase and phosphatase activities. Disruption of this equilibrium was suggested to be at the origin of abnormal tau phosphorylation and thereby might contribute to tau aggregation. Thus, understanding the regulation modes of tau phosphorylation is of high interest in determining the possible causes at the origin of the formation of tau aggregates in order to elaborate protection strategies to cope with these lesions in Alzheimer's disease. Among the possible and specific interventions that reverse tau phosphorylation is the inhibition of certain tau kinases. Here, we extensively reviewed tau protein kinases, their physiological roles and regulation, their involvement in tau phosphorylation and their relevance to AD. We also reviewed the most common inhibitory compounds acting on each tau kinase.
Collapse
|
13
|
Medves S, Demoulin JB. Tyrosine kinase gene fusions in cancer: translating mechanisms into targeted therapies. J Cell Mol Med 2012; 16:237-48. [PMID: 21854543 PMCID: PMC3823288 DOI: 10.1111/j.1582-4934.2011.01415.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tyrosine kinase fusion genes represent an important class of oncogenes associated with leukaemia and solid tumours. They are produced by translocations and other chromosomal rearrangements of a subset of tyrosine kinase genes, including ABL, PDGFRA, PDGFRB, FGFR1, SYK, RET, JAK2 and ALK. Based on recent findings, this review discusses the common mechanisms of activation of these fusion genes. Enforced oligomerization and inactivation of inhibitory domains are the two key processes that switch on the kinase domain. Activated tyrosine kinase fusions then signal via an array of transduction cascades, which are largely shared. In addition, the fusion partner provides a scaffold for the recruitment of proteins that contribute to signalling, protein stability, cellular localization and oligomerization. The expression level of the fusion protein is another critical parameter. Its transcription is controlled by the partner gene promoter, while translation may be regulated by miRNA. Several mechanisms also prevent the degradation of the oncoprotein by proteasomes and lysosomes, leading to its accumulation in cells. The selective inhibition of the tyrosine kinase activity by adenosine-5'-triphosphate competitors, such as imatinib, is a major therapeutic success. Imatinib induces remission in leukaemia patients that are positive for BCR-ABL or PDGFR fusions. Recently, crizotinib produced promising results in a subtype of lung cancers with ALK fusion. However, resistance was reported in both cases, partially due to mutations. To tackle this problem, additional levels of therapeutic interventions are suggested by the complex mechanisms of fusion tyrosine kinase activation. New approaches include allosteric inhibition and interfering with oligomerization or chaperones.
Collapse
Affiliation(s)
- Sandrine Medves
- De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
14
|
Puthiyaveetil AG, Heid B, Reilly CM, HogenEsch H, Caudell DL. A NUP98-HOXD13 leukemic fusion gene leads to impaired class switch recombination and antibody production. Exp Hematol 2012; 40:622-33. [PMID: 22613470 DOI: 10.1016/j.exphem.2012.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 01/09/2023]
Abstract
Myelodysplastic syndrome is a clonal process characterized by ineffective hematopoiesis and progression to acute leukemia. Although many myelodysplastic syndrome and leukemic patients have compromised immunity, the role of underlying mutations in regulating immune function is poorly understood. Recent studies show that NUP98-HOXD13 (NHD13) fusion gene results in myelodysplastic syndrome and impairs lymphocyte differentiation in transgenic mice. In our studies, we sought to elucidate the mechanism by which NHD13 affects B-lymphocyte development and function. Based on our preliminary findings that transgenic mice had increased levels of IgM and reduced IgG1 and IgE, we hypothesized that the fusion gene might impair class switch recombination (CSR). Mice were immunologically challenged with dinitrophenol. NHD13 mice showed a marked reduction in B-lymphocyte differentiation in their bone marrow and spleen following dinitrophenol stimulation and had reduced production of dinitrophenol-specific antibodies. Spleen follicles from these mice were small and hypocellular, indicating failure of clonal expansion. When isolated NHD13 B lymphocytes were stimulated in vitro using Escherichia coli lipopolysaccharide or lipopolysaccharide + interleukin-4, they failed to undergo sufficient CSR and proliferation. Taken together, our findings show that expression of NUP98-HOXD13 impairs CSR and reduces the antibody-mediated immune response, in addition to its role in leukemia. Further delineation of the NUP98-HOXD13 transgene may reveal novel pathways involved in CSR.
Collapse
|
15
|
Prognostic factors influencing clinical outcome of allogeneic hematopoietic stem cell transplantation following imatinib-based therapy in BCR-ABL-positive ALL. Blood Cancer J 2012; 2:e72. [PMID: 22829974 PMCID: PMC3366071 DOI: 10.1038/bcj.2012.18] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 03/28/2012] [Accepted: 04/12/2012] [Indexed: 12/01/2022] Open
Abstract
We investigated prognostic factors for the clinical outcome of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL) following imatinib-based therapy. Among 100 adult patients who were prospectively enrolled in the JALSG Ph+ALL202 study, 97 patients obtained complete remission (CR) by imatinib-combined chemotherapy, among whom 60 underwent allo-HSCT in their first CR. The probabilities of overall survival (OS) and disease-free survival (DFS) at 3 years after HSCT were 64% (95% CI, 49–76) and 58% (95% CI, 43–70), respectively. Prognostic factor analysis revealed that the major BCR–ABL transcript was the only unfavorable predictor for OS and DFS after HSCT by both univariate (HR, 3.67 (95% CI 1.49–9.08); P=0.005 and HR, 6.25 (95% CI, 1.88–20.8); P=0.003, respectively) and multivariate analyses (HR, 3.20 (95% CI, 1.21–8.50); P=0.019 and HR, 6.92 (95% CI, 2.09–22.9); P=0.002, respectively). Minimal residual disease status at the time of HSCT had a significant influence on relapse rate (P=0.015). Further study of the BCR–ABL subtype for the clinical impact on outcome of allo-HSCT in Ph+ALL is warranted.
Collapse
|
16
|
Mian AA, Metodieva A, Najajreh Y, Ottmann OG, Mahajna J, Ruthardt M. p185(BCR/ABL) has a lower sensitivity than p210(BCR/ABL) to the allosteric inhibitor GNF-2 in Philadelphia chromosome-positive acute lymphatic leukemia. Haematologica 2011; 97:251-7. [PMID: 22058195 DOI: 10.3324/haematol.2011.047191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The t(9;22) translocation leads to the formation of the chimeric breakpoint cluster region/c-abl oncogene 1 (BCR/ABL) fusion gene on der22, the Philadelphia chromosome. The p185(BCR/ABL) or the p210(BCR/ABL) fusion proteins are encoded as a result of the translocation, depending on whether a "minor" or "major" breakpoint occurs, respectively. Both p185(BCR/ABL) and p210(BCR/ABL) exhibit constitutively activated ABL kinase activity. Through fusion to BCR the ABL kinase in p185(BCR/ABL) and p210(BCR/ABL) "escapes" the auto-inhibition mechanisms of c-ABL, such as allosteric inhibition. A novel class of compounds including GNF-2 restores allosteric inhibition of the kinase activity and the transformation potential of BCR/ABL. Here we investigated whether there are differences between p185(BCR/ABL) and p210(BCR/ABL) regarding their sensitivity towards allosteric inhibition by GNF-2 in models of Philadelphia chromosome-positive acute lymphatic leukemia. DESIGN AND METHODS We investigated the anti-proliferative activity of GNF-2 in different Philadelphia chromosome-positive acute lymphatic leukemia models, such as cell lines, patient-derived long-term cultures and factor-dependent lymphatic Ba/F3 cells expressing either p185(BCR/ABL) or p210(BCR/ABL) and their resistance mutants. RESULTS The inhibitory effects of GNF-2 differed constantly between p185(BCR/ABL) and p210(BCR/ABL) expressing cells. In all three Philadelphia chromosome-positive acute lymphatic leukemia models, p210(BCR/ABL)-transformed cells were more sensitive to GNF-2 than were p185BCR/ABL-positive cells. Similar results were obtained for p185(BCR/ABL) and the p210(BCR/ABL) harboring resistance mutations. CONCLUSIONS Our data provide the first evidence of a differential response of p185(BCR/ABL)- and p210(BCR/ABL)- transformed cells to allosteric inhibition by GNF-2, which is of importance for the treatment of patients with Philadelphia chromosome-positive acute lymphatic leukemia.
Collapse
Affiliation(s)
- Afsar A Mian
- Department of Hematology, Goethe University, Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Fine structure of translocation breakpoints within the major breakpoint region in BCR-ABL1-positive leukemias. DNA Repair (Amst) 2011; 10:1131-7. [DOI: 10.1016/j.dnarep.2011.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/09/2011] [Accepted: 08/19/2011] [Indexed: 02/06/2023]
|
18
|
Tie Y, Hu Z, Lü G, Fu H, Xing R, Zhu J, Sun Z, Zheng X. A novel method for ionizing radiation-induced RNA damage detection by poly(A)-tailing RT-PCR. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4721-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Abstract
Rhabdomyosarcoma (RMS) is a morphologically and clinically heterogeneous group of malignant tumors that resemble developing skeletal muscle and is the most common soft-tissue sarcoma in children and adolescents. The most prominent sites involve head and neck structures (~40%), genito-urinary track (~25%), and extremities (~20%). Embryonal (ERMS) and alveolar (ARMS) are the two major RMS subtypes that are distinct in their morphology and genetic make-up. The prognosis for this cancer depends strongly on tumor size, location, staging, and child's age. In general, ERMS has a more favorable outcome, whereas the mortality rate remains high in patients with ARMS, because of its aggressive and metastatic nature. Over the past two decades, researchers have made concerted efforts to delineate genetic and epigenetic changes associated with RMS pathogenesis. These molecular signatures have presented golden opportunities to design targeted therapies for treating this aggressive cancer. This article highlights recent advances in understanding the molecular pathogenesis of RMS, and addresses promising research areas for further exploration.
Collapse
Affiliation(s)
- C Wang
- Department of Oral Biology and Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, 801 South Paulina Street, RM530CB, m/c 860, Chicago, IL 60612, USA.
| |
Collapse
|
20
|
Chetverina EV, Chetverin AB. Nanocolonies and diagnostics of oncological diseases associated with chromosomal translocations. BIOCHEMISTRY (MOSCOW) 2011; 75:1667-91. [DOI: 10.1134/s0006297910130109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Morris CM. Chronic myeloid leukemia: cytogenetic methods and applications for diagnosis and treatment. Methods Mol Biol 2011; 730:33-61. [PMID: 21431633 DOI: 10.1007/978-1-61779-074-4_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disease caused by recombination between the BCR gene on chromosome 22 and the ABL1 gene on chromosome 9. This rearrangement generates the BCR-ABL1 fusion gene that characterizes leukemic cells in all CML cases. In about 90% of cases, the BCR-ABL1 rearrangement is manifest cytogenetically by the Philadelphia (Ph) chromosome, a derivative of the reciprocal translocation t(9;22)(q34;q11.2). For the remaining cases, recombination may be more complex, involving BCR, ABL1, and genomic sites on one or more other chromosomal regions, or it may occur cryptically within an apparently normal karyotype. Detection of the Ph and associated t(9;22) translocation is a recognized clinical hallmark for CML diagnosis. The disease has a natural multistep pathogenesis, and during chronic phase CML, the t(9;22) or complex variant is usually the sole abnormality. In 60-80% of cases, additional cytogenetic changes appear and often forecast progression to an accelerated disease phase or a terminal blast crisis. Because new frontline therapies such as imatinib specifically target the abnormal protein product of the BCR-ABL1 fusion gene to eliminate BCR-ABL1 positive cells, there is a new reliance on the cytogenetic evaluation of bone marrow cells at diagnosis, then at regular posttreatment intervals. Combined with other parameters, presence or absence of Ph-positive cells in the bone marrow is a powerful early indicator for clinical risk stratification. Cytogenetic changes detected at any stage during treatment, including in the BCR-ABL1-negative cells, may also provide useful prognostic information. Laboratory methods detailed here extend from initial collection of peripheral blood or bone marrow samples through cell culture with or without synchronization, metaphase or interphase harvest, hypotonic treatment and fixation, slide preparation for G-banding or fluorescent in situ hybridization (FISH), and final interpretation.
Collapse
Affiliation(s)
- Christine M Morris
- Cancer Genetics Research Group, Department of Pathology, University of Otago Christchurch School of Medicine and Health Services, Christchurch, New Zealand.
| |
Collapse
|
22
|
Sanders DS, Muntean AG, Hess JL. Significance of AF4-MLL reciprocal fusion in t(4;11) leukemias? Leuk Res 2010; 35:299-300. [PMID: 20952059 DOI: 10.1016/j.leukres.2010.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 09/19/2010] [Accepted: 09/19/2010] [Indexed: 11/27/2022]
|