1
|
Slinger BL, Banerjee S, Chandler JR, Blackwell HE. Interspecies Crosstalk via LuxI/LuxR-Type Quorum Sensing Pathways Contributes to Decreased Nematode Survival in Coinfections of Pseudomonas aeruginosa and Burkholderia multivorans. ACS Chem Biol 2024; 19:2557-2568. [PMID: 39636707 PMCID: PMC11927443 DOI: 10.1021/acschembio.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Quorum sensing (QS) is a prominent chemical communication mechanism used by common bacteria to regulate group behaviors at high cell density, including many processes important in pathogenesis. There is growing evidence that certain bacteria can use QS to sense not only themselves but also other species and that this crosstalk could alter collective behaviors. In the current study, we report the results of culture-based and in vivo coinfection experiments that probe interspecies interactions between the opportunistic pathogens Pseudomonas aeruginosa and Burkholderia multivorans involving their LuxI/LuxR-type QS circuits. Using a Caenorhabditis elegans infection model, we show that infections with both species result in poorer host outcomes compared with monoinfections. We use genetic mutants and a transwell infection assay to establish that crosstalk via LuxR-type receptors and signals is important for this coinfection pathogenicity. Using laboratory cocultures with cell-based reporter systems, we show that the RhlR and CepR receptors in P. aeruginosa and B. multivorans, respectively, can each recognize a QS signal produced by the other species. Lastly, we apply chemical biology to complement our genetic approach and demonstrate the potential to regulate interspecies interactions between the wild-type strains of P. aeruginosa and B. multivorans through the application of synthetic compounds that modulate RhlR and CepR activities. Overall, this study reveals that interspecies interaction via QS networks is possible between P. aeruginosa and B. multivorans and that it can contribute to coinfection severity with these two species.
Collapse
Affiliation(s)
- Betty L. Slinger
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706 USA
| | - Samalee Banerjee
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045 USA
| | - Josephine R. Chandler
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045 USA
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706 USA
| |
Collapse
|
2
|
Pita T, Feliciano JR, Leitão JH. Identification of Burkholderia cenocepacia non-coding RNAs expressed during Caenorhabditis elegans infection. Appl Microbiol Biotechnol 2023; 107:3653-3671. [PMID: 37097504 PMCID: PMC10175445 DOI: 10.1007/s00253-023-12530-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023]
Abstract
Small non-coding RNAs (sRNAs) are key regulators of post-transcriptional gene expression in bacteria. Despite the identification of hundreds of bacterial sRNAs, their roles on bacterial physiology and virulence remain largely unknown, as is the case of bacteria of the Burkholderia cepacia complex (Bcc). Bcc is a group of opportunistic pathogens with relatively large genomes that can cause lethal lung infections amongst cystic fibrosis (CF) patients. To characterise sRNAs expressed by Bcc bacteria when infecting a host, the nematode Caenorhabditis elegans was used as an infection model by the epidemic CF strain B. cenocepacia J2315. A total of 108 new and 31 previously described sRNAs with a predicted Rho independent terminator were identified, most of them located on chromosome 1. RIT11b, a sRNA downregulated under C. elegans infection conditions, was shown to directly affect B. cenocepacia virulence, biofilm formation, and swimming motility. RIT11b overexpression reduced the expression of the direct targets dusA and pyrC, involved in biofilm formation, epithelial cell adherence, and chronic infections in other organisms. The in vitro direct interaction of RIT11b with the dusA and pyrC messengers was demonstrated by electrophoretic mobility shift assays. To the best of our knowledge this is the first report on the functional characterization of a sRNA directly involved in B. cenocepacia virulence. KEY POINTS: • 139 sRNAs expressed by B. cenocepacia during C. elegans infection were identified • The sRNA RIT11b affects B. cenocepacia virulence, biofilm formation, and motility • RIT11b directly binds to and regulates dusA and pyrC mRNAs.
Collapse
Affiliation(s)
- Tiago Pita
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, and Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Joana R Feliciano
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, and Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
| | - Jorge H Leitão
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, and Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
| |
Collapse
|
3
|
Hemmati F, Rezaee MA, Ebrahimzadeh S, Yousefi L, Nouri R, Kafil HS, Gholizadeh P. Novel Strategies to Combat Bacterial Biofilms. Mol Biotechnol 2021; 63:569-586. [PMID: 33914260 DOI: 10.1007/s12033-021-00325-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022]
Abstract
Biofilms are considered as a severe problem in the treatment of bacterial infections; their development causes some noticeable resistance to antibacterial agents. Biofilms are responsible for at least two-thirds of all infections, displaying promoted resistance to classical antibiotic treatments. Therefore, finding new alternative therapeutic approaches is essential for the treatment and inhibition of biofilm-related infections. Therefore, this review aims to describe the potential therapeutic strategies that can inhibit bacterial biofilm development; these include the usage of antiadhesion agents, AMPs, bacteriophages, QSIs, aptamers, NPs and PNAs, which can prevent or eradicate the formation of biofilms. These antibiofilm agents represent a promising therapeutic target in the treatment of biofilm infections and development of a strong capability to interfere with different phases of the biofilm development, including adherence, polysaccharide intercellular adhesion (PIA), quorum sensing molecules and cell-to-cell connection, bacterial aggregation, planktonic bacteria killing and host-immune response modulation. In addition, these components, in combination with antibiotics, can lead to the development of some kind of powerful combined therapy against bacterial biofilm-related infections.
Collapse
Affiliation(s)
- Fatemeh Hemmati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saba Ebrahimzadeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Leila Yousefi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Nouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Kim SM, Escorbar I, Lee K, Fuchs BB, Mylonakis E, Kim W. Anti-MRSA agent discovery using Caenorhabditis elegans-based high-throughput screening. J Microbiol 2020; 58:431-444. [PMID: 32462486 DOI: 10.1007/s12275-020-0163-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus is a leading cause of hospital- and community-acquired infections. Despite current advances in antimicrobial chemotherapy, the infections caused by S. aureus remain challenging due to their ability to readily develop resistance. Indeed, antibiotic resistance, exemplified by methicillin-resistant S. aureus (MRSA) is a top threat to global health security. Furthermore, the current rate of antibiotic discovery is much slower than the rate of antibiotic-resistance development. It seems evident that the conventional in vitro bacterial growth-based screening strategies can no longer effectively supply new antibiotics at the rate needed to combat bacterial antibiotic-resistance. To overcome this antibiotic resistance crisis, screening assays based on host-pathogen interactions have been developed. In particular, the free-living nematode Caenorhabditis elegans has been used for drug screening against MRSA. In this review, we will discuss the general principles of the C. elegans-based screening platform and will highlight its unique strengths by comparing it with conventional antibiotic screening platforms. We will outline major hits from high-throughput screens of more than 100,000 small molecules using the C. elegans-MRSA infection assay and will review the mode-of-action of the identified hit compounds. Lastly, we will discuss the potential of a C. elegans-based screening strategy as a paradigm shift screening platform.
Collapse
Affiliation(s)
- Soo Min Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Iliana Escorbar
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Kiho Lee
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Wooseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
5
|
Chen YL, Hsu DW, Hsueh PT, Chen JA, Shih PJ, Lee S, Lin HH, Chen YS. Distinct Pathogenic Patterns of Burkholderia pseudomallei Isolates Selected from Caenorhabditis elegans and Dictyostelium discoideum Models. Am J Trop Med Hyg 2020; 101:736-745. [PMID: 31392941 DOI: 10.4269/ajtmh.19-0052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Burkholderia pseudomallei is a selective agent that causes septic melioidosis and exhibits a broad range of lethal doses in animals. Host cellular virulence and phagocytic resistance are pathologic keys of B. pseudomallei. We first proposed Caenorhabditis elegans as the host cellular virulence model to mimic bacterial virulence against mammals and second established the resistance of B. pseudomallei to predation by Dictyostelium discoideum as the phagocytosis model. The saprophytic sepsis-causing Burkholderia sp. (B. pseudomallei, Burkholderia thailandensis, Burkholderia cenocepacia, and Burkholderia multivorans) exhibited different virulence patterns in both simple models, but B. pseudomallei was the most toxic. Using both models, attenuated isolates of B. pseudomallei were selected from a transposon-mutant library and a panel of environmental isolates and reconfirmed by in vitro mouse peritoneal exudate cell association and invasion assays. The distinct pathological patterns of melioidosis were inducted by different selected B. pseudomallei isolates. Fatal melioidosis was induced by the isolates with high virulence in both simple models within 4-5 day, whereas the low-virulence isolates resulted in prolonged survival greater than 30 day. Infection with the isolates having high resistance to D. discoideum predation but a low C. elegans killing effect led to 83% of mice with neurologic melioidosis. By contrast, infection with the isolates having low resistance to D. discoideum predation but high C. elegans killing effect led to 20% cases with inflammation in the salivary glands. Our results indicated that individual B. pseudomallei isolates selected from simple biological models contribute differently to disease progression and/or tissue tropism.
Collapse
Affiliation(s)
- Ya-Lei Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Duen-Wei Hsu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Pei-Tan Hsueh
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jou-An Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Pei-Jyun Shih
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Susan Lee
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hsi-Hsun Lin
- School of Medicine, Institute of Public Health, National Yang-Ming University, Taipei, Taiwan.,Medical Research Department, General Clinical Research Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yao-Shen Chen
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
6
|
Potent modulation of the CepR quorum sensing receptor and virulence in a Burkholderia cepacia complex member using non-native lactone ligands. Sci Rep 2019; 9:13449. [PMID: 31530834 PMCID: PMC6748986 DOI: 10.1038/s41598-019-49693-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) is a family of closely related bacterial pathogens that are the causative agent of deadly human infections. Virulence in Bcc species has been shown to be controlled by the CepI/CepR quorum sensing (QS) system, which is mediated by an N-acyl L-homoserine lactone (AHL) signal (C8-AHL) and its cognate LuxR-type receptor (CepR). Chemical strategies to block QS in Bcc members would represent an approach to intercept this bacterial communication process and further delineate its role in infection. In the current study, we sought to identify non-native AHLs capable of agonizing or antagonizing CepR, and thereby QS, in a Bcc member. We screened a library of AHL analogs in cell-based reporters for CepR, and identified numerous highly potent CepR agonists and antagonists. These compounds remain active in a Bcc member, B. multivorans, with one agonist 250-fold more potent than the native ligand C8-AHL, and can affect QS-controlled motility. Further, the CepR antagonists prolong C. elegans survival in an infection model. These AHL analogs are the first reported non-native molecules that both directly modulate CepR and impact QS-controlled phenotypes in a Bcc member, and represent valuable chemical tools to assess the role of QS in Bcc infections.
Collapse
|
7
|
Analysis of Caenorhabditis elegans phosphoproteome reveals the involvement of a molecular chaperone, HSP-90 protein during Salmonella enterica Serovar Typhi infection. Int J Biol Macromol 2019; 137:620-646. [PMID: 31252012 DOI: 10.1016/j.ijbiomac.2019.06.085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/01/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
Being a primary and prerequisite Post Translational Modification (PTM), protein phosphorylation mediates the defense mechanisms that presides host defense against a pathogen attack. Hence, the current study was intended to uncover the role of regulatory proteins and their PTMs with special attention to phosphorylation during pathogen attack, using C. elegans as a host and S. Typhi as an interacting pathogen. The study was initiated with the identification of differential regulation of the crucial immune regulatory kinases such as PMK-1, JNK-1 and SGK-1 through immunoblotting analysis, which revealed up-regulation of kinases during 48 h of S. Typhi infection. Subsequent the phosphoproteome profiling of S. Typhi infected C. elegans, using TiO2 Column Chromatography followed by MALDI-ToF-ToF-MS, uncovered the regulated phosphoprotein players resulting in the identification of 166 and 54 proteins from gel-free and gel-based analysis, respectively. HSP-90 was found to be a central player from the interactome analyses and its role during pathogenic defense was validated using immunoblotting. Furthermore, the protein disorders of the identified phosphoproteins have been extensively analysed in silico. This study suggests that S. Typhi interferes with the homeostasis of chaperone molecules by kinetically interfering with the phosphorylation of the downstream pathway players of MAPK and JNK.
Collapse
|
8
|
Hoang KL, Gerardo NM, Morran LT. The effects of Bacillus subtilis on Caenorhabditis elegans fitness after heat stress. Ecol Evol 2019; 9:3491-3499. [PMID: 30962907 PMCID: PMC6434544 DOI: 10.1002/ece3.4983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 01/21/2023] Open
Abstract
Microbes can provide their hosts with protection from biotic and abiotic factors. While many studies have examined how certain bacteria can increase host lifespan, fewer studies have examined how host reproduction can be altered. The nematode Caenorhabditis elegans has been a particularly useful model system to examine how bacteria affect the fitness of their hosts under different contexts. Here, we examine how the bacterium Bacillus subtilis, compared to the standard C. elegans lab diet, Escherichia coli, affects C. elegans survival and reproduction after experiencing a period of intense heat stress. We find that under standard conditions, nematodes reared on B. subtilis produce fewer offspring than when reared on E. coli.However, despite greater mortality rates on B. subtilis after heat shock, young adult nematodes produced more offspring after heat shock when fed B. subtilis compared to E. coli. Because offspring production is necessary for host population growth and evolution, the reproductive advantage conferred by B. subtilis supersedes the survival advantage of E. coli. Furthermore, we found that nematodes must be reared on B. subtilis (particularly at the early stages of development) and not merely be exposed to the bacterium during heat shock, to obtain the reproductive benefits provided by B. subtilis. Taken together, our findings lend insight into the importance of environmental context and interaction timing in shaping the protective benefits conferred by a microbe toward its host.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of BiologyEmory UniversityAtlantaGeorgia
| | | | | |
Collapse
|
9
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
10
|
Roszniowski B, McClean S, Drulis-Kawa Z. Burkholderia cenocepacia Prophages-Prevalence, Chromosome Location and Major Genes Involved. Viruses 2018; 10:v10060297. [PMID: 29857552 PMCID: PMC6024312 DOI: 10.3390/v10060297] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Burkholderia cenocepacia, is a Gram-negative opportunistic pathogen that belongs to Burkholderia cepacia complex (BCC) group. BCC representatives carry various pathogenicity factors and can infect humans and plants. Phages as bacterial viruses play a significant role in biodiversity and ecological balance in the environment. Specifically, horizontal gene transfer (HGT) and lysogenic conversion (temperate phages) influence microbial diversification and fitness. In this study, we describe the prevalence and gene content of prophages in 16 fully sequenced B. cenocepacia genomes stored in NCBI database. The analysis was conducted in silico by manual and automatic approaches. Sixty-three potential prophage regions were found and classified as intact, incomplete, questionable, and artifacts. The regions were investigated for the presence of known virulence factors, resulting in the location of sixteen potential pathogenicity mechanisms, including toxin–antitoxin systems (TA), Major Facilitator Superfamily (MFS) transporters and responsible for drug resistance. Investigation of the region’s closest neighborhood highlighted three groups of genes with the highest occurrence—tRNA-Arg, dehydrogenase family proteins, and ABC transporter substrate-binding proteins. Searches for antiphage systems such as BacteRiophage EXclusion (BREX) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in the analyzed strains suggested 10 sequence sets of CRISPR elements. Our results suggest that intact B. cenocepacia prophages may provide an evolutionary advantage to the bacterium, while domesticated prophages may help to maintain important genes.
Collapse
Affiliation(s)
- Bartosz Roszniowski
- Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland.
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, 51-148 Wroclaw, Poland.
| |
Collapse
|
11
|
Dorati F, Barrett GA, Sanchez-Contreras M, Arseneault T, José MS, Studholme DJ, Murillo J, Caballero P, Waterfield NR, Arnold DL, Shaw LJ, Jackson RW. Coping with Environmental Eukaryotes; Identification of Pseudomonas syringae Genes during the Interaction with Alternative Hosts or Predators. Microorganisms 2018; 6:microorganisms6020032. [PMID: 29690522 PMCID: PMC6027264 DOI: 10.3390/microorganisms6020032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/09/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular mechanisms underpinning the ecological success of plant pathogens is critical to develop strategies for controlling diseases and protecting crops. Recent observations have shown that plant pathogenic bacteria, particularly Pseudomonas, exist in a range of natural environments away from their natural plant host e.g., water courses, soil, non-host plants. This exposes them to a variety of eukaryotic predators such as nematodes, insects and amoebae present in the environment. Nematodes and amoeba in particular are bacterial predators while insect herbivores may act as indirect predators, ingesting bacteria on plant tissue. We therefore postulated that bacteria are probably under selective pressure to avoid or survive predation and have therefore developed appropriate coping mechanisms. We tested the hypothesis that plant pathogenic Pseudomonas syringae are able to cope with predation pressure and found that three pathovars show weak, but significant resistance or toxicity. To identify the gene systems that contribute to resistance or toxicity we applied a heterologous screening technique, called Rapid Virulence Annotation (RVA), for anti-predation and toxicity mechanisms. Three cosmid libraries for P. syringae pv. aesculi, pv. tomato and pv. phaseolicola, of approximately 2000 cosmids each, were screened in the susceptible/non-toxic bacterium Escherichia coli against nematode, amoebae and an insect. A number of potential conserved and unique genes were identified which included genes encoding haemolysins, biofilm formation, motility and adhesion. These data provide the first multi-pathovar comparative insight to how plant pathogens cope with different predation pressures and infection of an insect gut and provide a foundation for further study into the function of selected genes and their role in ecological success.
Collapse
Affiliation(s)
- Federico Dorati
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| | - Glyn A Barrett
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| | | | - Tanya Arseneault
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Research and Development Centre, Quebec, J3B 3E6, Canada.
| | - Mateo San José
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| | | | - Jesús Murillo
- Instituto de Agrobiotecnología, Universidad Pública de Navarra, 31192 Mutilva, Spain.
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, Universidad Pública de Navarra, 31192 Mutilva, Spain.
| | - Nicholas R Waterfield
- Department of Biology and Biochemistry, University of Bath, Bath, BA1 9BJ, UK.
- Warwick Medical School, University of Warwick, Warwick, CV4 7AL, UK.
| | - Dawn L Arnold
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK.
| | - Liz J Shaw
- School of Archaeology, Geography and Environmental Science, University of Reading, Reading, RG6 6AX, UK.
| | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| |
Collapse
|
12
|
Ooi FK, Prahlad V. Olfactory experience primes the heat shock transcription factor HSF-1 to enhance the expression of molecular chaperones in C. elegans. Sci Signal 2017; 10:10/501/eaan4893. [PMID: 29042483 DOI: 10.1126/scisignal.aan4893] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Learning, a process by which animals modify their behavior as a result of experience, enables organisms to synthesize information from their surroundings to acquire resources and avoid danger. We showed that a previous encounter with only the odor of pathogenic bacteria prepared Caenorhabditis elegans to survive exposure to the pathogen by increasing the heat shock factor 1 (HSF-1)-dependent expression of genes encoding molecular chaperones. Experience-mediated enhancement of chaperone gene expression required serotonin, which primed HSF-1 to enhance the expression of molecular chaperone genes by promoting its localization to RNA polymerase II-enriched nuclear loci, even before transcription occurred. However, HSF-1-dependent chaperone gene expression was stimulated only if and when animals encountered the pathogen. Thus, learning equips C. elegans to better survive environmental dangers by preemptively and specifically initiating transcriptional mechanisms throughout the whole organism that prepare the animal to respond rapidly to proteotoxic agents. These studies provide one plausible basis for the protective role of environmental enrichment in disease.
Collapse
Affiliation(s)
- Felicia K Ooi
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building East, 338 BBE, University of Iowa, Iowa City, IA 52242, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building East, 338 BBE, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
13
|
Discovery of new diketopiperazines inhibiting Burkholderia cenocepacia quorum sensing in vitro and in vivo. Sci Rep 2016; 6:32487. [PMID: 27580679 PMCID: PMC5007513 DOI: 10.1038/srep32487] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/08/2016] [Indexed: 02/08/2023] Open
Abstract
Burkholderia cenocepacia, an opportunistic respiratory pathogen particularly relevant for cystic fibrosis patients, is difficult to eradicate due to its high level of resistance to most clinically relevant antimicrobials. Consequently, the discovery of new antimicrobials as well as molecules capable of inhibiting its virulence is mandatory. In this regard quorum sensing (QS) represents a good target for anti-virulence therapies, as it has been linked to biofilm formation and is important for the production of several virulence factors, including proteases and siderophores. Here, we report the discovery of new diketopiperazine inhibitors of the B. cenocepacia acyl homoserine lactone synthase CepI, and report their anti-virulence properties. Out of ten different compounds assayed against recombinant CepI, four were effective inhibitors, with IC50 values in the micromolar range. The best compounds interfered with protease and siderophore production, as well as with biofilm formation, and showed good in vivo activity in a Caenorhabditis elegans infection model. These molecules were also tested in human cells and showed very low toxicity. Therefore, they could be considered for in vivo combined treatments with established or novel antimicrobials, to improve the current therapeutic strategies against B. cenocepacia.
Collapse
|
14
|
de la Fuente-Núñez C, Reffuveille F, Mansour SC, Reckseidler-Zenteno SL, Hernández D, Brackman G, Coenye T, Hancock REW. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. ACTA ACUST UNITED AC 2015; 22:196-205. [PMID: 25699603 DOI: 10.1016/j.chembiol.2015.01.002] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 12/11/2014] [Accepted: 01/06/2015] [Indexed: 12/26/2022]
Abstract
In many infections, bacteria form surface-associated communities known as biofilms that are substantially more resistant to antibiotics than their planktonic counterparts. Based on the design features of active antibiofilm peptides, we made a series of related 12-amino acid L-, D- and retro-inverso derivatives. Specific D-enantiomeric peptides were the most potent at inhibiting biofilm development and eradicating preformed biofilms of seven species of wild-type and multiply antibiotic-resistant Gram-negative pathogens. Moreover, these peptides showed strong synergy with conventional antibiotics, reducing the antibiotic concentrations required for complete biofilm inhibition by up to 64-fold. As shown previously for 1018, these D-amino acid peptides targeted the intracellular stringent response signal (p)ppGpp. The most potent peptides DJK-5 and DJK-6 protected invertebrates from lethal Pseudomonas aeruginosa infections and were considerably more active than a previously described L-amino acid peptide 1018. Thus, the protease-resistant peptides produced here were more effective both in vitro and in vivo.
Collapse
Affiliation(s)
- César de la Fuente-Núñez
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Fany Reffuveille
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sarah C Mansour
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Diego Hernández
- Faculty of Science and Technology, Athabasca University, Athabasca, AB T9S 3A3, Canada
| | - Gilles Brackman
- Laboratory of Pharmaceutical Microbiology, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Robert E W Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
15
|
Tedesco P, Visone M, Parrilli E, Tutino ML, Perrin E, Maida I, Fani R, Ballestriero F, Santos R, Pinilla C, Di Schiavi E, Tegos G, de Pascale D. Investigating the Role of the Host Multidrug Resistance Associated Protein Transporter Family in Burkholderia cepacia Complex Pathogenicity Using a Caenorhabditis elegans Infection Model. PLoS One 2015; 10:e0142883. [PMID: 26587842 PMCID: PMC4654563 DOI: 10.1371/journal.pone.0142883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/28/2015] [Indexed: 11/24/2022] Open
Abstract
This study investigated the relationship between host efflux system of the non-vertebrate nematode Caenorhabditis elegans and Burkholderia cepacia complex (Bcc) strain virulence. This is the first comprehensive effort to profile host-transporters within the context of Bcc infection. With this aim, two different toxicity tests were performed: a slow killing assay that monitors mortality of the host by intestinal colonization and a fast killing assay that assesses production of toxins. A Virulence Ranking scheme was defined, that expressed the toxicity of the Bcc panel members, based on the percentage of surviving worms. According to this ranking the 18 Bcc strains were divided in 4 distinct groups. Only the Cystic Fibrosis isolated strains possessed profound nematode killing ability to accumulate in worms’ intestines. For the transporter analysis a complete set of isogenic nematode single Multidrug Resistance associated Protein (MRP) efflux mutants and a number of efflux inhibitors were interrogated in the host toxicity assays. The Bcc pathogenicity profile of the 7 isogenic C. elegans MRP knock-out strains functionality was classified in two distinct groups. Disabling host transporters enhanced nematode mortality more than 50% in 5 out of 7 mutants when compared to wild type. In particular mrp-2 was the most susceptible phenotype with increased mortality for 13 out 18 Bcc strains, whereas mrp-3 and mrp-4 knock-outs had lower mortality rates, suggesting a different role in toxin-substrate recognition. The use of MRP efflux inhibitors in the assays resulted in substantially increased (>40% on average) mortality of wild-type worms.
Collapse
Affiliation(s)
- Pietro Tedesco
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, I-80131, Naples, Italy
- Department of Chemical Sciences and School of Biotechnological Sciences, University of Naples Federico II, Via Cintia, I-80126, Naples, Italy
| | - Marco Visone
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, I-80131, Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences and School of Biotechnological Sciences, University of Naples Federico II, Via Cintia, I-80126, Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences and School of Biotechnological Sciences, University of Naples Federico II, Via Cintia, I-80126, Naples, Italy
| | - Elena Perrin
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano, I-50019, Sesto Fiorentino, Florence, Italy
| | - Isabel Maida
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano, I-50019, Sesto Fiorentino, Florence, Italy
| | - Renato Fani
- Laboratory of Microbial and Molecular Evolution, Department of Biology, University of Florence, Via Madonna del Piano, I-50019, Sesto Fiorentino, Florence, Italy
| | - Francesco Ballestriero
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Radleigh Santos
- Torrey Pines Institute of Molecular Studies, Port St. Lucie, FL, United States of America, and San Diego, CA, United States of America
| | - Clemencia Pinilla
- Torrey Pines Institute of Molecular Studies, Port St. Lucie, FL, United States of America, and San Diego, CA, United States of America
| | - Elia Di Schiavi
- Institute of Bioscience and BioResources, National Research Council, via P. Castellino 111, I-80131, Naples, Italy
- Institute of Genetics and Biophysics, National Research Council, via P. Castellino 111, I-80131, Naples, Italy
| | - George Tegos
- Torrey Pines Institute of Molecular Studies, Port St. Lucie, FL, United States of America, and San Diego, CA, United States of America
- Wellman Centre for Photomedicine, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Dermatology, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (DdP); (GT)
| | - Donatella de Pascale
- Institute of Protein Biochemistry, National Research Council, Via P. Castellino 111, I-80131, Naples, Italy
- * E-mail: (DdP); (GT)
| |
Collapse
|
16
|
MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda olearia. Appl Environ Microbiol 2014; 81:774-82. [PMID: 25398866 DOI: 10.1128/aem.02805-14] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria use N-acyl homoserine lactones (AHLs) as quorum sensing (QS) signaling molecules for interspecies communication, and AHL-dependent QS is related with virulence factor production in many bacterial pathogens. Quorum quenching, the enzymatic degradation of the signaling molecule, would attenuate virulence rather than kill the pathogens, and thereby reduce the potential for evolution of drug resistance. In a previous study, we showed that Muricauda olearia Th120, belonging to the class Flavobacteriia, has strong AHL degradative activity. In this study, an AHL lactonase (designated MomL), which could degrade both short- and long-chain AHLs with or without a substitution of oxo-group at the C-3 position, was identified from Th120. Liquid chromatography-mass spectrometry analysis demonstrated that MomL functions as an AHL lactonase catalyzing AHL degradation through lactone hydrolysis. MomL is an AHL lactonase belonging to the metallo-β-lactamase superfamily that harbors an N-terminal signal peptide. The overall catalytic efficiency of MomL for C6-HSL is ∼2.9 × 10(5) s(-1) M(-1). Metal analysis and site-directed mutagenesis showed that, compared to AiiA, MomL has a different metal-binding capability and requires the histidine and aspartic acid residues for activity, while it shares the "HXHXDH" motif with other AHL lactonases belonging to the metallo-β-lactamase superfamily. This suggests that MomL is a representative of a novel type of secretory AHL lactonase. Furthermore, MomL significantly attenuated the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model, which suggests that MomL has the potential to be used as a therapeutic agent.
Collapse
|
17
|
Christiaen SEA, O'Connell Motherway M, Bottacini F, Lanigan N, Casey PG, Huys G, Nelis HJ, van Sinderen D, Coenye T. Autoinducer-2 plays a crucial role in gut colonization and probiotic functionality of Bifidobacterium breve UCC2003. PLoS One 2014; 9:e98111. [PMID: 24871429 PMCID: PMC4037206 DOI: 10.1371/journal.pone.0098111] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/29/2014] [Indexed: 01/13/2023] Open
Abstract
In the present study we show that luxS of Bifidobacterium breve UCC2003 is involved in the production of the interspecies signaling molecule autoinducer-2 (AI-2), and that this gene is essential for gastrointestinal colonization of a murine host, while it is also involved in providing protection against Salmonella infection in Caenorhabditis elegans. We demonstrate that a B. breve luxS-insertion mutant is significantly more susceptible to iron chelators than the WT strain and that this sensitivity can be partially reverted in the presence of the AI-2 precursor DPD. Furthermore, we show that several genes of an iron starvation-induced gene cluster, which are downregulated in the luxS-insertion mutant and which encodes a presumed iron-uptake system, are transcriptionally upregulated under in vivo conditions. Mutation of two genes of this cluster in B. breve UCC2003 renders the derived mutant strains sensitive to iron chelators while deficient in their ability to confer gut pathogen protection to Salmonella-infected nematodes. Since a functional luxS gene is present in all tested members of the genus Bifidobacterium, we conclude that bifidobacteria operate a LuxS-mediated system for gut colonization and pathogen protection that is correlated with iron acquisition.
Collapse
Affiliation(s)
| | - Mary O'Connell Motherway
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Francesca Bottacini
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Noreen Lanigan
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Pat G. Casey
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Geert Huys
- Laboratory of Microbiology & BCCM/LMG Bacteria Collection, Ghent University, Ghent, Belgium
| | - Hans J. Nelis
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Douwe van Sinderen
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
18
|
Christiaen SE, Matthijs N, Zhang XH, Nelis HJ, Bossier P, Coenye T. Bacteria that inhibit quorum sensing decrease biofilm formation and virulence inPseudomonas aeruginosaPAO1. Pathog Dis 2014; 70:271-9. [DOI: 10.1111/2049-632x.12124] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Nele Matthijs
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Xiao-Hua Zhang
- College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - Hans J. Nelis
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center; Ghent University; Ghent Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| |
Collapse
|
19
|
Angus AA, Agapakis CM, Fong S, Yerrapragada S, Estrada-de los Santos P, Yang P, Song N, Kano S, Caballero-Mellado J, de Faria SM, Dakora FD, Weinstock G, Hirsch AM. Plant-associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis. PLoS One 2014; 9:e83779. [PMID: 24416172 PMCID: PMC3885511 DOI: 10.1371/journal.pone.0083779] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/13/2013] [Indexed: 11/18/2022] Open
Abstract
Burkholderia is a diverse and dynamic genus, containing pathogenic species as well as species that form complex interactions with plants. Pathogenic strains, such as B. pseudomallei and B. mallei, can cause serious disease in mammals, while other Burkholderia strains are opportunistic pathogens, infecting humans or animals with a compromised immune system. Although some of the opportunistic Burkholderia pathogens are known to promote plant growth and even fix nitrogen, the risk of infection to infants, the elderly, and people who are immunocompromised has not only resulted in a restriction on their use, but has also limited the application of non-pathogenic, symbiotic species, several of which nodulate legume roots or have positive effects on plant growth. However, recent phylogenetic analyses have demonstrated that Burkholderia species separate into distinct lineages, suggesting the possibility for safe use of certain symbiotic species in agricultural contexts. A number of environmental strains that promote plant growth or degrade xenobiotics are also included in the symbiotic lineage. Many of these species have the potential to enhance agriculture in areas where fertilizers are not readily available and may serve in the future as inocula for crops growing in soils impacted by climate change. Here we address the pathogenic potential of several of the symbiotic Burkholderia strains using bioinformatics and functional tests. A series of infection experiments using Caenorhabditis elegans and HeLa cells, as well as genomic characterization of pathogenic loci, show that the risk of opportunistic infection by symbiotic strains such as B. tuberum is extremely low.
Collapse
Affiliation(s)
- Annette A. Angus
- Dept. of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Christina M. Agapakis
- Dept. of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Stephanie Fong
- Dept. of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | | | - Paulina Estrada-de los Santos
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Ciudad de México, Distrito Federal, México
| | - Paul Yang
- Dept. of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Nannie Song
- Dept. of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Stephanie Kano
- Dept. of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jésus Caballero-Mellado
- Genomic Sciences Center, National Autonomous University of México, Cuernavaca, Morelos, México
| | | | - Felix D. Dakora
- Chemistry Department, Tshwane University of Technology, Arcadia Campus, Pretoria, South Africa
| | - George Weinstock
- Dept. of Genetics, Washington Univ. School of Medicine, St. Louis, Missouri, United States of America
| | - Ann M. Hirsch
- Dept. of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Evaluating the pathogenic potential of environmental Escherichia coli by using the Caenorhabditis elegans infection model. Appl Environ Microbiol 2013; 79:2435-45. [PMID: 23377948 DOI: 10.1128/aem.03501-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The detection and abundance of Escherichia coli in water is used to monitor and mandate the quality of drinking and recreational water. Distinguishing commensal waterborne E. coli isolates from those that cause diarrhea or extraintestinal disease in humans is important for quantifying human health risk. A DNA microarray was used to evaluate the distribution of virulence genes in 148 E. coli environmental isolates from a watershed in eastern Ontario, Canada, and in eight clinical isolates. Their pathogenic potential was evaluated with Caenorhabditis elegans, and the concordance between the bioassay result and the pathotype deduced by genotyping was explored. Isolates identified as potentially pathogenic on the basis of their complement of virulence genes were significantly more likely to be pathogenic to C. elegans than those determined to be potentially nonpathogenic. A number of isolates that were identified as nonpathogenic on the basis of genotyping were pathogenic in the infection assay, suggesting that genotyping did not capture all potentially pathogenic types. The detection of the adhesin-encoding genes sfaD, focA, and focG, which encode adhesins; of iroN2, which encodes a siderophore receptor; of pic, which encodes an autotransporter protein; and of b1432, which encodes a putative transposase, was significantly associated with pathogenicity in the infection assay. Overall, E. coli isolates predicted to be pathogenic on the basis of genotyping were indeed so in the C. elegans infection assay. Furthermore, the detection of C. elegans-infective environmental isolates predicted to be nonpathogenic on the basis of genotyping suggests that there are hitherto-unrecognized virulence factors or combinations thereof that are important in the establishment of infection.
Collapse
|
21
|
Udine C, Brackman G, Bazzini S, Buroni S, Van Acker H, Pasca MR, Riccardi G, Coenye T. Phenotypic and genotypic characterisation of Burkholderia cenocepacia J2315 mutants affected in homoserine lactone and diffusible signal factor-based quorum sensing systems suggests interplay between both types of systems. PLoS One 2013; 8:e55112. [PMID: 23383071 PMCID: PMC3557247 DOI: 10.1371/journal.pone.0055112] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/19/2012] [Indexed: 01/30/2023] Open
Abstract
Many putative virulence factors of Burkholderia cenocepacia are controlled by various quorum sensing (QS) circuits. These QS systems either use N-acyl homoserine lactones (AHL) or cis-2-dodecenoic acid ("Burkholderia diffusible signal factor", BDSF) as signalling molecules. Previous work suggested that there is little cross-talk between both types of systems. We constructed mutants in B. cenocepacia strain J2315, in which genes encoding CepI (BCAM1870), CciI (BCAM0239a) and the BDSF synthase (BCAM0581) were inactivated, and also constructed double (ΔcepIΔBCAM0581, ΔcciIΔBCAM0581 and ΔcepIΔcciI) mutants and a triple (ΔcepIΔcciIΔBCAM0581) mutant. Subsequently we investigated phenotypic properties (antibiotic susceptibility, biofilm formation, production of AHL and BDSF, protease activity and virulence in Caenorhabditis elegans) and measured gene expression in these mutants, and this in the presence and absence of added BDSF, AHL or both. The triple mutant was significantly more affected in biofilm formation, antimicrobial susceptibility, virulence in C. elegans, and protease production than either the single or double mutants. The ΔBCAM0581 mutant and the ΔcepIΔBCAM0581 and ΔcciIΔBCAM0581 double mutants produced significantly less AHL compared to the WT strain and the ΔcepI and ΔcciI single mutant, respectively. The expression of cepI and cciI in ΔBCAM0581, was approximately 3-fold and 7-fold (p<0.05) lower than in the WT, respectively. The observed differences in AHL production, expression of cepI and cciI and QS-controlled phenotypes in the ΔBCAM0581 mutant could (at least partially) be restored by addition of BDSF. Our data suggest that, in B. cenocepacia J2315, AHL and BDSF-based QS systems co-regulate the same set of genes, regulate different sets of genes that are involved in the same phenotypes and/or that the BDSF system controls the AHL-based QS system. As the expression of the gene encoding the C6-HSL synthase CciI (and to a lesser extent the C8-HSL synthase CepI) is partially controlled by BDSF, it seems likely that the BDSF QS systems controls AHL production through this system.
Collapse
Affiliation(s)
- Claudia Udine
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| | - Gilles Brackman
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Silvia Bazzini
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| | - Silvia Buroni
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| | - Heleen Van Acker
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Maria Rosalia Pasca
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| | - Giovanna Riccardi
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
22
|
Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 2011; 55:2655-61. [PMID: 21422204 DOI: 10.1128/aac.00045-11] [Citation(s) in RCA: 389] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the exact role of quorum sensing (QS) in various stages of biofilm formation, maturation, and dispersal and in biofilm resistance is not entirely clear, the use of QS inhibitors (QSI) has been proposed as a potential antibiofilm strategy. We have investigated whether QSI enhance the susceptibility of bacterial biofilms to treatment with conventional antimicrobial agents. The QSI used in our study target the acyl-homoserine lactone-based QS system present in Pseudomonas aeruginosa and Burkholderia cepacia complex organisms (baicalin hydrate, cinnamaldehyde) or the peptide-based system present in Staphylococcus aureus (hamamelitannin). The effect of tobramycin (P. aeruginosa, B. cepacia complex) and clindamycin or vancomycin (S. aureus), alone or in combination with QSI, was evaluated in various in vitro and in vivo biofilm model systems, including two invertebrate models and one mouse pulmonary infection model. In vitro the combined use of an antibiotic and a QSI generally resulted in increased killing compared to killing by an antibiotic alone, although reductions were strain and model dependent. A significantly higher fraction of infected Galleria mellonella larvae and Caenorhabditis elegans survived infection following combined treatment, compared to treatment with an antibiotic alone. Finally, the combined use of tobramycin and baicalin hydrate reduced the microbial load in the lungs of BALB/c mice infected with Burkholderia cenocepacia more than tobramycin treatment alone. Our data suggest that QSI may increase the success of antibiotic treatment by increasing the susceptibility of bacterial biofilms and/or by increasing host survival following infection.
Collapse
|
23
|
Structure-activity relationship of cinnamaldehyde analogs as inhibitors of AI-2 based quorum sensing and their effect on virulence of Vibrio spp. PLoS One 2011; 6:e16084. [PMID: 21249192 PMCID: PMC3020944 DOI: 10.1371/journal.pone.0016084] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 12/09/2010] [Indexed: 11/19/2022] Open
Abstract
Background Many bacteria, including Vibrio spp., regulate virulence gene expression in a cell-density dependent way through a communication process termed quorum sensing (QS). Hence, interfering with QS could be a valuable novel antipathogenic strategy. Cinnamaldehyde has previously been shown to inhibit QS-regulated virulence by decreasing the DNA-binding ability of the QS response regulator LuxR. However, little is known about the structure-activity relationship of cinnamaldehyde analogs. Methodology/Principal Findings By evaluating the QS inhibitory activity of a series of cinnamaldehyde analogs, structural elements critical for autoinducer-2 QS inhibition were identified. These include an α,β unsaturated acyl group capable of reacting as Michael acceptor connected to a hydrophobic moiety and a partially negative charge. The most active cinnamaldehyde analogs were found to affect the starvation response, biofilm formation, pigment production and protease production in Vibrio spp in vitro, while exhibiting low cytotoxicity. In addition, these compounds significantly increased the survival of the nematode Caenorhabditis elegans infected with Vibrio anguillarum, Vibrio harveyi and Vibrio vulnificus. Conclusions/Significance Several new and more active cinnamaldehyde analogs were discovered and they were shown to affect Vibrio spp. virulence factor production in vitro and in vivo. Although ligands for LuxR have not been identified so far, the nature of different cinnamaldehyde analogs and their effect on the DNA binding ability of LuxR suggest that these compounds act as LuxR-ligands.
Collapse
|
24
|
Experimental adaptation of Burkholderia cenocepacia to onion medium reduces host range. Appl Environ Microbiol 2010; 76:2387-96. [PMID: 20154121 DOI: 10.1128/aem.01930-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is unclear whether adaptation to a new host typically broadens or compromises host range, yet the answer bears on the fate of emergent pathogens and symbionts. We investigated this dynamic using a soil isolate of Burkholderia cenocepacia, a species that normally inhabits the rhizosphere, is related to the onion pathogen B. cepacia, and can infect the lungs of cystic fibrosis patients. We hypothesized that adaptation of B. cenocepacia to a novel host would compromise fitness and virulence in alternative hosts. We modeled adaptation to a specific host by experimentally evolving 12 populations of B. cenocepacia in liquid medium composed of macerated onion tissue for 1,000 generations. The mean fitness of all populations increased by 78% relative to the ancestor, but significant variation among lines was observed. Populations also varied in several phenotypes related to host association, including motility, biofilm formation, and quorum-sensing function. Together, these results suggest that each population adapted by fixing different sets of adaptive mutations. However, this adaptation was consistently accompanied by a loss of pathogenicity to the nematode Caenorhabditis elegans; by 500 generations most populations became unable to kill nematodes. In conclusion, we observed a narrowing of host range as a consequence of prolonged adaptation to an environment simulating a specific host, and we suggest that emergent pathogens may face similar consequences if they become host-restricted.
Collapse
|