1
|
Wang Y, Ruan L, Zhu J, Zhang X, Chang ACC, Tomaszewski A, Li R. Metabolic regulation of misfolded protein import into mitochondria. eLife 2024; 12:RP87518. [PMID: 38900507 PMCID: PMC11189628 DOI: 10.7554/elife.87518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Mitochondria are the cellular energy hub and central target of metabolic regulation. Mitochondria also facilitate proteostasis through pathways such as the 'mitochondria as guardian in cytosol' (MAGIC) whereby cytosolic misfolded proteins (MPs) are imported into and degraded inside mitochondria. In this study, a genome-wide screen in Saccharomyces cerevisiae uncovered that Snf1, the yeast AMP-activated protein kinase (AMPK), inhibits the import of MPs into mitochondria while promoting mitochondrial biogenesis under glucose starvation. We show that this inhibition requires a downstream transcription factor regulating mitochondrial gene expression and is likely to be conferred through substrate competition and mitochondrial import channel selectivity. We further show that Snf1/AMPK activation protects mitochondrial fitness in yeast and human cells under stress induced by MPs such as those associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuhao Wang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Linhao Ruan
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jin Zhu
- Mechanobiology Institute and Department of Biological Sciences, National University of SingaporeSingaporeSingapore
| | - Xi Zhang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Alexander Chih-Chieh Chang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Alexis Tomaszewski
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Rong Li
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Mechanobiology Institute and Department of Biological Sciences, National University of SingaporeSingaporeSingapore
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
2
|
Maynard AG, Pohl NK, Mueller AP, Petrova B, Wong AYL, Wang P, Culhane AJ, Brook JR, Hirsch LM, Hoang N, Kirkland O, Braun T, Ducamp S, Fleming MD, Li H, Kanarek N. Folate depletion induces erythroid differentiation through perturbation of de novo purine synthesis. SCIENCE ADVANCES 2024; 10:eadj9479. [PMID: 38295180 PMCID: PMC10830111 DOI: 10.1126/sciadv.adj9479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
Folate, an essential vitamin, is a one-carbon acceptor and donor in key metabolic reactions. Erythroid cells harbor a unique sensitivity to folate deprivation, as revealed by the primary pathological manifestation of nutritional folate deprivation: megaloblastic anemia. To study this metabolic sensitivity, we applied mild folate depletion to human and mouse erythroid cell lines and primary murine erythroid progenitors. We show that folate depletion induces early blockade of purine synthesis and accumulation of the purine synthesis intermediate and signaling molecule, 5'-phosphoribosyl-5-aminoimidazole-4-carboxamide (AICAR), followed by enhanced heme metabolism, hemoglobin synthesis, and erythroid differentiation. This is phenocopied by inhibition of folate metabolism using the inhibitor SHIN1, and by AICAR supplementation. Mechanistically, the metabolically driven differentiation is independent of mechanistic target of rapamycin complex 1 (mTORC1) and adenosine 5'-monophosphate-activated protein kinase (AMPK) and is instead mediated by protein kinase C. Our findings suggest that folate deprivation-induced premature differentiation of erythroid progenitor cells is a molecular etiology to folate deficiency-induced anemia.
Collapse
Affiliation(s)
- Adam G. Maynard
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Nancy K. Pohl
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard School of Public Health PhD Program, Boston, MA 02115, USA
| | - Annabel P. Mueller
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Alan Y. L. Wong
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Peng Wang
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J. Culhane
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jeannette R. Brook
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Leah M. Hirsch
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ngoc Hoang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Orville Kirkland
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Tatum Braun
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sarah Ducamp
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Mark D. Fleming
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Hojun Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Pediatrics, University of California, San Diego, CA 92093, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| |
Collapse
|
3
|
Aikawa A, Kozako T, Kato N, Ohsugi T, Honda SI. Anti-tumor activity of 5-aminoimidazole-4-carboxamide riboside with AMPK-independent cell death in human adult T-cell leukemia/lymphoma. Eur J Pharmacol 2023; 961:176180. [PMID: 37956732 DOI: 10.1016/j.ejphar.2023.176180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive T cell leukemia/lymphoma caused by human T-cell lymphotropic virus type I (HTLV-1). Acadesine or 5-aminoimidazole-4-carboxamide riboside (AICAR) is an AMP-activated protein kinase (AMPK) activator that was recently shown to have tumor suppressive effects on B cell chronic lymphocytic leukemia, but not ATL. This study evaluated the cytotoxic effects of AICAR on ATL-related cell lines and its anti-tumor activity. Here, we demonstrated that AICAR induced cell death via apoptosis and the mitochondrial membrane depolarization of ATL-related cell lines (S1T, MT-1, and MT-2) but not non-HTLV-1-infected Jurkat cells. However, AICAR did not increase the phosphorylation levels of AMPKα. In addition, AICAR increased the expression of the death receptors (DR) DR4 and DR5, and necroptosis-related proteins including phosphorylated receptor-interacting protein family members and the mixed lineage kinase domain-like protein. Interestingly, HTLV-1 Tax, an HTLV-1-encoded oncogenic factor, did not affect AICAR-induced apoptosis. Furthermore, AICAR inhibited the growth of human ATL tumor xenografts in NOD/SCID/gamma mice in vivo. Together, these results suggest that AICAR induces AMPK-independent cell death in ATL-related cell lines and has anti-tumor activity, indicating that it might be a therapeutic agent for ATL.
Collapse
Affiliation(s)
- Akiyoshi Aikawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Tomohiro Kozako
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Naho Kato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | - Takeo Ohsugi
- Department of Hematology and Immunology, Rakuno Gakuen University, Hokkaido, Japan.
| | - Shin-Ichiro Honda
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
4
|
Wang Y, Ruan L, Zhu J, Zhang X, Chih-Chieh Chang A, Tomaszewski A, Li R. Metabolic regulation of misfolded protein import into mitochondria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534670. [PMID: 37034811 PMCID: PMC10081186 DOI: 10.1101/2023.03.29.534670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mitochondria are the cellular energy hub and central target of metabolic regulation. Mitochondria also facilitate proteostasis through pathways such as the 'mitochondria as guardian in cytosol' (MAGIC) whereby cytosolic misfolded proteins (MPs) are imported into and degraded inside mitochondria. In this study, a genome-wide screen in yeast uncovered that Snf1, the yeast AMP-activated protein kinase (AMPK), inhibits the import of MPs into mitochondria while promoting mitochondrial biogenesis under glucose starvation. We show that this inhibition requires a downstream transcription factor regulating mitochondrial gene expression and is likely to be conferred through substrate competition and mitochondrial import channel selectivity. We further show that Snf1/AMPK activation protects mitochondrial fitness in yeast and human cells under stress induced by MPs such as those associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuhao Wang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine; Baltimore, MD 21287, USA
| | - Linhao Ruan
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Jin Zhu
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore; Singapore 117411, Singapore
| | - Xi Zhang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Alexander Chih-Chieh Chang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Alexis Tomaszewski
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine; Baltimore, MD 21287, USA
| | - Rong Li
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore; Singapore 117411, Singapore
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University; Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Kocak M, Ezazi Erdi S, Jorba G, Maestro I, Farrés J, Kirkin V, Martinez A, Pless O. Targeting autophagy in disease: established and new strategies. Autophagy 2021; 18:473-495. [PMID: 34241570 PMCID: PMC9037468 DOI: 10.1080/15548627.2021.1936359] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved pathway responsible for clearing cytosolic aggregated proteins, damaged organelles or invading microorganisms. Dysfunctional autophagy leads to pathological accumulation of the cargo, which has been linked to a range of human diseases, including neurodegenerative diseases, infectious and autoimmune diseases and various forms of cancer. Cumulative work in animal models, application of genetic tools and pharmacologically active compounds, has suggested the potential therapeutic value of autophagy modulation in disease, as diverse as Huntington, Salmonella infection, or pancreatic cancer. Autophagy activation versus inhibition strategies are being explored, while the role of autophagy in pathophysiology is being studied in parallel. However, the progress of preclinical and clinical development of autophagy modulators has been greatly hampered by the paucity of selective pharmacological agents and biomarkers to dissect their precise impact on various forms of autophagy and cellular responses. Here, we summarize established and new strategies in autophagy-related drug discovery and indicate a path toward establishing a more efficient discovery of autophagy-selective pharmacological agents. With this knowledge at hand, modern concepts for therapeutic exploitation of autophagy might become more plausible. Abbreviations: ALS: amyotrophic lateral sclerosis; AMPK: AMP-activated protein kinase; ATG: autophagy-related gene; AUTAC: autophagy-targeting chimera; CNS: central nervous system; CQ: chloroquine; GABARAP: gamma-aminobutyric acid type A receptor-associated protein; HCQ: hydroxychloroquine; LYTAC: lysosome targeting chimera; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NDD: neurodegenerative disease; PDAC: pancreatic ductal adenocarcinoma; PE: phosphatidylethanolamine; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; PROTAC: proteolysis-targeting chimera; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Muhammed Kocak
- Cancer Research UK, Cancer Therapeutics Unit, the Institute of Cancer Research London, Sutton, UK
| | | | | | - Inés Maestro
- Centro De Investigaciones Biologicas "Margarita Salas"-CSIC, Madrid, Spain
| | | | - Vladimir Kirkin
- Cancer Research UK, Cancer Therapeutics Unit, the Institute of Cancer Research London, Sutton, UK
| | - Ana Martinez
- Centro De Investigaciones Biologicas "Margarita Salas"-CSIC, Madrid, Spain.,Centro De Investigación Biomédica En Red En Enfermedades Neurodegenerativas (CIBERNED), Instituto De Salud Carlos III, Madrid, Spain
| | - Ole Pless
- Fraunhofer ITMP ScreeningPort, Hamburg, Germany
| |
Collapse
|
6
|
Višnjić D, Lalić H, Dembitz V, Tomić B, Smoljo T. AICAr, a Widely Used AMPK Activator with Important AMPK-Independent Effects: A Systematic Review. Cells 2021. [PMID: 34064363 DOI: 10.3390/cellsl0051095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
5-Aminoimidazole-4-carboxamide ribonucleoside (AICAr) has been one of the most commonly used pharmacological modulators of AMPK activity. The majority of early studies on the role of AMPK, both in the physiological regulation of metabolism and in cancer pathogenesis, were based solely on the use of AICAr as an AMPK-activator. Even with more complex models of AMPK downregulation and knockout being introduced, AICAr remained a regular starting point for many studies focusing on AMPK biology. However, there is an increasing number of studies showing that numerous AICAr effects, previously attributed to AMPK activation, are in fact AMPK-independent. This review aims to give an overview of the present knowledge on AMPK-dependent and AMPK-independent effects of AICAr on metabolism, hypoxia, exercise, nucleotide synthesis, and cancer, calling for caution in the interpretation of AICAr-based studies in the context of understanding AMPK signaling pathway.
Collapse
Affiliation(s)
- Dora Višnjić
- Laboratory of Cell Biology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Physiology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Hrvoje Lalić
- Laboratory of Cell Biology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Physiology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Vilma Dembitz
- Laboratory of Cell Biology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Physiology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Barbara Tomić
- Laboratory of Cell Biology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Physiology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Tomislav Smoljo
- Laboratory of Cell Biology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Physiology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
AICAr, a Widely Used AMPK Activator with Important AMPK-Independent Effects: A Systematic Review. Cells 2021; 10:cells10051095. [PMID: 34064363 PMCID: PMC8147799 DOI: 10.3390/cells10051095] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 12/24/2022] Open
Abstract
5-Aminoimidazole-4-carboxamide ribonucleoside (AICAr) has been one of the most commonly used pharmacological modulators of AMPK activity. The majority of early studies on the role of AMPK, both in the physiological regulation of metabolism and in cancer pathogenesis, were based solely on the use of AICAr as an AMPK-activator. Even with more complex models of AMPK downregulation and knockout being introduced, AICAr remained a regular starting point for many studies focusing on AMPK biology. However, there is an increasing number of studies showing that numerous AICAr effects, previously attributed to AMPK activation, are in fact AMPK-independent. This review aims to give an overview of the present knowledge on AMPK-dependent and AMPK-independent effects of AICAr on metabolism, hypoxia, exercise, nucleotide synthesis, and cancer, calling for caution in the interpretation of AICAr-based studies in the context of understanding AMPK signaling pathway.
Collapse
|
8
|
Ma D, Liu P, Wang P, Zhou Z, Fang Q, Wang J. PKC-β/Alox5 axis activation promotes Bcr-Abl-independent TKI-resistance in chronic myeloid leukemia. J Cell Physiol 2021; 236:6312-6327. [PMID: 33561320 DOI: 10.1002/jcp.30301] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Bcr-Abl independent resistance to tyrosine kinase inhibitor (TKI) is a crucial factor lead to relapse or acute leukemia transformation in chronic myeloid leukemia (CML). However, its mechanism is still unclear. Herein, we found that of nine common protein kinases C (PKCs), PKC-β overexpression was significantly related with TKI resistance. Blockage of its expression in CD34+ cells and CML cell lines increased sensitivity to imatinib. Then, eighty-four leukemia related genes were compared between TKI-resistant CML cell lines with PKC-β silenced or not. Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that Arachidonate 5-lipoxygenase (Alox5) and its relative pathway mainly participated in the resistance induced by PKC-β overexpression. It's also observed that Alox5 was increased not only in bone marrow biopsy but also in CD34+ cells derived from IM-resistant CML patients. The signaling pathway exploration indicated that ERK1/2 pathway mediates Alox5 upregulation by PKC-β. Meanwhile, we also proved that Alox5 induces TKI-insensitivity in CML through inactivation of PTEN. In vivo experiment, PKC-β elective inhibitor LY333531 prolonged survival time in CML-PDX mice model. In conclusion, targeted on PKC-β overexpression might be a novel therapy mechanism to overcome TKI-resistance in CML.
Collapse
Affiliation(s)
- Dan Ma
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Center of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Province Institute of Hematology, Guiyang, China
| | - Ping Liu
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Center of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Province Institute of Hematology, Guiyang, China
| | - Ping Wang
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Center of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Province Institute of Hematology, Guiyang, China
| | - Zhen Zhou
- Department of Pharmacy, Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jishi Wang
- Department of Hematology, Key Laboratory of Hematological Disease Diagnostic & Treat Center of Guizhou Province, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Province Institute of Hematology, Guiyang, China
| |
Collapse
|
9
|
Ren PH, Zhang ZM, Wang P, Zhu HP, Li ZQ. Yangxinkang tablet protects against cardiac dysfunction and remodelling after myocardial infarction in rats through inhibition of AMPK/mTOR-mediated autophagy. PHARMACEUTICAL BIOLOGY 2020; 58:321-327. [PMID: 32285737 PMCID: PMC7178820 DOI: 10.1080/13880209.2020.1748662] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/06/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Context: Acute myocardial infarction (AMI) is defined as myocardial necrosis. Clinicians use the traditional Chinese patent medicine Yangxinkang Tablet (YXK) to treat chronic heart failure.Objective: To explore the effects of YXK on heart injury following AMI and the underlying mechanisms.Materials and methods: The AMI model was produced in Wistar rats by permanent ligation of the left anterior descending coronary artery. Rats were divided into the following five groups: Sham (n = 6), MI (Model, n = 10), AICAR (AMPK agonist, 50 mg/kg/d, i.p., n = 10), Compound C (AMPK inhibitor, 10 mg/kg/d, i.p., n = 10), and YXK (0.72 g/kg/d, gavage, n = 10) groups. Cardiac function, cardiac fibrosis, apoptosis, and expression of p-AMPK, p-mTOR, and autophagy-related proteins was measured after 4 weeks of treatment after the successful modelling of the AMI.Results: Compared to MI group, both YXK and AMPK inhibitor improved cardiac dysfunction and reduced cardiac fibrosis (15.6 ± 2.3; 22.6 ± 4.6 vs. 34.6 ± 4.3%) and myocardial cell apoptosis (12 ± 3.67; 25.6 ± 6.8 vs. 54 ± 4.8%). Futhermore, YXK and AMPK inhibitor significantly decreased p-AMPK expression by 11.05% and 14.64%, LC3II/I by 25.08% and 35.28% and Beclin-1 by 66.71% and 33.85%, increased p-mTOR by 22.14% and 47.46% and p62 by 70.83% and 18.58%.Conclusions: The underlying mechanism appears to include suppression of autophagy via inhibiting AMPK/mTOR signalling, suggesting that YXK may serve as a potentially effective Chinese herbal compound for suppressing cardiac fibrosis in heart injury.
Collapse
Affiliation(s)
- Pei-hua Ren
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-min Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Han-ping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhen-qiu Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Abstract
The use of an acetylene (ethynyl) group in medicinal chemistry coincides with the launch of the Journal of Medicinal Chemistry in 1959. Since then, the acetylene group has been broadly exploited in drug discovery and development. As a result, it has become recognized as a privileged structural feature for targeting a wide range of therapeutic target proteins, including MAO, tyrosine kinases, BACE1, steroid receptors, mGlu5 receptors, FFA1/GPR40, and HIV-1 RT. Furthermore, a terminal alkyne functionality is frequently introduced in chemical biology probes as a click handle to identify molecular targets and to assess target engagement. This Perspective is divided into three parts encompassing: (1) the physicochemical properties of the ethynyl group, (2) the advantages and disadvantages of the ethynyl group in medicinal chemistry, and (3) the impact of the ethynyl group on chemical biology approaches.
Collapse
Affiliation(s)
- Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| |
Collapse
|
11
|
Acadesine Circumvents Azacitidine Resistance in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Int J Mol Sci 2019; 21:ijms21010164. [PMID: 31881723 PMCID: PMC6981810 DOI: 10.3390/ijms21010164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/22/2019] [Accepted: 11/28/2019] [Indexed: 01/05/2023] Open
Abstract
Myelodysplastic syndrome (MDS) defines a group of heterogeneous hematologic malignancies that often progresses to acute myeloid leukemia (AML). The leading treatment for high-risk MDS patients is azacitidine (Aza, Vidaza®), but a significant proportion of patients are refractory and all patients eventually relapse after an undefined time period. Therefore, new therapies for MDS are urgently needed. We present here evidence that acadesine (Aca, Acadra®), a nucleoside analog exerts potent anti-leukemic effects in both Aza-sensitive (OCI-M2S) and resistant (OCI-M2R) MDS/AML cell lines in vitro. Aca also exerts potent anti-leukemic effect on bone marrow cells from MDS/AML patients ex-vivo. The effect of Aca on MDS/AML cell line proliferation does not rely on apoptosis induction. It is also noteworthy that Aca is efficient to kill MDS cells in a co-culture model with human medullary stromal cell lines, that mimics better the interaction occurring in the bone marrow. These initial findings led us to initiate a phase I/II clinical trial using Acadra® in 12 Aza refractory MDS/AML patients. Despite a very good response in one out 4 patients, we stopped this trial because the highest Aca dose (210 mg/kg) caused serious renal side effects in several patients. In conclusion, the side effects of high Aca doses preclude its use in patients with strong comorbidities.
Collapse
|
12
|
Wang Y, Tang C, Yao S, Lai H, Li R, Xu J, Wang Q, Fan XX, Wu QB, Leung ELH, Ye Y, Yao X. Discovery of a novel protein kinase C activator from Croton tiglium for inhibition of non-small cell lung cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 65:153100. [PMID: 31648127 DOI: 10.1016/j.phymed.2019.153100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The incidence of non-small cell lung cancer (NSCLC) accounts for approximately 85-90% of lung cancer, which has been shown to be challenging for treatment owing to poorly understanding of pathological mechanisms. Natural products serve as a source of almost all pharmaceutical preparations or offer guidance for those chemicals that have entered clinical trials, especially in NSCLC. PURPOSE We investigated the effect of B10G5, a natural products isolated from the Croton tiglium, in human non-small cell lung canceras as a protein kinase C (PKC) activator. METHODS The cell viability assay was evaluated by the MTT assay. The apoptosis and cell cycle distribution were assessed by flow cytometry. Reactive oxygen species (ROS) production was determined by using the fluorescent probe DCFDA. Cell migration ability of H1975 cells was analyzed by using the wound healing assay. The inhibiting effect of B10G5 against the phosphorylation level of the substrate by PKCs was assessed by using homogeneous time-resolved fluorescence (HTRF) technology. The correlation between PKCs and overall survival (OS) of Lung Adenocarcinoma (LUAD) patients was analysis by TCGA portal. The binding mode between B10G5 and the PKC isoforms was explored by molecular docking. Protein expression was detected by western blotting analysis. RESULTS B10G5 suppressed cell proliferation and colony formation, as well as migration ability of NSCLC cells, without significant toxic effect on normal lung cells. B10G5 induced the cell apoptosis through the development of PARP cleavage, which is evidenced by means of the production of mitochondrial ROS. In addition, the B10G5 inhibitory effect was also related to the cell cycle arrest at G2/M phase. Mechanistically, molecular modelling technology suggested that the potential target of B10G5 was associated with PKC family. In vitro PKC kinase assay indicated that B10G5 effectively activated the PKC activity. Western blotting data revealed that B10G5 upregulated PKC to activate PKC-mediated RAF/MEK/ERK pathway. CONCLUSION Our results showed that B10G5, a naturally occurring phorbol ester, considered to be a potential and a valuable therapeutic chemical in the treatment of NSCLC.
Collapse
Affiliation(s)
- Yuwei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Chunping Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academic of Sciences, Shanghai, China
| | - Sheng Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academic of Sciences, Shanghai, China
| | - Huanling Lai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Runze Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Jiahui Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Qianqian Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Xing Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Qi Biao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; Department of Thoracic Surgery, Guangzhou Institute of Respiratory Health and State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Respiratory Medicine Department, Taihe Hospital, Hubei University of Medicine, Hubei, China.
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academic of Sciences, Shanghai, China.
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China.
| |
Collapse
|
13
|
Dembitz V, Tomic B, Kodvanj I, Simon JA, Bedalov A, Visnjic D. The ribonucleoside AICAr induces differentiation of myeloid leukemia by activating the ATR/Chk1 via pyrimidine depletion. J Biol Chem 2019; 294:15257-15270. [PMID: 31431503 PMCID: PMC6802504 DOI: 10.1074/jbc.ra119.009396] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Metabolic pathways play important roles in proliferation and differentiation of malignant cells. 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAr), a precursor in purine biosynthesis and a well-established activator of AMP-activated protein kinase (AMPK), induces widespread metabolic alterations and is commonly used for dissecting the role of metabolism in cancer. We have previously reported that AICAr promotes differentiation and inhibits proliferation of myeloid leukemia cells. Here, using metabolic assays, immunoblotting, flow cytometry analyses, and siRNA-mediated gene silencing in leukemia cell lines, we show that AICAr-mediated differentiation was independent of the known metabolic effects of AMPK, including glucose consumption, but instead depends on the activation of the DNA damage–associated enzyme checkpoint kinase 1 (Chk1) induced by pyrimidine depletion. LC/MS/MS metabolomics analysis revealed that AICAr increases orotate levels and decreases uridine monophosphate (UMP) levels, consistent with inhibition of UMP synthesis at a step downstream of dihydroorotate dehydrogenase (DHODH). AICAr and the DHODH inhibitor brequinar had similar effects on differentiation markers and S-phase arrest, and genetic or pharmacological Chk1 inactivation abrogated both of these effects. Our results delineate an AMPK-independent effect of AICAr on myeloid leukemia differentiation that involves perturbation of pyrimidine biosynthesis and activation of the DNA damage response network.
Collapse
Affiliation(s)
- Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Barbara Tomic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Ivan Kodvanj
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Julian A Simon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| |
Collapse
|
14
|
Visnjic D, Dembitz V, Lalic H. The Role of AMPK/mTOR Modulators in the Therapy of Acute Myeloid Leukemia. Curr Med Chem 2019; 26:2208-2229. [PMID: 29345570 DOI: 10.2174/0929867325666180117105522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/01/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Differentiation therapy of acute promyelocytic leukemia with all-trans retinoic acid represents the most successful pharmacological therapy of acute myeloid leukemia (AML). Numerous studies demonstrate that drugs that inhibit mechanistic target of rapamycin (mTOR) and activate AMP-kinase (AMPK) have beneficial effects in promoting differentiation and blocking proliferation of AML. Most of these drugs are already in use for other purposes; rapalogs as immunosuppressants, biguanides as oral antidiabetics, and 5-amino-4-imidazolecarboxamide ribonucleoside (AICAr, acadesine) as an exercise mimetic. Although most of these pharmacological modulators have been widely used for decades, their mechanism of action is only partially understood. In this review, we summarize the role of AMPK and mTOR in hematological malignancies and discuss the possible role of pharmacological modulators in proliferation and differentiation of leukemia cells.
Collapse
Affiliation(s)
- Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| |
Collapse
|
15
|
Therapeutic Modulation of Autophagy in Leukaemia and Lymphoma. Cells 2019; 8:cells8020103. [PMID: 30704144 PMCID: PMC6406467 DOI: 10.3390/cells8020103] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Haematopoiesis is a tightly orchestrated process where a pool of hematopoietic stem and progenitor cells (HSPCs) with high self-renewal potential can give rise to both lymphoid and myeloid lineages. The HSPCs pool is reduced with ageing resulting in few HSPC clones maintaining haematopoiesis thereby reducing blood cell diversity, a phenomenon called clonal haematopoiesis. Clonal expansion of HSPCs carrying specific genetic mutations leads to increased risk for haematological malignancies. Therefore, it comes as no surprise that hematopoietic tumours develop in higher frequency in elderly people. Unfortunately, elderly patients with leukaemia or lymphoma still have an unsatisfactory prognosis compared to younger ones highlighting the need to develop more efficient therapies for this group of patients. Growing evidence indicates that macroautophagy (hereafter referred to as autophagy) is essential for health and longevity. This review is focusing on the role of autophagy in normal haematopoiesis as well as in leukaemia and lymphoma development. Attenuated autophagy may support early hematopoietic neoplasia whereas activation of autophagy in later stages of tumour development and in response to a variety of therapies rather triggers a pro-tumoral response. Novel insights into the role of autophagy in haematopoiesis will be discussed in light of designing new autophagy modulating therapies in hematopoietic cancers.
Collapse
|
16
|
Shen Y, Crassini K, Sandhu S, Fatima N, Christopherson RI, Mulligan SP, Best OG. Dual inhibition of MEK1/2 and AKT by binimetinib and MK2206 induces apoptosis of chronic lymphocytic leukemia cells under conditions that mimic the tumor microenvironment. Leuk Lymphoma 2019; 60:1632-1643. [PMID: 30648436 DOI: 10.1080/10428194.2018.1542148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Several key pathways mediate signaling via the B-cell receptor, including the mitogen-activated protein kinase-ERK1/2 pathway. However, inhibition of MEK1/2, a key component of the MAPK-ERK1/2 signaling cascade, results in paradoxical activation of AKT in chronic lymphocytic leukemia (CLL) cells. In the current study we demonstrate synergy between the MEK1/2 inhibitor binimetinib and the AKT inhibitor MK2206, which combined induce apoptosis of primary CLL cells and restrict the cell cycle progression and proliferation of the OSU-CLL cell line. The mechanisms of action of the drug combination involve dual inhibition of MAPK-ERK1/2 and AKT signaling and down-regulation of Mcl-1 expression. Collectively, these data suggest that dual inhibition of MEK1/2 and AKT may represent a therapeutic option for CLL, capable of overcoming the pro-survival effects of the lymph node and bone marrow microenvironments.
Collapse
Affiliation(s)
- Yandong Shen
- a Northern Blood Research Centre, Kolling Institute , Royal North Shore Hospital , St Leonards , NSW , Australia.,b School of Life and Environmental Sciences (SOLES) , University of Sydney , Sydney , NSW , Australia
| | - Kyle Crassini
- a Northern Blood Research Centre, Kolling Institute , Royal North Shore Hospital , St Leonards , NSW , Australia
| | - Suneet Sandhu
- a Northern Blood Research Centre, Kolling Institute , Royal North Shore Hospital , St Leonards , NSW , Australia
| | - Narjis Fatima
- a Northern Blood Research Centre, Kolling Institute , Royal North Shore Hospital , St Leonards , NSW , Australia
| | - Richard I Christopherson
- b School of Life and Environmental Sciences (SOLES) , University of Sydney , Sydney , NSW , Australia
| | - Stephen P Mulligan
- a Northern Blood Research Centre, Kolling Institute , Royal North Shore Hospital , St Leonards , NSW , Australia.,b School of Life and Environmental Sciences (SOLES) , University of Sydney , Sydney , NSW , Australia
| | - O Giles Best
- a Northern Blood Research Centre, Kolling Institute , Royal North Shore Hospital , St Leonards , NSW , Australia.,b School of Life and Environmental Sciences (SOLES) , University of Sydney , Sydney , NSW , Australia
| |
Collapse
|
17
|
Wang T, Liu C, Jia L. The roles of PKCs in regulating autophagy. J Cancer Res Clin Oncol 2018; 144:2303-2311. [PMID: 30116883 DOI: 10.1007/s00432-018-2731-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Autophagy, as a highly conserved cellular degradation and recycling process, plays an important part in maintaining cellular homeostasis. PKC signaling is involved in multiple pathways including cell cycle progression, tumorigenesis, migration and autophagy. METHODS Literatures about PKC and autophagy from PubMed databases were reviewed in this study. RESULTS Studies regarding the association of PKC and autophagy remain debatable. Different duration of the stimulation of autophagy and distinct cell contexts result in different function of PKC in regulating autophagy. The subcellular localization of PKCs and their downstream regulators may influence the autophagy regulation as well. As important intracellular components, the mitochondria play an important role in regulating autophagy, by metabolic modulation and structural derangement. CONCLUSION Phase II studies regarding PKC-β inhibitor, enzastaurin, showed promising results in MCL, DLBCL and recurrent high-grade gliomas. However, the detailed mechanism is still in need. The mechanism of PKC-β in mediating autophagy in lymphoma and high-grade gliomas remains elusive as well. Moreover, several studies were in agreement that rottlerin enhanced autophagy in breast cancer cells, which warrants further clinical studies to verify PKC-δ as a therapeutic target. Thus, identifying the function of PKC in modulating autophagy and conducting related clinical studies help find novel target for chemotherapy.
Collapse
Affiliation(s)
- Tianyi Wang
- NHC Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, People's Republic of China
| | - Conghe Liu
- NHC Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, People's Republic of China
| | - Lili Jia
- NHC Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, People's Republic of China.
| |
Collapse
|
18
|
Douillet DC, Pinson B, Ceschin J, Hürlimann HC, Saint-Marc C, Laporte D, Claverol S, Konrad M, Bonneu M, Daignan-Fornier B. Metabolomics and proteomics identify the toxic form and the associated cellular binding targets of the anti-proliferative drug AICAR. J Biol Chem 2018; 294:805-815. [PMID: 30478173 DOI: 10.1074/jbc.ra118.004964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
5-Aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR, or acadesine) is a precursor of the monophosphate derivative 5-amino-4-imidazole carboxamide ribonucleoside 5'-phosphate (ZMP), an intermediate in de novo purine biosynthesis. AICAR proved to have promising anti-proliferative properties, although the molecular basis of its toxicity is poorly understood. To exert cytotoxicity, AICAR needs to be metabolized, but the AICAR-derived toxic metabolite was not identified. Here, we show that ZMP is the major toxic derivative of AICAR in yeast and establish that its metabolization to succinyl-ZMP, ZDP, or ZTP (di- and triphosphate derivatives of AICAR) strongly reduced its toxicity. Affinity chromatography identified 74 ZMP-binding proteins, including 41 that were found neither as AMP nor as AICAR or succinyl-ZMP binders. Overexpression of karyopherin-β Kap123, one of the ZMP-specific binders, partially rescued AICAR toxicity. Quantitative proteomic analyses revealed 57 proteins significantly less abundant on nuclei-enriched fractions from AICAR-fed cells, this effect being compensated by overexpression of KAP123 for 15 of them. These results reveal nuclear protein trafficking as a function affected by AICAR.
Collapse
Affiliation(s)
- Delphine C Douillet
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Benoît Pinson
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Johanna Ceschin
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Hans C Hürlimann
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Christelle Saint-Marc
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Damien Laporte
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France.,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| | - Stéphane Claverol
- the University of Bordeaux, Bordeaux INP, Plateforme Proteome, F-33076 Bordeaux, France, and
| | - Manfred Konrad
- the Max-Planck-Institute for Biophysical Chemistry, D-37077 Goettingen, Germany
| | - Marc Bonneu
- the University of Bordeaux, Bordeaux INP, Plateforme Proteome, F-33076 Bordeaux, France, and
| | - Bertrand Daignan-Fornier
- From the Université de Bordeaux, IBGC UMR 5095, F-33077 Bordeaux, France, .,the Centre National de la Recherche Scientifique, IBGC UMR 5095, F-33077 Bordeaux, France
| |
Collapse
|
19
|
Implication and Regulation of AMPK during Physiological and Pathological Myeloid Differentiation. Int J Mol Sci 2018; 19:ijms19102991. [PMID: 30274374 PMCID: PMC6213055 DOI: 10.3390/ijms19102991] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a heterotrimeric serine/threonine kinase consisting of the arrangement of various α β, and γ isoforms that are expressed differently depending on the tissue or the cell lineage. AMPK is one of the major sensors of energy status in mammalian cells and as such plays essential roles in the regulation of cellular homeostasis, metabolism, cell growth, differentiation, apoptosis, and autophagy. AMPK is activated by two upstream kinases, the tumor suppressor liver kinase B1 (LKB1) and the calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) through phosphorylation of the kinase on Thr172, leading to its activation. In addition, AMPK inhibits the mTOR pathway through phosphorylation and activation of tuberous sclerosis protein 2 (TSC2) and causes direct activation of unc-51-like autophagy activating kinase 1 (ULK1) via phosphorylation of Ser555, thus promoting initiation of autophagy. Although it is well established that AMPK can control the differentiation of different cell lineages, including hematopoietic stem cells (HSCs), progenitors, and mature hematopoietic cells, the role of AMPK regarding myeloid cell differentiation is less documented. The differentiation of monocytes into macrophages triggered by colony stimulating factor 1 (CSF-1), a process during which both caspase activation (independently of apoptosis induction) and AMPK-dependent stimulation of autophagy are necessary, is one noticeable example of the involvement of AMPK in the physiological differentiation of myeloid cells. The present review focuses on the role of AMPK in the regulation of the physiological and pathological differentiation of myeloid cells. The mechanisms of autophagy induction by AMPK will also be addressed, as autophagy has been shown to be important for differentiation of hematopoietic cells. In addition, myeloid malignancies (myeloid leukemia or dysplasia) are characterized by profound defects in the establishment of proper differentiation programs. Reinduction of a normal differentiation process in myeloid malignancies has thus emerged as a valuable and promising therapeutic strategy. As AMPK seems to exert a key role in the differentiation of myeloid cells, notably through induction of autophagy, we will also discuss the potential to target this pathway as a pro-differentiating and anti-leukemic strategy in myeloid malignancies.
Collapse
|
20
|
Chen L, Miao Y, Liu M, Zeng Y, Gao Z, Peng D, Hu B, Li X, Zheng Y, Xue Y, Zuo Z, Xie Y, Ren J. Pan-Cancer Analysis Reveals the Functional Importance of Protein Lysine Modification in Cancer Development. Front Genet 2018; 9:254. [PMID: 30065750 PMCID: PMC6056651 DOI: 10.3389/fgene.2018.00254] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Large-scale tumor genome sequencing projects have revealed a complex landscape of genomic mutations in multiple cancer types. A major goal of these projects is to characterize somatic mutations and discover cancer drivers, thereby providing important clues to uncover diagnostic or therapeutic targets for clinical treatment. However, distinguishing only a few somatic mutations from the majority of passenger mutations is still a major challenge facing the biological community. Fortunately, combining other functional features with mutations to predict cancer driver genes is an effective approach to solve the above problem. Protein lysine modifications are an important functional feature that regulates the development of cancer. Therefore, in this work, we have systematically analyzed somatic mutations on seven protein lysine modifications and identified several important drivers that are responsible for tumorigenesis. From published literature, we first collected more than 100,000 lysine modification sites for analysis. Another 1 million non-synonymous single nucleotide variants (SNVs) were then downloaded from TCGA and mapped to our collected lysine modification sites. To identify driver proteins that significantly altered lysine modifications, we further developed a hierarchical Bayesian model and applied the Markov Chain Monte Carlo (MCMC) method for testing. Strikingly, the coding sequences of 473 proteins were found to carry a higher mutation rate in lysine modification sites compared to other background regions. Hypergeometric tests also revealed that these gene products were enriched in known cancer drivers. Functional analysis suggested that mutations within the lysine modification regions possessed higher evolutionary conservation and deleteriousness. Furthermore, pathway enrichment showed that mutations on lysine modification sites mainly affected cancer related processes, such as cell cycle and RNA transport. Moreover, clinical studies also suggested that the driver proteins were significantly associated with patient survival, implying an opportunity to use lysine modifications as molecular markers in cancer diagnosis or treatment. By searching within protein-protein interaction networks using a random walk with restart (RWR) algorithm, we further identified a series of potential treatment agents and therapeutic targets for cancer related to lysine modifications. Collectively, this study reveals the functional importance of lysine modifications in cancer development and may benefit the discovery of novel mechanisms for cancer treatment.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanyan Miao
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mengni Liu
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanru Zeng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zijun Gao
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Di Peng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bosu Hu
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xu Li
- Spine Center, Department of Orthopaedics, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Hefei, China
| | - Yueyuan Zheng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Xue
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Ren
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Marzag H, Zerhouni M, Tachallait H, Demange L, Robert G, Bougrin K, Auberger P, Benhida R. Modular synthesis of new C-aryl-nucleosides and their anti-CML activity. Bioorg Med Chem Lett 2018; 28:1931-1936. [PMID: 29655981 DOI: 10.1016/j.bmcl.2018.03.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/22/2018] [Indexed: 02/08/2023]
Abstract
The C-aryl-ribosyles are of utmost interest for the development of antiviral and anticancer agents. Even if several synthetic pathways have been disclosed for the preparation of these nucleosides, a direct, few steps and modular approaches are still lacking. In line with our previous efforts, we report herein a one step - eco-friendly β-ribosylation of aryles and heteroaryles through a direct Friedel-Craft ribosylation mediated by bismuth triflate, Bi(OTf)3. The resulting carbohydrates have been functionalized by cross-coupling reactions, leading to a series of new C-aryl-nucleosides (32 compounds). Among them, we observed that 5d exerts promising anti-proliferative effects against two human Chronic Myeloid Leukemia (CML) cell lines, both sensitive (K562-S) or resistant (K562-R) to imatinib, the "gold standard of care" used in this pathology. Moreover, we demonstrated that 5d kills CML cells by a non-conventional mechanism of cell death.
Collapse
Affiliation(s)
- Hamid Marzag
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Plant Chemistry, Organic and Bioorganic Synthesis Team, URAC23, Faculty of Sciences, B.P. 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
| | - Marwa Zerhouni
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Hamza Tachallait
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Plant Chemistry, Organic and Bioorganic Synthesis Team, URAC23, Faculty of Sciences, B.P. 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
| | - Luc Demange
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Département de Chimie, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Pharmaceutiques, 4 avenue de l'Observatoire & UFR Biomédicale des Saints Pères, 45 rue des Saints Pères, Paris Fr-75006, France
| | - Guillaume Robert
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Khalid Bougrin
- Plant Chemistry, Organic and Bioorganic Synthesis Team, URAC23, Faculty of Sciences, B.P. 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
| | - Patrick Auberger
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 Route de Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Rachid Benhida
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France; Mohamed VI Polytechnic University, UM6P, 43150 Ben Guerir, Morocco.
| |
Collapse
|
22
|
Philippe C, Pinson B, Dompierre J, Pantesco V, Viollet B, Daignan-Fornier B, Moenner M. AICAR Antiproliferative Properties Involve the AMPK-Independent Activation of the Tumor Suppressors LATS 1 and 2. Neoplasia 2018; 20:555-562. [PMID: 29730476 PMCID: PMC5994775 DOI: 10.1016/j.neo.2018.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
AICAR (Acadesine) is a pharmacological precursor of purine nucleotide biosynthesis with anti-tumoral properties. Although recognized as an AMP mimetic activator of the protein kinase AMPK, the AICAR monophosphate derivative ZMP was also shown to mediate AMPK-independent effects. In order to unveil these AMPK-independent functions, we performed a transcriptomic analysis in AMPKα1/α2 double knockout murine embryonic cells. Kinetic analysis of the cellular response to AICAR revealed the up-regulation of the large tumor suppressor kinases (Lats) 1 and 2 transcripts, followed by the repression of numerous genes downstream of the transcriptional regulators Yap1 and Taz. This transcriptional signature, together with the observation of increased levels in phosphorylation of Lats1 and Yap1 proteins, suggested that the Hippo signaling pathway was activated by AICAR. This effect was observed in both fibroblasts and epithelial cells. Knockdown of Lats1/2 prevented the cytoplasmic delocalization of Yap1/Taz proteins in response to AICAR and conferred a higher resistance to the drug. These results indicate that activation of the most downstream steps of the Hippo cascade participates to the antiproliferative effects of AICAR.
Collapse
Affiliation(s)
- Chloé Philippe
- Université de Bordeaux, IBGC UMR 5095, Bordeaux, France; Centre National de la Recherche Scientifique, IBGC UMR 5095, Bordeaux, France
| | - Benoît Pinson
- Université de Bordeaux, IBGC UMR 5095, Bordeaux, France; Centre National de la Recherche Scientifique, IBGC UMR 5095, Bordeaux, France
| | - Jim Dompierre
- Université de Bordeaux, IBGC UMR 5095, Bordeaux, France; Centre National de la Recherche Scientifique, IBGC UMR 5095, Bordeaux, France
| | | | - Benoît Viollet
- INSERM U1016, Institut Cochin, Paris, France; CNRS (UMR 8104), Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bertrand Daignan-Fornier
- Université de Bordeaux, IBGC UMR 5095, Bordeaux, France; Centre National de la Recherche Scientifique, IBGC UMR 5095, Bordeaux, France.
| | - Michel Moenner
- Université de Bordeaux, IBGC UMR 5095, Bordeaux, France; Centre National de la Recherche Scientifique, IBGC UMR 5095, Bordeaux, France.
| |
Collapse
|
23
|
Albrecht D, Hürlimann HC, Ceschin J, Saint-Marc C, Pinson B, Daignan-Fornier B. Multiple chemo-genetic interactions between a toxic metabolite and the ubiquitin pathway in yeast. Curr Genet 2018; 64:1275-1286. [PMID: 29721631 DOI: 10.1007/s00294-018-0843-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
Abstract
AICAR is the precursor of ZMP, a metabolite with antiproliferative properties in yeast and human. We aim at understanding how AICAR (and its active form ZMP) affects essential cellular processes. In this work, we found that ZMP accumulation is synthetic lethal with a hypomorphic allele of the ubiquitin-activating enzyme Uba1. A search for gene-dosage suppressors revealed that ubiquitin overexpression was sufficient to restore growth of the uba1 mutant upon AICAR treatment, suggesting that the ubiquitin pool is critical for cells to cope with AICAR. Accordingly, two mutants with constitutive low ubiquitin, ubp6 and doa1, were highly sensitive to AICAR, a phenotype that could be suppressed by ubiquitin overexpression. We established, by genetic means, that these new AICAR-sensitive mutants act in a different pathway from the rad6/bre1 mutants which were previously reported as sensitive to AICAR (Albrecht et al., Genetics 204:1447-1460, 2016). Two ubiquitin-conjugating enzymes (Ubc4 and Cdc34) and a ubiquitin ligase (Cdc4) were found to contribute to the ability of cells to cope with ZMP. This study illustrates the complexity of chemo-genetic interactions and shows how genetic analyses allow deciphering the implicated pathways, the individual gene effects, and their combined phenotypic contribution. Based on additivity and suppression patterns, we conclude that AICAR treatment shows synthetic interactions with distinct branches of the yeast ubiquitin pathway.
Collapse
Affiliation(s)
- Delphine Albrecht
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Hans C Hürlimann
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Institut für Biologie, Martin-Luther Universität, Universität Halle-Wittenberg, Weinbergweg 10, 06120, Halle (Saale), Germany
| | - Johanna Ceschin
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Christelle Saint-Marc
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Benoît Pinson
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France
| | - Bertrand Daignan-Fornier
- Université de Bordeaux, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France.
- Centre National de la Recherche Scientifique, IBGC UMR 5095, 1 rue Camille Saint-Saëns, 33077, Bordeaux, France.
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1 rue C. Saint-Saëns CS 61390, 33077, Bordeaux, France.
| |
Collapse
|
24
|
Lee J, Sohn EJ, Yoon S, Won G, Kim CG, Jung JH, Kim SH. Activation of JNK and IRE1 is critically involved in tanshinone I-induced p62 dependent autophagy in malignant pleural mesothelioma cells: implication of p62 UBA domain. Oncotarget 2018; 8:25032-25045. [PMID: 28212571 PMCID: PMC5421907 DOI: 10.18632/oncotarget.15336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/16/2017] [Indexed: 12/16/2022] Open
Abstract
The aim of present study is to elucidate autophagic mechanism of tanshinone I (Tan I) in H28 and H2452 mesothelioma cells. Herein, Tan I exerted cytotoxicity with autophagic features of autophagy protein 5 (ATG5)/ microtubule-associated protein 1A/1B-light chain 3II (LC3 II) activation, p62/sequestosome 1 (SQSTM1) accumulation and increased number of LC3II punctae, acridine orange-stained cells and autophagic vacuoles. However, 3-methyladenine (3MA) and NH4Cl increased cytotoxicity in Tan I treated H28 cells. Furthermore, autophagy flux was enhanced in Tan I-treated H28 cells transfected by RFP-GFP-LC3 constructs, with colocalization of GFP-LC3 punctae with LAMP1 or Lysotracker. Interestingly, C-terminal UBA domain is required for Tan 1 induced aggregation of p62 in H28 cells. Notably, Tan I upregulated CCAAT-enhancer-binding protein homologous protein (CHOP), inositol-requiring protein-1 (IRE1) and p-c-Jun N-terminal kinase (p-JNK), but silencing of IRE1 or p62 and JNK inhibitor SP600125 blocked the LC3II accumulation in Tan I-treated H28 cells. Overall, these findings demonstrate that Tan I exerts antitumor activity through a compromise between apoptosis and p62/SQSTM1-dependent autophagy via activation of JNK and IRE 1 in malignant mesothelioma cells.
Collapse
Affiliation(s)
- Jihyun Lee
- College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Eun Jung Sohn
- College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Sangwook Yoon
- College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Gunho Won
- College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Chang Geun Kim
- College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| |
Collapse
|
25
|
Dubois A, Ginet C, Furstoss N, Belaid A, Hamouda MA, El Manaa W, Cluzeau T, Marchetti S, Ricci JE, Jacquel A, Luciano F, Driowya M, Benhida R, Auberger P, Robert G. Differentiation inducing factor 3 mediates its anti-leukemic effect through ROS-dependent DRP1-mediated mitochondrial fission and induction of caspase-independent cell death. Oncotarget 2018; 7:26120-36. [PMID: 27027430 PMCID: PMC5041969 DOI: 10.18632/oncotarget.8319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/08/2016] [Indexed: 12/23/2022] Open
Abstract
Differentiation-inducing factor (DIF) defines a group of chlorinated hexaphenones that orchestrate stalk-cell differentiation in the slime mold Dictyostelium discoideum (DD). DIF-1 and 3 have also been reported to have tumor inhibiting properties; however, the mechanisms that underlie the effects of these compounds remain poorly defined. Herein, we show that DIF-3 rapidly triggers Ca2+ release and a loss of mitochondrial membrane potential (MMP) in the absence of cytochrome c and Smac release and without caspase activation. Consistently with these findings, we also detected no evidence of apoptosis in cells treated with DIF-3 but instead found that this compound induced autophagy. In addition, DIF-3 promoted mitochondrial fission in K562 and HeLa cells, as assessed by electron and confocal microscopy analysis. Importantly, DIF-3 mediated the phosphorylation and redistribution of dynamin-related protein 1 (DRP1) from the cytoplasmic to the microsomal fraction of K562 cells. Pharmacological inhibition or siRNA silencing of DRP1 not only inhibited mitochondrial fission but also protected K562 cells from DIF-3-mediated cell death. Furthermore, DIF-3 potently inhibited the growth of imatinib-sensitive and imatinib-resistant K562 cells. It also inhibited tumor formation in athymic mice engrafted with an imatinib-resistant CML cell line. Finally, DIF-3 exhibited a clear selectivity toward CD34+ leukemic cells from CML patients, compared with CD34− cells. In conclusion, we show that the potent anti-leukemic effect of DIF-3 is mediated through the induction of mitochondrial fission and caspase-independent cell death. Our findings may have important therapeutic implications, especially in the treatment of tumors that exhibit defects in apoptosis regulation.
Collapse
Affiliation(s)
- Alix Dubois
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Clemence Ginet
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Nathan Furstoss
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Amine Belaid
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Mohamed Amine Hamouda
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Wedjene El Manaa
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Thomas Cluzeau
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France.,Institut de Chimie de Nice (ICN), UMR 7272, Nice, France.,CHU de Nice, Service d'Hématologie Clinique, Nice, France
| | - Sandrine Marchetti
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Jean Ehrland Ricci
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Université de Nice Sophia Antipolis, Nice, France.,Team 3: Regulation of Caspase Dependent and Independent Cell Death, Nice, France
| | - Arnaud Jacquel
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Frederic Luciano
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France
| | - Mohsine Driowya
- Université de Nice Sophia Antipolis, Nice, France.,Institut de Chimie de Nice (ICN), UMR 7272, Nice, France
| | - Rachid Benhida
- Université de Nice Sophia Antipolis, Nice, France.,Institut de Chimie de Nice (ICN), UMR 7272, Nice, France
| | - Patrick Auberger
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France.,CHU de Nice, Service d'Hématologie Clinique, Nice, France
| | - Guillaume Robert
- INSERM U1065 Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Team 2: Cell Death, Differentiation, Inflammation and Cancer, Nice, France.,Equipe Labellisée Fondation ARC, Paris, France.,Université de Nice Sophia Antipolis, Nice, France
| |
Collapse
|
26
|
Toton E, Romaniuk A, Konieczna N, Hofmann J, Barciszewski J, Rybczynska M. Impact of PKCε downregulation on autophagy in glioblastoma cells. BMC Cancer 2018; 18:185. [PMID: 29439667 PMCID: PMC5811983 DOI: 10.1186/s12885-018-4095-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
Background Several efforts have been focused on identification of pathways involved in malignancy, progression, and response to treatment in Glioblastoma (GB). Overexpression of PKCε was detected in histological samples from GB, anaplastic astrocytoma, and gliosarcoma and is considered an important marker of negative disease outcome. In multiple studies on GB, autophagy has been shown as a survival mechanism during cellular stress, contributing to resistance against anti-cancer agents. The main object of this research was to determine the influence of PKCε downregulation on the expression of genes involved in autophagy pathways in glioblastoma cell lines U-138 MG and U-118 MG with high PKCε level. Methods We conducted siRNA-mediated knockdown of PKCε in glioblastoma cell lines and studied the effects of autophagy pathway. The expression of autophagy-related genes was analyzed using qPCR and Western blot analysis was carried out to assess protein levels. Immunostaining was used to detect functional autophagic maturation process. Results We found that these cell lines exhibited a high basal expression of autophagy-related genes. Our results suggest that the loss of PKCε contributes to the downregulation of genes involved in autophagy pathways. Moreover, most of the changes we observed in Western blot analysis and endogenous immunofluorescence experiments confirmed dysfunction of autophagy programs. We found that knockdown of PKCε induced a decrease in the expression of Beclin1, Atg5, PI3K, whereas the expression of other autophagy-related proteins mTOR and Bcl2 was increased. Treatment of control siRNA glioma cells with rapamycin-induced autophagosome formation and increase in LC3-II level and caused a decrease in the expression of p62. Additionally, PKCε siRNA caused a diminution in the Akt phosphorylation at Ser473 and in the protein level in both cell lines. Moreover, we observed reduction in the adhesion of glioblastoma cells, accompanied by the decrease in total FAK protein level and phosphorylation. Conclusions Effects of down-regulation of PKCε in glioma cells raised the possibility that the expression of PKCε is essential for the autophagic signal transduction pathways in these cells. Thus, our results identify an important role of PKCε in autophagy and may, more importantly, identifyit as a novel therapeutic target.
Collapse
Affiliation(s)
- Ewa Toton
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 St., 60-355, Poznan, Poland.
| | - Aleksandra Romaniuk
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 St., 60-355, Poznan, Poland
| | - Natalia Konieczna
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 St., 60-355, Poznan, Poland
| | - Johann Hofmann
- Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Jan Barciszewski
- NanoBioMedical Center, Adam Mickiewicz University in Poznan, Poznan, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Maria Rybczynska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 St., 60-355, Poznan, Poland
| |
Collapse
|
27
|
Dufies M, Ambrosetti D, Boulakirba S, Calleja A, Savy C, Furstoss N, Zerhouni M, Parola J, Aira-Diaz L, Marchetti S, Orange F, Lacas-Gervais S, Luciano F, Jacquel A, Robert G, Pagès G, Auberger P. ATP-competitive Plk1 inhibitors induce caspase 3-mediated Plk1 cleavage and activation in hematopoietic cell lines. Oncotarget 2017. [PMID: 29541386 PMCID: PMC5834281 DOI: 10.18632/oncotarget.23650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polo-like kinases (Plks) define a highly conserved family of Ser/Thr kinases with crucial roles in the regulation of cell division. Here we show that Plk1 is cleaved by caspase 3, but not by other caspases in different hematopoietic cell lines treated with competitive inhibitors of the ATP-binding pocket of Plk1. Intriguingly, Plk1 was not cleaved in cells treated with Rigosertib, a non-competitive inhibitor of Plk1, suggesting that binding of the inhibitor to the ATP binding pocket of Plk1 triggers a conformational change and unmasks a cryptic caspase 3 cleavage site on the protein. Cleavage occurs after Asp-404 in a DYSD/K sequence and separates the kinase domain from the two PBDs of Plk1. All Plk1 inhibitors triggered G2/M arrest, activation of caspases 2 and 3, polyploidy, multiple nuclei and mitotic catastrophe, albeit at higher concentrations in the case of Rigosertib. Upon BI-2536 treatment, Plk1 cleavage occurred only in the cytosolic fraction and cleaved Plk1 accumulated in this subcellular compartment. Importantly, the cleaved N-Terminal fragment of Plk1 exhibited a higher enzymatic activity than its non-cleaved counterpart and accumulated into the cytoplasm conversely to the full length and the C-Terminal Plk1 fragments that were found essentially into the nucleus. Finally, the DYSD/K cleavage site was highly conserved during evolution from c. elegans to human. In conclusion, we described herein for the first time a specific cleavage of Plk1 by caspase 3 following treatment of cancer cells with ATP-competitive inhibitors of Plk1.
Collapse
Affiliation(s)
- Maeva Dufies
- Université Côte d'Azur, C3M/Inserm U1065, Nice, France.,Université Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U 1081, Nice, France
| | - Damien Ambrosetti
- Université Côte d'Azur, CHU Nice, Department of Pathology, Nice, France
| | - Sonia Boulakirba
- Université Côte d'Azur, C3M/Inserm U1065, Nice, France.,Equipe Labellisée par la Fondation ARC (2017-2020), Paris, France
| | - Anne Calleja
- Université Côte d'Azur, C3M/Inserm U1065, Nice, France.,Equipe Labellisée par la Fondation ARC (2017-2020), Paris, France
| | - Coline Savy
- Université Côte d'Azur, C3M/Inserm U1065, Nice, France.,Equipe Labellisée par la Fondation ARC (2017-2020), Paris, France
| | | | | | - Julien Parola
- Université Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U 1081, Nice, France
| | | | | | | | | | - Frederic Luciano
- Université Côte d'Azur, C3M/Inserm U1065, Nice, France.,Equipe Labellisée par la Fondation ARC (2017-2020), Paris, France
| | - Arnaud Jacquel
- Université Côte d'Azur, C3M/Inserm U1065, Nice, France.,Equipe Labellisée par la Fondation ARC (2017-2020), Paris, France
| | - Guillaume Robert
- Université Côte d'Azur, C3M/Inserm U1065, Nice, France.,Equipe Labellisée par la Fondation ARC (2017-2020), Paris, France
| | - Gilles Pagès
- Université Côte d'Azur, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U 1081, Nice, France
| | - Patrick Auberger
- Université Côte d'Azur, C3M/Inserm U1065, Nice, France.,Equipe Labellisée par la Fondation ARC (2017-2020), Paris, France
| |
Collapse
|
28
|
Cheng X, Chen B, Pan Y, Guo L, Feng W, Dong Y. Simultaneous Quantification of 5-Aminoimidazole-4-Carboxamide-1-β-d-ribofuranoside and Its Active Metabolite 5-Aminoimidazole-4-Carboxamide-1-β-d-ribofuranotide in Mice Plasma by LC–MS/MS. Chromatographia 2017. [DOI: 10.1007/s10337-017-3392-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Dembitz V, Lalic H, Visnjic D. 5-Aminoimidazole-4-carboxamide ribonucleoside-induced autophagy flux during differentiation of monocytic leukemia cells. Cell Death Discov 2017; 3:17066. [PMID: 28975042 PMCID: PMC5624282 DOI: 10.1038/cddiscovery.2017.66] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/29/2017] [Accepted: 08/18/2017] [Indexed: 12/30/2022] Open
Abstract
Pharmacological modulators of AMP-dependent kinase (AMPK) have been suggested in treatment of cancer. The biguanide metformin and 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) have been reported to inhibit proliferation of solid tumors and hematological malignancies, but their role in differentiation is less explored. Our previous study demonstrated that AICAR alone induced AMPK-independent expression of differentiation markers in monocytic U937 leukemia cells, and no such effects were observed in response to metformin. The aim of this study was to determine the mechanism of AICAR-mediated effects and to test for the possible role of autophagy in differentiation of leukemia cells. The results showed that AICAR-mediated effects on the expression of differentiation markers were not mimicked by A769662, a more specific direct AMPK activator. Long-term incubation of U937 cells with AICAR and other differentiation agents, all-trans-retinoic acid (ATRA) and phorbol 12-myristate 13-acetate, increased the expression of the autophagy marker LC3B-II, and these effects were not observed in response to metformin. Western blot and immunofluorescence analyses of U937 cells treated with bafilomycin A1 or transfected with mRFP-GFP-LC3 proved that the increase in the expression of LC3B-II was due to an increase in autophagy flux, and not to a decrease in lysosomal degradation. 3-Methyladenine inhibited the expression of differentiation markers in response to all inducers, but had stimulatory effects on autophagy flux at dose that effectively inhibited the production of phosphatidylinositol 3-phosphate. The small inhibitory RNA-mediated down-modulation of Beclin 1 and hVPS34 had no effects on AICAR and ATRA-mediated increase in the expression of differentiation markers. These results show that AICAR and other differentiation agents induce autophagy flux in U937 cells and that the effects of AICAR and ATRA on the expression of differentiation markers do not depend on the normal levels of key proteins of the classical or canonical autophagy pathway.
Collapse
Affiliation(s)
- Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, Zagreb 10 000, Croatia
| | - Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, Zagreb 10 000, Croatia
| | - Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, Zagreb 10 000, Croatia
| |
Collapse
|
30
|
Amdouni H, Robert G, Driowya M, Furstoss N, Métier C, Dubois A, Dufies M, Zerhouni M, Orange F, Lacas-Gervais S, Bougrin K, Martin AR, Auberger P, Benhida R. In Vitro and in Vivo Evaluation of Fully Substituted (5-(3-Ethoxy-3-oxopropynyl)-4-(ethoxycarbonyl)-1,2,3-triazolyl-glycosides as Original Nucleoside Analogues to Circumvent Resistance in Myeloid Malignancies. J Med Chem 2017; 60:1523-1533. [DOI: 10.1021/acs.jmedchem.6b01803] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hella Amdouni
- Institut
de Chimie de Nice UMR7272, Université Côte d’Azur, CNRS, 06108 Nice, France
| | - Guillaume Robert
- Centre
Méditerranéen de Médecine Moléculaire, Université Côte d’Azur, UMR INSERM U1065, 06204 Nice, France
| | - Mohsine Driowya
- Institut
de Chimie de Nice UMR7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- Laboratoire
de Chimie des Plantes et de Synthèse Organique et Bioorganique,
URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014, Rabat, Morocco
| | - Nathan Furstoss
- Centre
Méditerranéen de Médecine Moléculaire, Université Côte d’Azur, UMR INSERM U1065, 06204 Nice, France
| | - Camille Métier
- Institut
de Chimie de Nice UMR7272, Université Côte d’Azur, CNRS, 06108 Nice, France
| | - Alix Dubois
- Centre
Méditerranéen de Médecine Moléculaire, Université Côte d’Azur, UMR INSERM U1065, 06204 Nice, France
| | - Maeva Dufies
- Centre
Méditerranéen de Médecine Moléculaire, Université Côte d’Azur, UMR INSERM U1065, 06204 Nice, France
| | - Marwa Zerhouni
- Centre
Méditerranéen de Médecine Moléculaire, Université Côte d’Azur, UMR INSERM U1065, 06204 Nice, France
| | | | | | - Khalid Bougrin
- Laboratoire
de Chimie des Plantes et de Synthèse Organique et Bioorganique,
URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014, Rabat, Morocco
| | - Anthony R. Martin
- Institut
de Chimie de Nice UMR7272, Université Côte d’Azur, CNRS, 06108 Nice, France
| | - Patrick Auberger
- Centre
Méditerranéen de Médecine Moléculaire, Université Côte d’Azur, UMR INSERM U1065, 06204 Nice, France
| | - Rachid Benhida
- Institut
de Chimie de Nice UMR7272, Université Côte d’Azur, CNRS, 06108 Nice, France
| |
Collapse
|
31
|
Montraveta A, Xargay-Torrent S, Rosich L, López-Guerra M, Roldán J, Rodríguez V, Lee-Vergés E, de Frías M, Campàs C, Campo E, Roué G, Colomer D. Bcl-2high mantle cell lymphoma cells are sensitized to acadesine with ABT-199. Oncotarget 2016; 6:21159-72. [PMID: 26110568 PMCID: PMC4673257 DOI: 10.18632/oncotarget.4230] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/13/2015] [Indexed: 11/25/2022] Open
Abstract
Acadesine is a nucleoside analogue with known activity against B-cell malignancies. Herein, we showed that in mantle cell lymphoma (MCL) cells acadesine induced caspase-dependent apoptosis through turning on the mitochondrial apoptotic machinery. At the molecular level, the compound triggered the activation of the AMPK pathway, consequently modulating known downstream targets, such as mTOR and the cell motility-related vasodilator-stimulated phosphoprotein (VASP). VASP phosphorylation by acadesine was concomitant with a blockade of CXCL12-induced migration. The inhibition of the mTOR cascade by acadesine, committed MCL cells to enter in apoptosis by a translational downregulation of the antiapoptotic Mcl-1 protein. In contrast, Bcl-2 protein levels were unaffected by acadesine and MCL samples expressing high levels of Bcl-2 tended to have a reduced response to the drug. Targeting Bcl-2 with the selective BH3-mimetic agent ABT-199 sensitized Bcl-2 high MCL cells to acadesine. This effect was validated in vivo, where the combination of both agents displayed a more marked inhibition of tumor outgrowth than each drug alone. These findings support the notions that antiapoptotic proteins of the Bcl-2 family regulate MCL cell sensitivity to acadesine and that the combination of this agent with Bcl-2 inhibitors might be an interesting therapeutic option to treat MCL patients.
Collapse
Affiliation(s)
- Arnau Montraveta
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sílvia Xargay-Torrent
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laia Rosich
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mònica López-Guerra
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Unitat d'Hematopatologia, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Jocabed Roldán
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Vanina Rodríguez
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Eriong Lee-Vergés
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mercè de Frías
- Advancell-Advanced In Vitro Cell Technologies S.A., Barcelona, Spain
| | - Clara Campàs
- Advancell-Advanced In Vitro Cell Technologies S.A., Barcelona, Spain
| | - Elias Campo
- Unitat d'Hematopatologia, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Gaël Roué
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Dolors Colomer
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Unitat d'Hematopatologia, Hospital Clinic, IDIBAPS, Barcelona, Spain
| |
Collapse
|
32
|
Gutierrez EM, Seebacher NA, Arzuman L, Kovacevic Z, Lane DJR, Richardson V, Merlot AM, Lok H, Kalinowski DS, Sahni S, Jansson PJ, Richardson DR. Lysosomal membrane stability plays a major role in the cytotoxic activity of the anti-proliferative agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1665-81. [PMID: 27102538 DOI: 10.1016/j.bbamcr.2016.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/08/2016] [Accepted: 04/15/2016] [Indexed: 02/06/2023]
Abstract
The potent and selective anti-tumor agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), localizes in lysosomes and forms cytotoxic copper complexes that generate reactive oxygen species (ROS), resulting in lysosomal membrane permeabilization (LMP) and cell death. Herein, the role of lysosomal membrane stability in the anti-tumor activity of Dp44mT was investigated. Studies were performed using molecules that protect lysosomal membranes against Dp44mT-induced LMP, namely heat shock protein 70 (HSP70) and cholesterol. Up-regulation or silencing of HSP70 expression did not affect Dp44mT-induced LMP in MCF7 cells. In contrast, cholesterol accumulation in lysosomes induced by the well characterized cholesterol transport inhibitor, 3-β-[2-(diethyl-amino)ethoxy]androst-5-en-17-one (U18666A), inhibited Dp44mT-induced LMP and markedly and significantly (p<0.001) reduced the ability of Dp44mT to inhibit cancer cell proliferation (i.e., increased the IC(50)) by 140-fold. On the other hand, cholesterol extraction using methyl-β-cyclodextrin enhanced Dp44mT-induced LMP and significantly (p<0.01) increased its anti-proliferative activity. The protective effect of U18666A in increasing lysosomal cholesterol and preventing the cytotoxic activity of Dp44mT was not due to induced autophagy. Instead, U18666A was found to decrease lysosomal turnover, resulting in autophagosome accumulation. Moreover, preincubation with U18666A did not prevent the ability of Dp44mT to induce autophagosome synthesis, indicating that autophagic initiation via Dp44mT occurs independently of LMP. These studies demonstrate the significance of lysosomal membrane stability in relation to the ability of Dp44mT to execute tumor cell death and overcome pro-survival autophagy. Hence, lysosomal-dependent cell death induced by Dp44mT serves as an important anti-tumor strategy. These results are important for comprehensively understanding the mechanism of action of Dp44mT.
Collapse
Affiliation(s)
- Elaine M Gutierrez
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nicole A Seebacher
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Laila Arzuman
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vera Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angelica M Merlot
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Hiu Lok
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
33
|
Bost F, Decoux-Poullot AG, Tanti JF, Clavel S. Energy disruptors: rising stars in anticancer therapy? Oncogenesis 2016; 5:e188. [PMID: 26779810 PMCID: PMC4728676 DOI: 10.1038/oncsis.2015.46] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023] Open
Abstract
The metabolic features of tumor cells diverge from those of normal cells. Otto Warburg was the first to observe that cancer cells dramatically increase their glucose consumption to generate ATP. He also claimed that cancer cells do not have functional mitochondria or oxidative phosphorylation (OXPHOS) but simply rely on glycolysis to provide ATP to the cell, even in the presence of oxygen (aerobic glycolysis). Several studies have revisited this observation and demonstrated that most cancer cells contain metabolically efficient mitochondria. Indeed, to sustain high proliferation rates, cancer cells require functional mitochondria to provide ATP and intermediate metabolites, such as citrate and cofactors, for anabolic reactions. This difference in metabolism between normal and tumors cells causes the latter to be more sensitive to agents that can disrupt energy homeostasis. In this review, we focus on energy disruptors, such as biguanides, 2-deoxyglucose and 5-aminoimidazole-4-carboxamide ribonucleotide, that interfere with the main metabolic pathways of the cells, OXPHOS, glycolysis and glutamine metabolism. We discuss the preclinical data and the mechanisms of action of these disruptors at the cellular and molecular levels. Finally, we consider whether these drugs can reasonably contribute to the antitumoral therapeutic arsenal in the future.
Collapse
Affiliation(s)
- F Bost
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| | - A-G Decoux-Poullot
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| | - J F Tanti
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| | - S Clavel
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| |
Collapse
|
34
|
Lee JW, Shinohara H, Jung JH, Mok HJ, Akao Y, Kim KP. Detailed characterization of alterations in the lipid profiles during autophagic cell death of leukemia cells. RSC Adv 2016. [DOI: 10.1039/c6ra01965j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, a lipidomics approach based on UPLC-QqQ/MS was applied to profile various lipids in human leukemia cells undergoing autophagic cell death (ACD).
Collapse
Affiliation(s)
- Jae Won Lee
- Department of Applied Chemistry
- College of Applied Science
- Kyung Hee University
- Yongin
- Republic of Korea
| | - Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences
- Gifu University
- Gifu 501-1193
- Japan
| | - Jae Hun Jung
- Department of Applied Chemistry
- College of Applied Science
- Kyung Hee University
- Yongin
- Republic of Korea
| | - Hyuck Jun Mok
- Department of Applied Chemistry
- College of Applied Science
- Kyung Hee University
- Yongin
- Republic of Korea
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences
- Gifu University
- Gifu 501-1193
- Japan
| | - Kwang Pyo Kim
- Department of Applied Chemistry
- College of Applied Science
- Kyung Hee University
- Yongin
- Republic of Korea
| |
Collapse
|
35
|
Lee E, Lee CG, Yim JH, Lee HK, Pyo S. Ramalin-Mediated Apoptosis Is Enhanced by Autophagy Inhibition in Human Breast Cancer Cells. Phytother Res 2015; 30:426-38. [PMID: 26676298 DOI: 10.1002/ptr.5544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 11/10/2015] [Accepted: 11/22/2015] [Indexed: 01/06/2023]
Abstract
Breast cancer, the most commonly diagnosed cancer in women worldwide, is treated in various ways. Ramalin is a chemical compound derived from the Antarctic lichen Ramalina terebrata and is known to exhibit antioxidant and antiinflammatory activities. However, its effect on breast cancer cells remains unknown. We examined the ability of ramalin to induce apoptosis and its mechanisms in MCF-7 and MDA-MB-231 human breast cancer cell lines. Ramalin inhibited cell growth and induced apoptosis in both cell lines in a concentration-dependent manner. By upregulating Bax and downregulating Bcl-2, ramalin caused cytochrome c and apoptosis-inducing factor to be released from the mitochondria into the cytosol, thus activating the mitochondrial apoptotic pathway. In addition, activated caspase-8 and caspase-9 were detected in both types of cells exposed to ramalin, whereas ramalin activated caspase-3 only in the MDA-MB-231 cells. Ramalin treatment also increased the levels of LC3-II and p62. Moreover, the inhibition of autophagy by 3-methyladenine or Atg5 siRNA significantly enhanced ramalin-induced apoptosis, which was accompanied by a decrease in Bcl-2 levels and an increase in Bax levels. Therefore, autophagy appears to be activated as a protective mechanism against apoptosis in cancer cells exposed to ramalin. These findings suggest that ramalin is a potential anticancer agent for the treatment of patients with non-invasive or invasive breast cancer.
Collapse
Affiliation(s)
- Eunyoung Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Kyunggi-do, 440-746, Korea
| | - Chung Gi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Kyunggi-do, 440-746, Korea
| | - Joung-Han Yim
- Polar BioCenter, Korea Polar Research Institute, KORDI, Incheon, Korea
| | - Hong-Kum Lee
- Polar BioCenter, Korea Polar Research Institute, KORDI, Incheon, Korea
| | - Suhkneung Pyo
- School of Pharmacy, Sungkyunkwan University, Suwon, Kyunggi-do, 440-746, Korea
| |
Collapse
|
36
|
Roy M, Sarkar R, Mukherjee A, Mukherjee S. Inhibition of crosstalk between Bcr-Abl and PKC signaling by PEITC, augments imatinib sensitivity in chronic myelogenous leukemia cells. Chem Biol Interact 2015; 242:195-201. [PMID: 26456889 DOI: 10.1016/j.cbi.2015.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/05/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022]
Abstract
Chronic myelogenous leukemia (CML), a clonal hyperproliferation of immature blood cells accounts for 20% of adult leukemia cases. Reciprocal translocation of chromosomes 9 and 22, results into Bcr-Abl fusion and is responsible for expression of a tyrosine kinase protein p210(bcr/abl), which mediates several survival pathways and confer therapeutic resistance. Protein kinase C (PKC), a family of serine threonine kinases play an important role in the process of leukemogenesis. A crosstalk between Bcr-Abl and PKC signaling has been documented. Therefore, targeting p210(bcr/abl) and its associated signaling proteins using non-toxic natural means will be an effective strategy for antileukemic therapy. Aim of the present study is to investigate whether PEITC, a natural isothiocyanate in combination with imatinib mesylate (IM), a tyrosine kinase inhibitor could increase the therapeutic efficacy of IM by modulating the expression of p210(bcr/abl). Enhanced cytotoxic efficacy of IM by PEITC was further validated using another myelogenous leukemia cell line, KU812. It was observed that PEITC in combination with IM efficiently downregulated the expression of p210(bcr/abl) in chronic myelogenous leukemia cell lines (K-562). PEITC inhibited the expressions of PKCα, PKCβII and PKCζ (both phosphorylated and total form). Expression of Raf1 and ERK1/2, two important target proteins in PKC signaling cascade was diminished. The result indicated that PEITC ultimately reduced expression of Raf1 and ERK1/2 through Bcr-Abl and PKC inhibition. This result was further confirmed by UCN-01, a selective PKC inhibitor and IM; indicating an association between p210(bcr/abl) and PKC with Raf1 and ERK1/2. PEITC thus may have enormous potential in synergistic therapy of leukemia by enhancing drug efficacy.
Collapse
Affiliation(s)
- Madhumita Roy
- Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S P Mukherjee Road, Kolkata, 700 026, India.
| | - Ruma Sarkar
- Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S P Mukherjee Road, Kolkata, 700 026, India
| | - Apurba Mukherjee
- Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S P Mukherjee Road, Kolkata, 700 026, India
| | - Sutapa Mukherjee
- Department of Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S P Mukherjee Road, Kolkata, 700 026, India
| |
Collapse
|
37
|
Fernández-Araujo A, Alfonso A, Vieytes MR, Botana LM. Yessotoxin activates cell death pathways independent of Protein Kinase C in K-562 human leukemic cell line. Toxicol In Vitro 2015; 29:1545-54. [PMID: 26025416 DOI: 10.1016/j.tiv.2015.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 05/12/2015] [Accepted: 05/16/2015] [Indexed: 01/30/2023]
Abstract
Protein Kinase C (PKC) is a group of enzymes involved in pro-survival or pro-apoptotic events depending on the cellular model. Moreover, Yessotoxin (YTX) modulates its expression and activates different cell death pathways. In K-562 tumor cell line, YTX induces apoptosis and autophagy after 24 and 48 h of incubation, respectively, and the toxin carries out its action through the phosphodiesterase 4A (PDE4A). Therefore, the levels of two subtypes of PKC, conventional (cPKC) and δ isotype of novel PKC (PKCδ) were studied at these times after YTX incubation. Also their involvement in the cell death activated by the toxin and their relationship with PDE4A was checked. The expression of cPKC and PKCδ in cytosol, plasma membrane and nucleus was studied in normal and PDE4A-silenced cells. Furthermore, cell viability of normal cells, as well as cPKC-, PKCδ- and PDE4A-silenced cells was tested by Lactate Dehydrogenase (LDH) assay. As a result, PKCδ showed a key role in K-562 cell survive, since without this protein, K-562 cell decreased their viability. Furthermore, modulation of PKCs by YTX treatment was observed, however, the changes in the expression of these proteins are independent of cell death activated by the toxin. In addition, the modulation of PKCs detected is PDE4A-dependent, since the silencing of this protein change PKC expression pattern.
Collapse
Affiliation(s)
| | - Amparo Alfonso
- Dept. Farmacología, Facultad de Veterinaria, 27002 Lugo, Spain
| | | | - Luis M Botana
- Dept. Farmacología, Facultad de Veterinaria, 27002 Lugo, Spain.
| |
Collapse
|
38
|
Autophagy collaborates with ubiquitination to downregulate oncoprotein E2A/Pbx1 in B-cell acute lymphoblastic leukemia. Blood Cancer J 2015; 5:e274. [PMID: 25615280 PMCID: PMC4314458 DOI: 10.1038/bcj.2014.96] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/12/2014] [Indexed: 12/16/2022] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) accounts for the most cancer incidences in children. We present here that autophagy is downregulated in pediatric B-ALL, suggesting a possible link between autophagy failure and pediatric B-ALL leukemogenesis. With a pediatric t(1;19) B-ALL xenograft mouse model, we show here that activation of autophagy by preventive administration of rapamycin improved the survival of leukemia animals by partial restoration of hematopoietic stem/progenitor cells, whereas treatment of the animals with rapamycin caused leukemia bone marrow cell-cycle arrest. Activation of autophagy in vitro or in vivo by rapamycin or starvation downregulated oncogenic fusion protein E2A/Pbx1. Furthermore, E2A/Pbx1 was found to be colocalized with autophagy marker LC3 in autolysosomes and with ubiquitin in response to autophagy stimuli, whereas autophagy or ubiquitination inhibitor blocked these colocalizations. Together, our data suggest a collaborative action between autophagy and ubiquitination in the degradation of E2A/Pbx1, thereby revealing a novel strategy for targeted preventive or treatment therapy on the pediatric ALL.
Collapse
|
39
|
Montraveta A, Xargay-Torrent S, López-Guerra M, Rosich L, Pérez-Galán P, Salaverria I, Beà S, Kalko SG, de Frias M, Campàs C, Roué G, Colomer D. Synergistic anti-tumor activity of acadesine (AICAR) in combination with the anti-CD20 monoclonal antibody rituximab in in vivo and in vitro models of mantle cell lymphoma. Oncotarget 2015; 5:726-39. [PMID: 24519895 PMCID: PMC3996675 DOI: 10.18632/oncotarget.1455] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mantle cell lymphoma (MCL) is considered one of the most challenging lymphoma, with limited responses to current therapies. Acadesine, a nucleoside analogue has shown antitumoral effects in different preclinical cancer models as well as in a recent phase I/II clinical trial conducted in patients with chronic lymphocytic leukemia. Here we observed that acadesine exerted a selective antitumoral activity in the majority of MCL cell lines and primary MCL samples, independently of adverse cytogenetic factors. Moreover, acadesine was highly synergistic, both in vitro and in vivo, with the anti-CD20 monoclonal antibody rituximab, commonly used in combination therapy for MCL. Gene expression profiling analysis in harvested tumors suggested that acadesine modulates immune response, actin cytoskeleton organization and metal binding, pointing out a substantial impact on metabolic processes by the nucleoside analog. Rituximab also induced changes on metal binding and immune responses. The combination of both drugs enhanced the gene signature corresponding to each single agent, showing an enrichment of genes involved in inflammation, metabolic stress, apoptosis and proliferation. These effects could be important as aberrant apoptotic and proinflammatory pathways play a significant role in the pathogenesis of MCL. In summary, our results suggest that acadesine exerts a cytotoxic effect in MCL in combination with rituximab, by decreasing the proliferative and survival signatures of the disease, thus supporting the clinical examination of this strategy in MCL patients.
Collapse
Affiliation(s)
- Arnau Montraveta
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gutierrez E, Richardson DR, Jansson PJ. The anticancer agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes prosurvival autophagy by two mechanisms: persistent induction of autophagosome synthesis and impairment of lysosomal integrity. J Biol Chem 2014; 289:33568-89. [PMID: 25301941 PMCID: PMC4246109 DOI: 10.1074/jbc.m114.599480] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/08/2014] [Indexed: 12/19/2022] Open
Abstract
Autophagy functions as a survival mechanism during cellular stress and contributes to resistance against anticancer agents. The selective antitumor and antimetastatic chelator di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) causes lysosomal membrane permeabilization and cell death. Considering the integral role of lysosomes in autophagy and cell death, it was important to assess the effect of Dp44mT on autophagy to further understand its mechanism of action. Notably, Dp44mT affected autophagy by two mechanisms. First, concurrent with its antiproliferative activity, Dp44mT increased the expression of the classical autophagic marker LC3-II as a result of induced autophagosome synthesis. Second, this effect was supplemented by a reduction in autophagosome degradation as shown by the accumulation of the autophagic substrate and receptor p62. Conversely, the classical iron chelator desferrioxamine induced autophagosome accumulation only by inhibiting autophagosome degradation. The formation of redox-active iron or copper Dp44mT complexes was critical for its dual effect on autophagy. The cytoprotective antioxidant N-acetylcysteine inhibited Dp44mT-induced autophagosome synthesis and p62 accumulation. Importantly, Dp44mT inhibited autophagosome degradation via lysosomal disruption. This effect prevented the fusion of lysosomes with autophagosomes to form autolysosomes, which is crucial for the completion of the autophagic process. The antiproliferative activity of Dp44mT was suppressed by Beclin1 and ATG5 silencing, indicating the role of persistent autophagosome synthesis in Dp44mT-induced cell death. These studies demonstrate that Dp44mT can overcome the prosurvival activity of autophagy in cancer cells by utilizing this process to potentiate cell death.
Collapse
Affiliation(s)
- Elaine Gutierrez
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Patric J Jansson
- From the Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
41
|
Al Dhaheri Y, Attoub S, Ramadan G, Arafat K, Bajbouj K, Karuvantevida N, AbuQamar S, Eid A, Iratni R. Carnosol induces ROS-mediated beclin1-independent autophagy and apoptosis in triple negative breast cancer. PLoS One 2014; 9:e109630. [PMID: 25299698 PMCID: PMC4192122 DOI: 10.1371/journal.pone.0109630] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/06/2014] [Indexed: 01/11/2023] Open
Abstract
Background In this study we investigated the in vitro and in vivo anticancer effect of carnosol, a naturally occurring polyphenol, in triple negative breast cancer. Results We found that carnosol significantly inhibited the viability and colony growth induced G2 arrest in the triple negative MDA-MB-231. Blockade of the cell cycle was associated with increased p21/WAF1 expression and downregulation of p27. Interestingly, carnosol was found to induce beclin1-independent autophagy and apoptosis in MDA-MB-231 cells. The coexistence of both events, autophagy and apoptosis, was confirmed by electron micrography. Induction of autophagy was found to be an early event, detected within 3 h post-treatment, which subsequently led to apoptosis. Carnosol treatment also caused a dose-dependent increase in the levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (pERK1/2). Moreover, we show that carnosol induced DNA damage, reduced the mitochondrial potential and triggered the activation of the intrinsic and extrinsic apoptotic pathway. Furthermore, we found that carnosol induced a dose-dependent generation of reactive oxygen species (ROS) and inhibition of ROS by tiron, a ROS scavenger, blocked the induction of autophagy and apoptosis and attenuated DNA damage. To our knowledge, this is the first report to identify the induction of autophagy by carnosol. Conclusion In conclusion our findings provide strong evidence that carnosol may be an alternative therapeutic candidate against the aggressive form of breast cancer and hence deserves more exploration.
Collapse
Affiliation(s)
- Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology & Therapeutics, Faculty of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gaber Ramadan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kholoud Arafat
- Department of Pharmacology & Therapeutics, Faculty of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khuloud Bajbouj
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Noushad Karuvantevida
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Synan AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali Eid
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- * E-mail:
| |
Collapse
|
42
|
A calpain-cleaved fragment of β-catenin promotes BCRABL1+ cell survival evoked by autophagy induction in response to imatinib. Cell Signal 2014; 26:1690-7. [DOI: 10.1016/j.cellsig.2014.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/08/2014] [Indexed: 12/25/2022]
|
43
|
Mencalha AL, Corrêa S, Abdelhay E. Role of calcium-dependent protein kinases in chronic myeloid leukemia: combined effects of PKC and BCR-ABL signaling on cellular alterations during leukemia development. Onco Targets Ther 2014; 7:1247-54. [PMID: 25045273 PMCID: PMC4099416 DOI: 10.2147/ott.s64303] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Calcium-dependent protein kinases (PKCs) function in a myriad of cellular processes, including cell-cycle regulation, proliferation, hematopoietic stem cell differentiation, apoptosis, and malignant transformation. PKC inhibitors, when targeted to these pathways, have demonstrated efficacy against several types of solid tumors as well as leukemia. Chronic myeloid leukemia (CML) represents 20% of all adult leukemia. The aberrant Philadelphia chromosome has been reported as the main cause of CML development in hematopoietic stem cells, due to the formation of the BCR-ABL oncogene. PKCs and BCR-ABL coordinate several signaling pathways that are crucial to cellular malignant transformation. Experimental and clinical evidence suggests that pharmacological approaches using PKC inhibitors may be effective in the treatment of CML. This mini review summarizes articles from the National Center for Biotechnology Information website that have shown evidence of the involvement of PKC in CML.
Collapse
Affiliation(s)
- André L Mencalha
- Biophysics and Biometry Department, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro's State University (UERJ), Rio de Janeiro, Brazil
| | - Stephany Corrêa
- Bone Marrow Transplantation Unit (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Eliana Abdelhay
- Bone Marrow Transplantation Unit (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Sui X, Xu Y, Yang J, Fang Y, Lou H, Han W, Zhang M, Chen W, Wang K, Li D, Jin W, Lou F, Zheng Y, Hu H, Gong L, Zhou X, Pan Q, Pan H, Wang X, He C. Use of metformin alone is not associated with survival outcomes of colorectal cancer cell but AMPK activator AICAR sensitizes anticancer effect of 5-fluorouracil through AMPK activation. PLoS One 2014; 9:e97781. [PMID: 24849329 PMCID: PMC4029793 DOI: 10.1371/journal.pone.0097781] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 04/23/2014] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is still the third most common cancer and the second most common causes of cancer-related death around the world. Metformin, a biguanide, which is widely used for treating diabetes mellitus, has recently been shown to have a suppressive effect on CRC risk and mortality, but not all laboratory studies suggest that metformin has antineoplastic activity. Here, we investigated the effect of metformin and AMPK activator AICAR on CRC cells proliferation. As a result, metformin did not inhibit cell proliferation or induce apoptosis for CRC cell lines in vitro and in vivo. Different from metformin, AICAR emerged antitumor activity and sensitized anticancer effect of 5-FU on CRC cells in vitro and in vivo. In further analysis, we show that AMPK activation may be a key molecular mechanism for the additive effect of AICAR. Taken together, our results suggest that metformin has not antineoplastic activity for CRC cells as a single agent but AMPK activator AICAR can induce apoptosis and enhance the cytotoxic effect of 5-FU through AMPK activation.
Collapse
Affiliation(s)
- Xinbing Sui
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Yinghua Xu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Jie Yang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Haizhou Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Maolin Zhang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Kaifeng Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Da Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wei Jin
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Fang Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yu Zheng
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Hong Hu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Liu Gong
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaoyun Zhou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qin Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
- * E-mail: (HP); (XW); (CH)
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
- * E-mail: (HP); (XW); (CH)
| | - Chao He
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- * E-mail: (HP); (XW); (CH)
| |
Collapse
|
45
|
Al-Moujahed A, Nicolaou F, Brodowska K, Papakostas TD, Marmalidou A, Ksander BR, Miller JW, Gragoudas E, Vavvas DG. Uveal melanoma cell growth is inhibited by aminoimidazole carboxamide ribonucleotide (AICAR) partially through activation of AMP-dependent kinase. Invest Ophthalmol Vis Sci 2014; 55:4175-85. [PMID: 24781943 PMCID: PMC4089421 DOI: 10.1167/iovs.13-12856] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 04/13/2014] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To evaluate the effects and mechanism of aminoimidazole carboxamide ribonucleotide (AICAR), an AMP-dependent kinase (AMPK) activator, on the growth of uveal melanoma cell lines. METHODS Four different cell lines were treated with AICAR (1-4 mM). Cell growth was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay. Cell cycle analysis was conducted by flow cytometry; additionally, expression of cell-cycle control proteins, cell growth transcription factors, and downstream effectors of AMPK were determined by RT-PCR and Western blot. RESULTS Aminoimidazole carboxamide ribonucleotide inhibited cell growth, induced S-phase arrest, and led to AMPK activation. Aminoimidazole carboxamide ribonucleotide treatment was associated with inhibition of eukaryotic translation initiation factor 4E-BP1 phosphorylation, a marker of mammalian target of rapamycin (mTOR) pathway activity. Aminoimidazole carboxamide ribonucleotide treatment was also associated with downregulation of cyclins A and D, but had minimal effects on the phosphorylation of ribosomal protein S6 or levels of the macroautophagy marker LC3B. The effects of AICAR were abolished by treatment with dipyridamole, an adenosine transporter inhibitor that blocks the entry of AICAR into cells. Treatment with adenosine kinase inhibitor 5-iodotubericidin, which inhibits the conversion of AICAR to its 5'-phosphorylated ribotide 5-aminoimidazole-4-carboxamide-1-D-ribofuranosyl-5'-monophosphate (ZMP; the direct activator of AMPK), reversed most of the growth-inhibitory effects, indicating that some of AICAR's antiproliferative effects are mediated at least partially through AMPK activation. CONCLUSIONS Aminoimidazole carboxamide ribonucleotide inhibited uveal melanoma cell proliferation partially through activation of the AMPK pathway and downregulation of cyclins A1 and D1.
Collapse
Affiliation(s)
- Ahmad Al-Moujahed
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Fotini Nicolaou
- Pediatric Surgery Laboratories, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Katarzyna Brodowska
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Thanos D. Papakostas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Anna Marmalidou
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Bruce R. Ksander
- The Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Joan W. Miller
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Evangelos Gragoudas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
46
|
Bosnjak M, Ristic B, Arsikin K, Mircic A, Suzin-Zivkovic V, Perovic V, Bogdanovic A, Paunovic V, Markovic I, Bumbasirevic V, Trajkovic V, Harhaji-Trajkovic L. Inhibition of mTOR-dependent autophagy sensitizes leukemic cells to cytarabine-induced apoptotic death. PLoS One 2014; 9:e94374. [PMID: 24714637 PMCID: PMC3979773 DOI: 10.1371/journal.pone.0094374] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 03/14/2014] [Indexed: 02/01/2023] Open
Abstract
The present study investigated the role of autophagy, a cellular self-digestion process, in the cytotoxicity of antileukemic drug cytarabine towards human leukemic cell lines (REH, HL-60, MOLT-4) and peripheral blood mononuclear cells from leukemic patients. The induction of autophagy was confirmed by acridine orange staining of intracellular acidic vesicles, electron microscopy visualization of autophagic vacuoles, as well as by the increase in autophagic proteolysis and autophagic flux, demonstrated by immunoblot analysis of p62 downregulation and LC3-I conversion to autophagosome-associated LC3-II in the presence of proteolysis inhibitors, respectively. Moreover, the expression of autophagy-related genes Atg4, Atg5 and Atg7 was stimulated by cytarabine in REH cells. Cytarabine reduced the phosphorylation of the major negative regulator of autophagy, mammalian target of rapamycin (mTOR), and its downstream target p70S6 kinase in REH cells, which was associated with downregulation of mTOR activator Akt and activation of extracellular signal- regulated kinase. Cytarabine had no effect on the activation of mTOR inhibitor AMP-activated protein kinase. Leucine, an mTOR activator, reduced both cytarabine-induced autophagy and cytotoxicity. Accordingly, pharmacological downregulation of autophagy with bafilomycin A1 and chloroquine, or RNA interference-mediated knockdown of LC3β or p62, markedly increased oxidative stress, mitochondrial depolarization, caspase activation and subsequent DNA fragmentation and apoptotic death in cytarabine-treated REH cells. Cytarabine also induced mTOR-dependent cytoprotective autophagy in HL-60 and MOLT-4 leukemic cell lines, as well as primary leukemic cells, but not normal leukocytes. These data suggest that the therapeutic efficiency of cytarabine in leukemic patients could be increased by the inhibition of the mTOR-dependent autophagic response.
Collapse
Affiliation(s)
- Mihajlo Bosnjak
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Biljana Ristic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, Belgrade, Serbia
| | - Katarina Arsikin
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, Belgrade, Serbia
| | - Aleksandar Mircic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Violeta Suzin-Zivkovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Perovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, Belgrade, Serbia
| | - Andrija Bogdanovic
- Clinic of Hematology, Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Verica Paunovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, Belgrade, Serbia
| | - Ivanka Markovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Bumbasirevic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, Belgrade, Serbia
- * E-mail: (VT); (LHT)
| | | |
Collapse
|
47
|
Lalic H, Dembitz V, Lukinovic-Skudar V, Banfic H, Visnjic D. 5-Aminoimidazole-4-carboxamide ribonucleoside induces differentiation of acute myeloid leukemia cells. Leuk Lymphoma 2014; 55:2375-83. [PMID: 24359245 DOI: 10.3109/10428194.2013.876633] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adenosine monophosphate (AMP)-activated kinase (AMPK) modulators have been shown to exert cytotoxic activity in hematological malignancies, but their role in the differentiation of acute myeloid leukemia (AML) is less explored. In this study, the effects of AMPK agonists on all-trans retinoic acid (ATRA)-mediated differentiation of acute promyelocytic leukemia (APL) and non-APL AML cell lines were investigated. The results show that AMPK agonists inhibit the growth of myeloblastic HL-60, promyelocytic NB4 and monocytic U937 cells. 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR), an AMPK activator, enhances ATRA-mediated differentiation of NB4 cells. In U937 cells, AICAR alone induces the expression of cell surface markers associated with mature monocytes and macrophages. In both cell lines, AICAR increases the activity of mitogen-activated protein kinase (MAPK), and the presence of a MAPK inhibitor reduces the expression of differentiation markers. These results reveal beneficial effects of AICAR in AML, including differentiation of non-APL AML cells.
Collapse
Affiliation(s)
- Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb , Croatia
| | | | | | | | | |
Collapse
|
48
|
Metformin: a metabolic disruptor and anti-diabetic drug to target human leukemia. Cancer Lett 2014; 346:188-96. [PMID: 24462823 DOI: 10.1016/j.canlet.2014.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 12/15/2022]
Abstract
There is a global and urgent need for expanding our current therapeutical arsenal against leukemia in order to improve their actual cure rates and fight relapse. Targeting the reprogrammed, altered cancer metabolism is an emerging strategy which should profoundly affect cancer cells in their intimate and irrepressible needs and addictions for nutrients uptake and incorporation into the biomass during malignant proliferation. We present here how metformin, an anti-diabetic drug that has attracted a strong interest for its recently discovered anti-cancer properties, can be envisioned as a new adjuvant approach to treat leukemia. Metformin may have a double-edged sword effect (i) by acting on the organism to decrease hyperglycaemia and hyperinsulinemia in diabetic patients and (ii) at the cellular level, by inhibiting the mTORC1-cancer supporting pathway through AMPK-dependent and independent mechanisms.
Collapse
|
49
|
Cassuto O, Dufies M, Jacquel A, Robert G, Ginet C, Dubois A, Hamouda A, Puissant A, Luciano F, Karsenti JM, Legros L, Cassuto JP, Lenain P, Auberger P. All tyrosine kinase inhibitor-resistant chronic myelogenous cells are highly sensitive to ponatinib. Oncotarget 2013; 3:1557-65. [PMID: 23238683 PMCID: PMC3681494 DOI: 10.18632/oncotarget.692] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The advent of tyrosine kinase inhibitor (TKI) therapy has considerably improved the survival of patients suffering chronic myelogenous leukemia (CML). Indeed, inhibition of BCR-ABL by imatinib, dasatinib or nilotinib triggers durable responses in most patients suffering from this disease. Moreover, resistance to imatinib due to kinase domain mutations can be generally circumvented using dasatinib or nilotinib, but the multi-resistant T315I mutation that is insensitive to these TKIs, remains to date a major clinical problem. In this line, ponatinib (AP24534) has emerged as a promising therapeutic option in patients with all kinds of BCR-ABL mutations, especially the T315I one. However and surprisingly, the effect of ponatinib has not been extensively studied on imatinib-resistant CML cell lines. Therefore, in the present study, we used several CML cell lines with different mechanisms of resistance to TKI to evaluate the effect of ponatinib on cell viability, apoptosis and signaling. Our results show that ponatinib is highly effective on both sensitive and resistant CML cell lines, whatever the mode of resistance and also on BaF3 murine B cells carrying native BCR-ABL or T315I mutation. We conclude that ponatinib could be effectively used for all types of TKI-resistant patients.
Collapse
Affiliation(s)
- Ophélie Cassuto
- C3M/ INSERM U1065 Team Cell Death, Differentiation, Inflammation and Cancer, Nice, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cheng XL, Zhou TY, Li B, Li MY, Li L, Li ZQ, Lu W. Methotrexate and 5-aminoimidazole-4-carboxamide riboside exert synergistic anticancer action against human breast cancer and hepatocellular carcinoma. Acta Pharmacol Sin 2013; 34:951-9. [PMID: 23603981 DOI: 10.1038/aps.2013.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/17/2013] [Indexed: 12/13/2022]
Abstract
AIM To investigate the influences of methotrexate (MTX) on the anticancer actions and pharmacokinetics of 5-aminoimidazole-4-carboxamide riboside (AICA riboside) in human breast cancer and hepatocellular carcinoma. METHODS Human breast cancer cell line MCF-7 and human hepatocellular carcinoma cell line HepG2 were examined. The cell proliferation was assessed using a sulforhodamine B assay. Western blotting and radioactivity assays were used to analyze the phosphorylation of AMPK. The DNA synthesis was analyzed with BrdU incorporation. Nude mice bearing MCF-7 cell xenografts were used to for in vivo study. MTX (50 mg/kg, ip, per week) and AICA riboside (200 mg/kg, ip, every other day) were administered the animals for 2 weeks. The concentrations of AICA riboside and its active metabolite AICA ribotide in the plasma and tumors were measured with HPLC. RESULTS Synergistic cytotoxicity in vitro was observed with MTX (0.1, 0.5, and 1 μmol/L) combined with AICA riboside (0.25-1 mmol/L) in MCF-7 cells, and with MTX (0.5 and 1 μmol/L) combined with AICA riboside (0.5 and 1 mmol/L) in HepG2 cells. MTX (1 μmol/L) significantly enhanced the AICA riboside-induced AMPK activation and BrdU incorporation in both MCF-7 and HepG2 cells. Co-treatment with MTX and AICA riboside exerted more potent inhibition on the tumor growth in nude mice than either drug alone. After injection of AICA riboside (200 mg/kg, iv) in nude mice bearing MCF-7 xenografts, MTX (50 mg/kg, iv) significantly increased the concentrations of AICA riboside and its active metabolite AICA ribotide in tumors. CONCLUSION MTX and AICA riboside exert synergistic anticancer action against MCF-7 and HepG2 cells in vitro and in vivo. MTX increases the concentration of AICA riboside and its active metabolite AICA ribotide in tumors in vivo.
Collapse
|