1
|
El Jordi O, Fischer KD, Meyer TB, Atwood BK, Oblak AL, Pan RW, McKinzie DL. Microglial knockdown does not affect acute withdrawal but delays analgesic tolerance from oxycodone in male and female C57BL/6J mice. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10848. [PMID: 38390615 PMCID: PMC10880796 DOI: 10.3389/adar.2022.10848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/05/2022] [Indexed: 02/24/2024]
Abstract
Opioid Use Disorder (OUD) affects approximately 8%-12% of the population. In dependent individuals, abrupt cessation of opioid taking results in adverse withdrawal symptoms that reinforce drug taking behavior. Considerable unmet clinical need exists for new pharmacotherapies to treat opioid withdrawal as well as improve long-term abstinence. The neuroimmune system has received much scientific attention in recent years as a potential therapeutic target to combat various neurodegenerative and psychiatric disorders including addiction. However, the specific contribution of microglia has not been investigated in oxycodone dependence. Chronic daily treatment with the CSF1R inhibitor Pexidartinib (PLX3397) was administered to knockdown microglia expression and evaluate consequences on analgesia and on naloxone induced withdrawal from oxycodone. In vivo results indicated that an approximately 40% reduction in brain IBA1 staining was achieved in the PLX treatment group, which was associated with a delay in the development of analgesic tolerance to oxycodone and maintained antinociceptive efficacy. Acute withdrawal behavioral symptoms, brain astrocyte expression, and levels of many neuroinflammatory markers were not affected by PLX treatment. KC/GRO (also known as CXCL1) was significantly enhanced in the somatosensory cortex in oxycodone-treated mice receiving PLX. Microglial knock-down did not affect the expression of naloxoneinduced opioid withdrawal but affected antinociceptive responsivity. The consequences of increased KC/GRO expression within the somatosensory cortex due to microglial reduction during opioid dependence are unclear but may be important for neural pathways mediating opioid-induced analgesia.
Collapse
Affiliation(s)
- Omar El Jordi
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, United States
| | - Kathryn D Fischer
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, United States
| | - Timothy B Meyer
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, United States
| | - Brady K Atwood
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, United States
| | - Adrian L Oblak
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, United States
| | - Raymond W Pan
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, United States
| | - David L McKinzie
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
2
|
McKendrick G, McDevitt DS, Shafeek P, Cottrill A, Graziane NM. Anterior cingulate cortex and its projections to the ventral tegmental area regulate opioid withdrawal, the formation of opioid context associations and context-induced drug seeking. Front Neurosci 2022; 16:972658. [PMID: 35992922 PMCID: PMC9388764 DOI: 10.3389/fnins.2022.972658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Clinical evidence suggests that there are correlations between activity within the anterior cingulate cortex (ACC) following re-exposure to drug-associated contexts and drug craving. However, there are limited data contributing to our understanding of ACC function at the cellular level during re-exposure to drug-context associations as well as whether the ACC is directly related to context-induced drug seeking. Here, we addressed this issue by employing our novel behavioral procedure capable of measuring the formation of drug-context associations as well as context-induced drug-seeking behavior in male mice (8-12 weeks of age) that orally self-administered oxycodone. We found that mice escalated oxycodone intake during the long-access training sessions and that conditioning with oxycodone was sufficient to evoke conditioned place preference (CPP) and drug-seeking behaviors. Additionally, we found that thick-tufted, but not thin-tufted pyramidal neurons (PyNs) in the ACC as well as ventral tegmental area (VTA)-projecting ACC neurons had increased intrinsic membrane excitability in mice that self-administered oxycodone compared to controls. Moreover, we found that global inhibition of the ACC or inhibition of VTA-projecting ACC neurons was sufficient to significantly reduce oxycodone-induced CPP, drug seeking, and spontaneous opioid withdrawal. These results demonstrate a direct role of ACC activity in mediating context-induced opioid seeking among other behaviors, including withdrawal, that are associated with the DSM-V criteria of opioid use disorder.
Collapse
Affiliation(s)
- Greer McKendrick
- Neuroscience Program, Penn State College of Medicine, Hershey, PA, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Dillon S. McDevitt
- Neuroscience Program, Penn State College of Medicine, Hershey, PA, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Peter Shafeek
- Medicine Program, Penn State College of Medicine, Hershey, PA, United States
| | - Adam Cottrill
- Neuroscience Program, Penn State College of Medicine, Hershey, PA, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Nicholas M. Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
3
|
Soto-Montenegro ML, García-Vázquez V, Lamanna-Rama N, López-Montoya G, Desco M, Ambrosio E. Neuroimaging reveals distinct brain glucose metabolism patterns associated with morphine consumption in Lewis and Fischer 344 rat strains. Sci Rep 2022; 12:4643. [PMID: 35301397 PMCID: PMC8931060 DOI: 10.1038/s41598-022-08698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/08/2022] [Indexed: 11/14/2022] Open
Abstract
Vulnerability to addiction may be given by the individual's risk of developing an addiction during their lifetime. A challenge in the neurobiology of drug addiction is understanding why some people become addicted to drugs. Here, we used positron emission tomography (PET) and statistical parametric mapping (SPM) to evaluate changes in brain glucose metabolism in response to chronic morphine self-administration (MSA) in two rat strains with different vulnerability to drug abuse, Lewis (LEW) and Fischer 344 (F344). Four groups of animals were trained to self-administer morphine or saline for 15 days. 2-deoxy-2-[18F]-fluoro-d-glucose (FDG)-PET studies were performed on the last day of MSA (acquisition phase) and after 15 days of withdrawal. PET data were analyzed using SPM12. LEW-animals self-administered more morphine injections per session than F344-animals. We found significant brain metabolic differences between LEW and F344 strains in the cortex, hypothalamus, brainstem, and cerebellum. In addition, the different brain metabolic patterns observed after the MSA study between these rat strains indicate differences in the efficiency of neural substrates to translate the drug effects, which could explain the differences in predisposition to morphine abuse between one individual and another. These findings have important implications for the use of these rat strains in translational morphine and opiate research.
Collapse
Affiliation(s)
- Mª Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,CIBER de Salud Mental (CIBERSAM), Madrid, Spain. .,Laboratorio de Imagen, Medicina Experimental, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007, Madrid, Spain.
| | | | - Nicolás Lamanna-Rama
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Gonzalo López-Montoya
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Psicobiología, Facultad de Psicología, Universidad de Educación Nacional a Distancia (UNED), Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,CIBER de Salud Mental (CIBERSAM), Madrid, Spain. .,Departamento de Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain. .,Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain. .,Laboratorio de Imagen, Medicina Experimental, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007, Madrid, Spain.
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, Universidad de Educación Nacional a Distancia (UNED), Madrid, Spain. .,Laboratorio de Imagen, Medicina Experimental, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007, Madrid, Spain.
| |
Collapse
|
4
|
McKendrick G, Graziane NM. Drug-Induced Conditioned Place Preference and Its Practical Use in Substance Use Disorder Research. Front Behav Neurosci 2020; 14:582147. [PMID: 33132862 PMCID: PMC7550834 DOI: 10.3389/fnbeh.2020.582147] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
The conditioned place preference (CPP) paradigm is a well-established model utilized to study the role of context associations in reward-related behaviors, including both natural rewards and drugs of abuse. In this review article, we discuss the basic history, various uses, and considerations that are tied to this technique. There are many potential takeaway implications of this model, including negative affective states, conditioned drug effects, memory, and motivation, which are all considered here. We also discuss the neurobiology of CPP including relevant brain regions, molecular signaling cascades, and neuromodulatory systems. We further examine some of our prior findings and how they integrate CPP with self-administration paradigms. Overall, by describing the fundamentals of CPP, findings from the past few decades, and implications of using CPP as a research paradigm, we have endeavored to support the case that the CPP method is specifically advantageous for studying the role of a form of Pavlovian learning that associates drug use with the surrounding environment.
Collapse
Affiliation(s)
- Greer McKendrick
- Neuroscience Graduate Program, Penn State College of Medicine, Hershey, PA, United States.,Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
5
|
Fang W. Deciphering functional brain circuitry during morphine withdrawal with dynamic manganese-enhanced MRI. Neurosci Lett 2020; 716:134655. [PMID: 31783083 DOI: 10.1016/j.neulet.2019.134655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 11/28/2022]
Abstract
Withdrawal plays a key role in the development of addiction, and several brain regions, such as the extended amygdala, are functional during this stage. Manganese-enhanced magnetic resonance imaging (MEMRI) is a promising method for directly studying neural activity during morphine withdrawal, versus functional MRI, which is based on hemodynamic alterations. The functional brain circuitry associated with morphine withdrawal has not been thoroughly investigated, and there are very few longitudinal studies utilizing MEMRI to explore brain activity during this stage. In our experiments, we revealed essential brain regions involved in morphine withdrawal by application of a novel dynamic MEMRI approach, and demonstrated dynamic alterations of functional brain activities in these associated brain regions. Our results demonstrate that the dynamic MEMRI approach is an effective method that may be applied to reveal dynamic alterations in functional brain activity during morphine withdrawal.
Collapse
Affiliation(s)
- Wenheng Fang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Sun YM, Chen RX, Li ZF, Spijker S, Zhai RW, Yang SC. The caudal part of the posterior insula of rats participates in the maintenance but not the acquisition of morphine conditioned place preference. CNS Neurosci Ther 2018; 24:420-428. [PMID: 29318747 PMCID: PMC5947672 DOI: 10.1111/cns.12799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 01/03/2023] Open
Abstract
The heterogeneous insular cortex plays an interoceptive role in drug addiction by signaling the availability of drugs of abuse. Here, we tested whether the caudal part of the multisensory posterior insula (PI) stores somatosensory‐associated rewarding memories. Using Sprague Dawley rats as subjects, we first established a morphine‐induced conditioned place preference (CPP) paradigm, mainly based on somatic cues. Secondly, an electrolytic lesion of the caudal portion of the PI was carried out before and after the establishment of CPP, respectively. Our data demonstrated that the caudal PI lesions disrupted the maintenance, but not the acquisition of morphine‐induced CPP. Lesion or subtle disruption of the PI had no major impact on locomotor activity. These findings indicate that the caudal portion of the PI might be involved in either the storage or the retrieval of morphine CPP memory.
Collapse
Affiliation(s)
- Yong-Mei Sun
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rong-Xiang Chen
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Zhi-Fei Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rong-Wei Zhai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Shang-Chuan Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
7
|
Increased entrances to side compartments indicate incubation of craving in morphine-induced rat and tree shrew CPP models. Pharmacol Biochem Behav 2017; 159:62-68. [DOI: 10.1016/j.pbb.2017.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 11/27/2022]
|
8
|
Febo M, Blum K, Badgaiyan RD, Perez PD, Colon-Perez LM, Thanos PK, Ferris CF, Kulkarni P, Giordano J, Baron D, Gold MS. Enhanced functional connectivity and volume between cognitive and reward centers of naïve rodent brain produced by pro-dopaminergic agent KB220Z. PLoS One 2017; 12:e0174774. [PMID: 28445527 PMCID: PMC5405923 DOI: 10.1371/journal.pone.0174774] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/15/2017] [Indexed: 11/20/2022] Open
Abstract
Dopaminergic reward dysfunction in addictive behaviors is well supported in the literature. There is evidence that alterations in synchronous neural activity between brain regions subserving reward and various cognitive functions may significantly contribute to substance-related disorders. This study presents the first evidence showing that a pro-dopaminergic nutraceutical (KB220Z) significantly enhances, above placebo, functional connectivity between reward and cognitive brain areas in the rat. These include the nucleus accumbens, anterior cingulate gyrus, anterior thalamic nuclei, hippocampus, prelimbic and infralimbic loci. Significant functional connectivity, increased brain connectivity volume recruitment (potentially neuroplasticity), and dopaminergic functionality were found across the brain reward circuitry. Increases in functional connectivity were specific to these regions and were not broadly distributed across the brain. While these initial findings have been observed in drug naïve rodents, this robust, yet selective response implies clinical relevance for addicted individuals at risk for relapse, who show reductions in functional connectivity after protracted withdrawal. Future studies will evaluate KB220Z in animal models of addiction.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Psychiatry, Wright State University, Boonshoft School of Medicine, Dayton, Ohio, United States of America
- Department of Holistic Medicine, National Institute for Holistic Addiction Studies, North Miami Beach, Florida, United States of America
- Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC, North Kingstown, Rhode Island, United States of America
- Department of Psychiatry, Keck Medicine University of Southern California, Los Angeles, California, United States of America
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, Wright State University, Boonshoft School of Medicine, Dayton, Ohio, United States of America
| | - Pablo D. Perez
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Luis M. Colon-Perez
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Panayotis K. Thanos
- Research Institute on Addictions, University at Buffalo, Buffalo, New York, United States of America
| | - Craig F. Ferris
- Center for Translational Neuroimaging, Department of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - Praveen Kulkarni
- Center for Translational Neuroimaging, Department of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - John Giordano
- Department of Holistic Medicine, National Institute for Holistic Addiction Studies, North Miami Beach, Florida, United States of America
| | - David Baron
- Department of Psychiatry, Keck Medicine University of Southern California, Los Angeles, California, United States of America
| | - Mark S. Gold
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Psychiatry, Keck Medicine University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
9
|
Lawson SK, Gray AC, Woehrle NS. Effects of oxytocin on serotonin 1B agonist-induced autism-like behavior in mice. Behav Brain Res 2016; 314:52-64. [DOI: 10.1016/j.bbr.2016.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 01/19/2023]
|
10
|
McLaughlin T, Febo M, Badgaiyan RD, Barh D, Dushaj K, Braverman ER, Li M, Madigan MA, Blum K. KB220Z™ a Pro-Dopamine Regulator Associated with the Protracted, Alleviation of Terrifying Lucid Dreams. Can We Infer Neuroplasticity-induced Changes in the Reward Circuit? JOURNAL OF REWARD DEFICIENCY SYNDROME AND ADDICTION SCIENCE 2016; 2:3-13. [PMID: 28210713 PMCID: PMC5308138 DOI: 10.17756/jrdsas.2016-022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Recent reports by our laboratory have indicated that lucid dreams may be linked to psychiatric conditions, including Attention Deficit Hyperactivity Disorder (ADHD) and other Reward Deficiency Syndrome-related diagnoses. In the latter case, it has been our observation that such lucid dreams can be unpleasant and frequently terrifying. CASE PRESENTATIONS We present four cases of a dramatic and persistent alleviation of terrifying, lucid dreams in patients diagnosed with ADHD/PTSD and/or opiate/opioid addiction. The amelioration of such dreams could well be permanent, since the patients had stopped taking the nutraceutical for between 10 to 12 months, without their recollection or recurrence. In the first case, the patient is a 47-year-old, married male who required continued Buprenorphine/ Naloxone (Suboxone) treatment. The second case involved a 32-year-old female with the sole diagnosis of ADHD. The third case involves a 38-year-old male who carried the diagnoses of Substance Use Dependence and ADHD. The fourth case involved a 50-year-old female with the diagnoses of Alcohol Abuse, ADHD and Posttraumatic Stress Disorder. RESULTS In order to attempt to understand the possibility of neuroplasticity, we evaluated the effect of KB220Z in non-opioid-addicted rats utilizing functional Magnetic Resonance Imaging methodology. While we cannot make a definitive claim because rat brain functional connectivity may not be exactly the same as humans, it does provide some interesting clues. We did find following seeding of the dorsal hippocampus, enhanced connectivity volume across several Regions of Interest (ROI), with the exception of the pre- frontal cortex. Interestingly, the latter region is only infrequently activated in lucid human dreaming, when the dreamer reports that he/she had the thought that they were dreaming during the lucid dream. CONCLUSIONS The four patients initially reported a gradual but, then, complete amelioration of their long-term, terrifying, lucid dreams, while taking KB220Z. The persistent amelioration of these dreams continued for up to 12 months, after a self-initiated, cessation of use of KB220Z. These particular cases raise the scientific possibility that KB200Z increases both dopamine stability as well as functional connectivity between networks of brain reward circuitry in both rodents and humans. The increase in connectivity volume in rodents suggest the induction of neuroplasticity changes, which may be analogous to those involved in human lucid dreaming as well as Rapid Eye Movement sleep. The possibility that the complex induces long-term, neuroplasticity changes must await more intensive investigations, involving large-population, double-blinded studies.
Collapse
Affiliation(s)
| | - Marcelo Febo
- Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Rajendra D. Badgaiyan
- Molecular and Functional Imaging Laboratory, Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA; Neuromodulation Program, University of Minnesota Twin City Campus, Minneapolis, MN, USA; Laboratory of Advanced Radiochemistry, University of Minnesota Twin City Campus, Minneapolis, MN, USA
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, India
| | - Kristina Dushaj
- Department of Clinical Neurology, PATH Foundation NY, New York, NY, USA
| | - Eric R. Braverman
- Department of Clinical Neurology, PATH Foundation NY, New York, NY, USA
| | - Mona Li
- Department of Clinical Neurology, PATH Foundation NY, New York, NY, USA
| | | | - Kenneth Blum
- Department of Psychiatry and McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, India
- Department of Clinical Neurology, PATH Foundation NY, New York, NY, USA
- Department of Personalized Medicine, IGENE, LLC., Austin, TX, USA
- Community Mental Health Institute, Center for Clinical & Translational Science, University of Vermont and Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, USA
- Division of Addiction Services, Dominion Diagnostics, LLC., North Kingstown, RI, USA
- Division of Neuroscience-Based Therapy, Summit Estate Recovery Center, Los Gatos, CA, USA
- Department of Nutrigenomics, LaVita RDS, LLC, Salt Lake City, UT, USA
- Division of Neuroscience Research & Addiction Therapy, Shores Treatment & Recovery Center, Port Saint Lucie, FL, USA
- Department of Education & Psychology, Eotvus Lorand University, Budapest, Hungary
| |
Collapse
|
11
|
Sun Y, Zong W, Zhou M, Ma Y, Wang J. Pre-conditioned place preference treatment of chloral hydrate interrupts the rewarding effect of morphine. Pharmacol Biochem Behav 2015; 135:60-3. [DOI: 10.1016/j.pbb.2015.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022]
|
12
|
The effect of morphine on regional cerebral blood flow measured by 99mTc-ECD SPECT in dogs. PLoS One 2014; 9:e109680. [PMID: 25295733 PMCID: PMC4190363 DOI: 10.1371/journal.pone.0109680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/05/2014] [Indexed: 11/19/2022] Open
Abstract
To gain insights into the working mechanism of morphine, regional cerebral blood flow (rCBF) patterns after morphine administration were assessed in dogs. In a randomized cross-over experimental study, rCBF was estimated with 99mTc-Ethylcysteinate Dimer single photon emission computed tomography in 8 dogs at baseline, at 30 minutes and at 120 minutes after a single bolus of morphine. Perfusion indices (PI) in the frontal, parietal, temporal and occipital cortex and in the subcortical and cerebellar region were calculated. PI was significantly decreased 30 min after morphine compared to baseline in the right frontal cortex. The left parietal cortex and subcortical region showed a significantly increased PI 30 min after morphine compared to baseline. No significant differences were noted for the other regions or at other time points. In conclusion, a single bolus of morphine generated a changing rCBF pattern at different time points.
Collapse
|
13
|
Higuchi S, Irie K, Yamaguchi R, Katsuki M, Araki M, Ohji M, Hayakawa K, Mishima S, Akitake Y, Matsuyama K, Mishima K, Mishima K, Iwasaki K, Fujiwara M. Hypothalamic 2-arachidonoylglycerol regulates multistage process of high-fat diet preferences. PLoS One 2012; 7:e38609. [PMID: 22737214 PMCID: PMC3380864 DOI: 10.1371/journal.pone.0038609] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/08/2012] [Indexed: 11/19/2022] Open
Abstract
Background In this study, we examined alterations in the hypothalamic reward system related to high-fat diet (HFD) preferences. We previously reported that hypothalamic 2-arachidonoylglycerol (2-AG) and glial fibrillary acid protein (GFAP) were increased after conditioning to the rewarding properties of a HFD. Here, we hypothesized that increased 2-AG influences the hypothalamic reward system. Methods The conditioned place preference test (CPP test) was used to evaluate HFD preferences. Hypothalamic 2-AG was quantified by gas chromatography-mass spectrometry. The expression of GFAP was examined by immunostaining and western blotting. Results Consumption of a HFD over either 3 or 7 days increased HFD preferences and transiently increased hypothalamic 2-AG levels. HFD consumption over 14 days similarly increased HFD preferences but elicited a long-lasting increase in hypothalamic 2-AG and GFAP levels. The cannabinoid 1 receptor antagonist O-2050 reduced preferences for HFDs after 3, 7, or 14 days of HFD consumption and reduced expression of GFAP after 14 days of HFD consumption. The astrocyte metabolic inhibitor Fluorocitrate blocked HFD preferences after 14 days of HFD consumption. Conclusions High levels of 2-AG appear to induce HFD preferences, and activate hypothalamic astrocytes via the cannabinoid system. We propose that there may be two distinct stages in the development of HFD preferences. The induction stage involves a transient increase in 2-AG, whereas the maintenance stage involves a long lasting increase in 2-AG levels and activation of astrocytes. Accordingly, hypothalamic 2-AG may influence the development of HFD preferences.
Collapse
Affiliation(s)
- Sei Higuchi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Keiichi Irie
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Japan
| | - Ryuji Yamaguchi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Mai Katsuki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Maiko Araki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Makiko Ohji
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kazuhide Hayakawa
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shohei Mishima
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yoshiharu Akitake
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Japan
| | - Kiyoshi Matsuyama
- Department of Chemical Engineering, Faculty of Engineering, Fukuoka University, Fukuoka, Japan
| | - Kenji Mishima
- Department of Chemical Engineering, Faculty of Engineering, Fukuoka University, Fukuoka, Japan
| | - Kenichi Mishima
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Japan
- * E-mail:
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Japan
| | - Michihiro Fujiwara
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
14
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
15
|
Meng Z, Liu C, Hu X, Ma Y. Irregular morphine administration affects the retention but not acquisition of conditioned place preference in rats. Brain Res 2010; 1311:86-92. [DOI: 10.1016/j.brainres.2009.11.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 11/20/2009] [Accepted: 11/20/2009] [Indexed: 10/20/2022]
|