1
|
Tamai R, Kiyoura Y. Candida Infections: The Role of Saliva in Oral Health-A Narrative Review. Microorganisms 2025; 13:717. [PMID: 40284554 PMCID: PMC12029948 DOI: 10.3390/microorganisms13040717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Candida species, particularly Candida albicans, are causative agents of oral infections to which immunocompromised patients are especially susceptible. Reduced saliva flow (xerostomia) can lead to Candida overgrowth, as saliva contains antibacterial components such as histatins and β-defensins that inhibit fungal growth and adhesion to the oral mucosa. Candida adheres to host tissues, forms biofilms, and secretes enzymes required for tissue invasion and immune evasion. Secretory asparaginyl proteinases (Saps) and candidalysin, a cytolytic peptide toxin, are vital to Candida virulence, and agglutinin-like sequence (Als) proteins are crucial for adhesion, invasion, and biofilm formation. C. albicans is a risk factor for dental caries and may increase periodontal disease virulence when it coexists with Porphyromonas gingivalis. Candida infections have been suggested to heighten the risk of oral cancer based on a relationship between Candida species and oral squamous cell carcinoma (OSCC) or oral potentially malignant disorder (OPMD). Meanwhile, β-glucan in the Candida cell wall has antitumor effects. In addition, Candida biofilms protect viruses such as herpesviruses and coxsackieviruses. Understanding the intricate interactions between Candida species, host immune responses, and coexisting microbial communities is essential for developing preventive and therapeutic strategies against oral Candida infections, particularly in immunocompromised individuals.
Collapse
Affiliation(s)
| | - Yusuke Kiyoura
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| |
Collapse
|
2
|
Khan MA, Mousa AM, Alradhi AE, Allemailem K. Efficacy of lipid nanoparticles-based vaccine to protect against vulvovaginal candidiasis (VVC): Implications for women's reproductive health. Life Sci 2025; 361:123312. [PMID: 39674269 DOI: 10.1016/j.lfs.2024.123312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
AIMS Vulvovaginal candidiasis (VVC) is a common women's health issue, with rising antifungal resistance. This study was aimed to prepare and evaluate the efficacy of a lipid nanoparticle-based vaccine in a murine model of VVC. MATERIALS AND METHODS Dried and reconstituted vesicles containing C. albicans antigens (DRNPs-Ca-Ags) vaccine, formulated with phosphatidylcholine and cholesterol-based lipid nanoparticles via film hydration and freeze-drying. The safety evaluation of DRNPs-CaAgs was conducted by determining hepatic (AST, ALT) or renal (BUN, creatinine) biomarkers. Female mice were immunized with DRNPs-CaAgs or Alum-CaAgs, and immune responses were evaluated via antibody titers, IgG isotypes, and splenocyte proliferation. Protective efficacy of vaccine formulations was assessed through fungal burden, biofilm formation, cytokine levels, and histopathological analysis of vaginal tissues. KEY FINDINGS Mice vaccinated with DRNPs-CaAgs showed significantly enhanced immune responses, with higher antibody titers and IgG2a levels as compared to the Alum-CaAgs group. Vaginal fungal burden was dramatically reduced (665 ± 78 CFUs in DRNPs-CaAgs immunized group vs. 12,944 ± 3540 CFUs in Alum-CaAgs group, p < 0.01). Biofilm formation decreased by 45 % (p < 0.05), and inflammatory cytokines were significantly lowered. Histopathological analysis revealed minimal tissue damage in DRNPs-CaAgs vaccinated mice. SIGNIFICANCE The findings suggest DRNPs-CaAgs as a promising vaccine for VVC, eliciting strong immunity, reducing fungal load, and minimizing inflammation. While the reliance on a murine model is a limitation, future clinical trials are essential to evaluate its efficacy and safety in humans, offering a potential strategy to combat drug-resistant infections and improve women's reproductive health.
Collapse
Affiliation(s)
- Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia.
| | - Ayman M Mousa
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Arwa Essa Alradhi
- General Administration for Infectious Disease Control, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Khaled Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| |
Collapse
|
3
|
Bahraminia M, Cui S, Zhang Z, Semlali A, Le Roux É, Giroux KA, Lajoie C, Béland F, Rouabhia M. Effect of cannabidiol (CBD), a cannabis plant derivative, against Candida albicans growth and biofilm formation. Can J Microbiol 2025; 71:1-13. [PMID: 39418672 DOI: 10.1139/cjm-2024-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
HIGHLIGHTS Cannabidiol (CBD) decreases the growth of C. albicans. CBD inhibits the yeast-to-hyphae transition. CBD reduces biofilm formation by C. albicans. CBD induces C. albicans death through necrosis.
Collapse
Affiliation(s)
- Maryam Bahraminia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire Université Laval, Quebec City, QC, Canada
- Axe Médecine Régénératrice Centre de Recherche du CHU de Québec - Université Laval, Quebec City, QC, Canada
- Département de Chirurgie Faculté de Médecine, Université Laval, Quebec City, QC, Canada
| | - Shujun Cui
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire Université Laval, Quebec City, QC, Canada
- Axe Médecine Régénératrice Centre de Recherche du CHU de Québec - Université Laval, Quebec City, QC, Canada
- Département de Chirurgie Faculté de Médecine, Université Laval, Quebec City, QC, Canada
| | - Ze Zhang
- Axe Médecine Régénératrice Centre de Recherche du CHU de Québec - Université Laval, Quebec City, QC, Canada
- Département de Chirurgie Faculté de Médecine, Université Laval, Quebec City, QC, Canada
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire Université Laval, Quebec City, QC, Canada
| | - Étienne Le Roux
- SiliCycle Inc., 2500 Bd du Parc Technologique, Quebec City, QC G1P 4S6, Canada
| | - Kelly-Anne Giroux
- SiliCycle Inc., 2500 Bd du Parc Technologique, Quebec City, QC G1P 4S6, Canada
| | - Camille Lajoie
- SiliCycle Inc., 2500 Bd du Parc Technologique, Quebec City, QC G1P 4S6, Canada
| | - François Béland
- SiliCycle Inc., 2500 Bd du Parc Technologique, Quebec City, QC G1P 4S6, Canada
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire Université Laval, Quebec City, QC, Canada
| |
Collapse
|
4
|
Prusty JS, Kumar A, Kumar A. Anti-fungal peptides: an emerging category with enthralling therapeutic prospects in the treatment of candidiasis. Crit Rev Microbiol 2024:1-37. [PMID: 39440616 DOI: 10.1080/1040841x.2024.2418125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Candida infections, particularly invasive candidiasis, pose a serious global health threat. Candida albicans is the most prevalent species causing candidiasis, and resistance to key antifungal drugs, such as azoles, echinocandins, polyenes, and fluoropyrimidines, has emerged. This growing multidrug resistance (MDR) complicates treatment options, highlighting the need for novel therapeutic approaches. Antifungal peptides (AFPs) are gaining recognition for their potential as new antifungal agents due to their diverse structures and functions. These natural or recombinant peptides can effectively target fungal virulence and viability, making them promising candidates for future antifungal development. This review examines infections caused by Candida species, the limitations of current antifungal treatments, and the therapeutic potential of AFPs. It emphasizes the importance of identifying novel AFP targets and their production for advancing treatment strategies. By discussing the therapeutic development of AFPs, the review aims to draw researchers' attention to this promising field. The integration of knowledge about AFPs could pave the way for novel antifungal agents with broad-spectrum activity, reduced toxicity, targeted action, and mechanisms that limit resistance in pathogenic fungi, offering significant advancements in antifungal therapeutics.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - Ashwini Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| |
Collapse
|
5
|
Vazquez-Munoz R, Thompson A, Sobue T, Dongari-Bagtzoglou A. Lactobacillus johnsonii is a dominant Lactobacillus in the murine oral mucosa and has chitinase activity that compromises fungal cell wall integrity. mBio 2024; 15:e0241624. [PMID: 39287438 PMCID: PMC11481578 DOI: 10.1128/mbio.02416-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
The oral microbiome is a critical determinant of health and disease, as interactions between oral microorganisms can influence their physiology and the development or severity of oral infections. Lactobacilli have a widely recognized antagonistic relationship with Candida albicans and may exhibit probiotic properties that limit oral fungal infection. We previously reported that Lactobacillus johnsonii strain MT4, an oral strain isolated from C57BL/6 mice, can induce global changes in the murine oral microbiome and has anti-Candida activity in vitro. To build on this information, we analyzed its abundance on the mouse oral mucosa, tested its impact on the severity and progression of oropharyngeal candidiasis (OPC) in a mouse model, and further explored the mechanism of antifungal activity in vitro. Our findings reveal that L. johnsonii MT4 is a dominant cultivable Lactobacillus in the oral mucosa of C57BL/6 mice. Strain MT4 has chitinase activity against C. albicans, which damages the cell wall and compromises fungal metabolic activity. Oral inoculation with strain MT4 causes a reduction in the Candida-induced rise in the abundance of oral enterococci and oral mucosal damage. This research underscores the potential of L. johnsonii strain MT4 as a novel probiotic agent in the prevention or management of OPC, and it contributes to a better understanding of the role of oral bacterial microbiota role in the pathogenesis of fungal infections. IMPORTANCE The interactions between the opportunistic pathogen Candida albicans and resident oral bacteria are particularly crucial in maintaining oral health. Emerging antifungal drug-resistant strains, slow-paced drug discovery, and the risk of side effects can compromise the effectiveness of current treatments available for oropharyngeal candidiasis. This study advances the search for alternative microbiome-targeted therapies in oral fungal infections. We report that Lactobacillus johnsonii strain MT4 prevents the Candida-induced bloom of dysbiotic oral enterococci and reduces oral mucosal lesions in an oropharyngeal candidiasis murine model. We also show that this strain directly compromises the cell wall and reduces fungal metabolic activity, partly due to its chitinase activity.
Collapse
Affiliation(s)
- Roberto Vazquez-Munoz
- Department of General Dentistry, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Angela Thompson
- Department of General Dentistry, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Takanori Sobue
- Department of General Dentistry, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Anna Dongari-Bagtzoglou
- Department of General Dentistry, the University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
6
|
Tseng KY, Huang YT, Huang YT, Su YT, Wang AN, Weng WY, Ke CL, Yeh YC, Wang JJ, Du SH, Gu ZQ, Chen WL, Lin CH, Tsai YH. Regulation of candidalysin underlies Candida albicans persistence in intravascular catheters by modulating NETosis. PLoS Pathog 2024; 20:e1012319. [PMID: 38885290 PMCID: PMC11213320 DOI: 10.1371/journal.ppat.1012319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/28/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Candida albicans is a leading cause of intravascular catheter-related infections. The capacity for biofilm formation has been proposed to contribute to the persistence of this fungal pathogen on catheter surfaces. While efforts have been devoted to identifying microbial factors that modulate C. albicans biofilm formation in vitro, our understanding of the host factors that may shape C. albicans persistence in intravascular catheters is lacking. Here, we used multiphoton microscopy to characterize biofilms in intravascular catheters removed from candidiasis patients. We demonstrated that, NETosis, a type of neutrophil cell death with antimicrobial activity, was implicated in the interaction of immune cells with C. albicans in the catheters. The catheter isolates exhibited reduced filamentation and candidalysin gene expression, specifically in the total parenteral nutrition culture environment. Furthermore, we showed that the ablation of candidalysin expression in C. albicans reduced NETosis and conferred resistance to neutrophil-mediated fungal biofilm elimination. Our findings illustrate the role of neutrophil NETosis in modulating C. albicans biofilm persistence in an intravascular catheter, highlighting that C. albicans can benefit from reduced virulence expression to promote its persistence in an intravascular catheter.
Collapse
Affiliation(s)
- Kuo-Yao Tseng
- Laboratory of Host–Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Tsung Huang
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Huang
- Laboratory of Host–Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Ting Su
- Laboratory of Host–Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - An-Ni Wang
- Laboratory of Host–Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Yen Weng
- Laboratory of Host–Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cai-Ling Ke
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Chiao Yeh
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jhih-Jie Wang
- Laboratory of Host–Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shin-Hei Du
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Zi-Qi Gu
- Laboratory of Host–Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Lin Chen
- Laboratory of Host–Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Huan Tsai
- Laboratory of Host–Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
7
|
Vazquez-Munoz R, Thompson A, Sobue T, Dongari-Bagtzoglou A. Powder diet exacerbates oropharyngeal candidiasis in a mouse model. Appl Environ Microbiol 2024; 90:e0171323. [PMID: 38319097 PMCID: PMC10952443 DOI: 10.1128/aem.01713-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
This study reports on the influence of a powder diet in a mouse model of oropharyngeal candidiasis (OPC), a significant health concern caused primarily by Candida albicans. Despite identical nutritional composition, we found that a powdered diet significantly increased Candida burdens and oral lesions, and aggravated weight loss compared to a standard pelleted diet. High fungal burdens and severe oral lesions were accomplished within 48 hours after infection with only one dose of cortisone. Moreover, mice on a powder diet recovered a week after infection. Using a powder diet, we thus modified the cortisone OPC murine model in a way that simplifies the infection process, enhances reproducibility, and facilitates studies investigating both pathogenesis and recovery processes. Our findings also underscore the pivotal role of the physical form of the diet in the progression and severity of oral Candida infection in this model. Future research should investigate this relationship further to broaden our understanding of the underlying mechanisms, potentially leading to novel prevention strategies and improved disease management.IMPORTANCEOropharyngeal candidiasis (OPC) is a multifactorial disease and a significant health concern. We found that the physical form of the diet plays a critical role in the severity and progression of OPC. We developed a modified cortisone OPC murine model that facilitates studies investigating pathogenesis and recovery processes.
Collapse
Affiliation(s)
- Roberto Vazquez-Munoz
- Department of General Dentistry, The University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Angela Thompson
- Department of General Dentistry, The University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Takanori Sobue
- Department of General Dentistry, The University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Anna Dongari-Bagtzoglou
- Department of General Dentistry, The University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
8
|
Brahma P, Aggarwal R, Sanyal K. Biased eviction of variant histone H3 nucleosomes triggers biofilm growth in Candida albicans. mBio 2023; 14:e0206323. [PMID: 37768046 PMCID: PMC10653867 DOI: 10.1128/mbio.02063-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Candida albicans lives as a commensal in most healthy humans but can cause superficial skin infections to life-threatening systemic infections. C. albicans also forms biofilms on biotic and abiotic surfaces. Biofilm cells are difficult to treat and highly resistant to antifungals. A specific set of genes is differentially regulated in biofilm cells as compared to free-floating planktonic cells of C. albicans. In this study, we addressed how a variant histone H3VCTG, a previously identified negative regulator of biofilm formation, modulates gene expression changes. By providing compelling evidence, we show that biased eviction of H3VCTG nucleosomes at the promoters of biofilm-relevant genes facilitates the accessibility of both transcription activators and repressors to modulate gene expression. Our study is a comprehensive investigation of genome-wide nucleosome occupancy in both planktonic and biofilm states, which reveals transition to an open chromatin landscape during biofilm mode of growth in C. albicans, a medically relevant pathogen.
Collapse
Affiliation(s)
- Priya Brahma
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Rashi Aggarwal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| |
Collapse
|
9
|
Kabir AR, Chaudhary AA, Aladwani MO, Podder S. Decoding the host-pathogen interspecies molecular crosstalk during oral candidiasis in humans: an in silico analysis. Front Genet 2023; 14:1245445. [PMID: 37900175 PMCID: PMC10603195 DOI: 10.3389/fgene.2023.1245445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: The objective of this study is to investigate the interaction between Candida albicans and human proteins during oral candidiasis, with the aim of identifying pathways through which the pathogen subverts host cells. Methods: A comprehensive list of interactions between human proteins and C. albicans was obtained from the Human Protein Interaction Database using specific screening criteria. Then, the genes that exhibit differential expression during oral candidiasis in C. albicans were mapped with the list of human-Candida interactions to identify the corresponding host proteins. The identified host proteins were further compared with proteins specific to the tongue, resulting in a final list of 99 host proteins implicated in oral candidiasis. The interactions between host proteins and C. albicans proteins were analyzed using the STRING database, enabling the construction of protein-protein interaction networks. Similarly, the gene regulatory network of Candida proteins was reconstructed using data from the PathoYeastract and STRING databases. Core module proteins within the targeted host protein-protein interaction network were identified using ModuLand, a Cytoscape plugin. The expression levels of the core module proteins under diseased conditions were assessed using data from the GSE169278 dataset. To gain insights into the functional characteristics of both host and pathogen proteins, ontology analysis was conducted using Enrichr and YeastEnrichr, respectively. Result: The analysis revealed that three Candida proteins, HHT21, CYP5, and KAR2, interact with three core host proteins, namely, ING4 (in the DNMT1 module), SGTA, and TOR1A. These interactions potentially impair the immediate immune response of the host against the pathogen. Additionally, differential expression analysis of fungal proteins and their transcription factors in Candida-infected oral cell lines indicated that Rob1p, Tye7p, and Ume6p could be considered candidate transcription factors involved in instigating the pathogenesis of oral candidiasis during host infection. Conclusion: Our study provides a molecular map of the host-pathogen interaction during oral candidiasis, along with potential targets for designing regimens to overcome oral candidiasis, particularly in immunocompromised individuals.
Collapse
Affiliation(s)
- Ali Rejwan Kabir
- Computational and System Biology Lab, Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Malak O Aladwani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Soumita Podder
- Computational and System Biology Lab, Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
| |
Collapse
|
10
|
Sharma A, Solis NV, Huang MY, Lanni F, Filler SG, Mitchell AP. Hgc1 Independence of Biofilm Hyphae in Candida albicans. mBio 2023; 14:e0349822. [PMID: 36779720 PMCID: PMC10128054 DOI: 10.1128/mbio.03498-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/25/2023] [Indexed: 02/14/2023] Open
Abstract
Biofilm and hypha formation are central to virulence of the fungal pathogen Candida albicans. The G1 cyclin gene HGC1 is required for hypha formation under diverse in vitro and in vivo growth conditions. Hgc1 is required for disseminated infection and is a linchpin in the argument that hyphal morphogenesis itself is required for pathogenicity. We report here that HGC1 is dispensable for hypha formation during biofilm formation both in vitro, under strong inducing conditions, and in vivo, in a mouse oropharyngeal candidiasis model. These findings are validated with two or more C. albicans isolates. Systematic screening of overexpressed cyclin genes indicates that CCN1 and CLN3 can compensate partially for Hgc1 function during biofilm growth. This conclusion is also supported by the severity of the hgc1Δ/Δ ccn1Δ/Δ double mutant biofilm defect. Our results suggest that hypha formation in biofilm is accomplished by combined action of multiple cyclins, not solely by Hgc1. IMPORTANCE The HGC1 gene encodes a cyclin that is required for virulence of the fungal pathogen Candida albicans. It is required to produce the elongated hyphal filaments of free-living planktonic cells that are associated with virulence. Here, we show that HGC1 is not required to produce hyphae in the alternative growth form of a biofilm community. We observe Hgc1-independent hyphae in two infection-relevant situations, biofilm growth in vitro and biofilm-like oropharyngeal infection. Our analysis suggests that hypha formation in the biofilm state reflects combined action of multiple cyclins.
Collapse
Affiliation(s)
- Anupam Sharma
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Norma V. Solis
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Manning Y. Huang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Scott G. Filler
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Metagenomic insights into taxonomic, functional diversity and inhibitors of microbial biofilms. Microbiol Res 2022; 265:127207. [DOI: 10.1016/j.micres.2022.127207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/17/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022]
|
12
|
Du Q, Ren B, Zhou X, Zhang L, Xu X. Cross-kingdom interaction between Candida albicans and oral bacteria. Front Microbiol 2022; 13:911623. [PMID: 36406433 PMCID: PMC9668886 DOI: 10.3389/fmicb.2022.911623] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 09/28/2022] [Indexed: 08/27/2023] Open
Abstract
Candida albicans is a symbiotic fungus that commonly colonizes on oral mucosal surfaces and mainly affects immuno-compromised individuals. Polymicrobial interactions between C. albicans and oral microbes influence the cellular and biochemical composition of the biofilm, contributing to change clinically relevant outcomes of biofilm-related oral diseases, such as pathogenesis, virulence, and drug-resistance. Notably, the symbiotic relationships between C. albicans and oral bacteria have been well-documented in dental caries, oral mucositis, endodontic and periodontal diseases, implant-related infections, and oral cancer. C. albicans interacts with co-existing oral bacteria through physical attachment, extracellular signals, and metabolic cross-feeding. This review discusses the bacterial-fungal interactions between C. albicans and different oral bacteria, with a particular focus on the underlying mechanism and its relevance to the development and clinical management of oral diseases.
Collapse
Affiliation(s)
- Qian Du
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Marena GD, Ramos MADS, Carvalho GC, de Lima LC, Nascimento ALCSD, Sábio RM, Rodero CF, Spósito L, Bauab TM, Chorilli M. Development and characterization of an amphotericin B - loaded nanoemulsion applied to Candida auris biofilms control. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Zhao M, Zhang M, Xu K, Wu K, Xie R, Li R, Wang Q, Liu W, Wang W, Wang X. Antimicrobial Effect of Extracellular Vesicles Derived From Human Oral Mucosal Epithelial Cells on Candida albicans. Front Immunol 2022; 13:777613. [PMID: 35844569 PMCID: PMC9283572 DOI: 10.3389/fimmu.2022.777613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans (C. albicans) is a commensal microorganism that colonizes the mucosal surfaces of healthy individuals. Changes in the host or environment can lead to overgrowth of C. albicans and infection of the host. Extracellular vesicles (EVs) are released by almost all cell types and play an increasingly recognized role in fighting microbial infection. The aim of the present study was to assess whether EVs derived from human oral mucosal epithelial (Leuk-1) cells can suppress the growth and invasion of C. albicans. The in vitro efficacy of Leuk-1-EVs against C. albicans was assessed by optical microscopy, laser scanning confocal microscopy, scanning electron microscopy, and transmission electron microscopy. The germ tube formation rate, the percentage of hyphae and the microcolony optical density were also used to analyze the growth of C. albicans in a coculture model with Leuk-1 cells and EVs or after inhibition of the secretion of EVs. A mouse model of oral candidiasis was established and submucosal injection of Leuk-1-EVs in the tongue was performed. Macroscopic observation, H&E staining, PAS staining, and scanning electron microscopy were used to assess antifungal effects of Leuk-1-EVs in vivo. The in vitro results showed that the growth of C. albicans was inhibited and that the morphology and ultrastructure were changed following Leuk-1-EVs treatment. The in vivo results exhibited that white lesions of the tongue, C. albicans infection, and oral mucosal inflammation of the infected mice were significantly alleviated after Leuk-1-EVs treatment. We thus reveal an antifungal capability of EVs derived from oral epithelial cells against C. albicans that is mediated by direct damage effects and potential synergy between EVs and human oral mucosal epithelial cells. This finding offers an intriguing, previously overlooked method of antifungal defense against C. albicans.
Collapse
Affiliation(s)
- Maomao Zhao
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Miaomiao Zhang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kaiyuan Xu
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kaihui Wu
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ruiqi Xie
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ruowei Li
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qiong Wang
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Jiangsu Key Laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China
| | - Weida Liu
- Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Jiangsu Key Laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China
| | - Wenmei Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiang Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Sakima VT, Vega-Chacón Y, Cerri PS, Shokeen B, Lux R, Mima EGDO. A Denture Use Model Associated with Candida spp. in Immunocompetent Male and Female Rats. J Fungi (Basel) 2022; 8:466. [PMID: 35628722 PMCID: PMC9147495 DOI: 10.3390/jof8050466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023] Open
Abstract
Denture stomatitis (DS) is a common infection in denture wearers, especially women. This study evaluated the induction of DS using acrylic devices attached to the palate of rats combined with inoculation of Candida spp. Immunocompetent male and female rats received a carbohydrate-rich diet. Impressions were taken from the rats’ palate to individually fabricate acrylic devices. Mono- and multispecies biofilms of C. albicans, C. glabrata, and C. tropicalis were grown on the devices, which were then cemented on posterior teeth and kept in the rats’ palate for four weeks. Microbial samples from the palate and the device were quantified. Oral microbiome of rats inoculated with C. albicans was analyzed by 16S rRNA gene sequencing. Log10(CFU/mL) were analyzed by mixed or two-way MANOVA (α = 0.05). Candida spp. and acrylic device did not induce palatal inflammation macroscopically nor microscopically. Although there was an increase (p < 0.001) of the total microbiota and female rats demonstrated higher (p = 0.007) recovery of Candida spp. from the palate, the gender differences were not biologically relevant. The microbiome results indicate an increase in inflammatory microbiota and reduction in health-associated micro-organisms. Although Candida spp. and acrylic device did not induce DS in immunocompetent rats, the shift in microbiota may precede manifestation of inflammation.
Collapse
Affiliation(s)
- Vinicius Tatsuyuji Sakima
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, Araraquara, São Paulo State University (UNESP), São Paulo 14801-903, Brazil; (V.T.S.); (Y.V.-C.)
| | - Yuliana Vega-Chacón
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, Araraquara, São Paulo State University (UNESP), São Paulo 14801-903, Brazil; (V.T.S.); (Y.V.-C.)
| | - Paulo Sergio Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry, Araraquara, São Paulo State University (UNESP), São Paulo 14801-903, Brazil;
| | - Bhumika Shokeen
- School of Dentistry, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA; (B.S.); (R.L.)
| | - Renate Lux
- School of Dentistry, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA; (B.S.); (R.L.)
| | - Ewerton Garcia de Oliveira Mima
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, Araraquara, São Paulo State University (UNESP), São Paulo 14801-903, Brazil; (V.T.S.); (Y.V.-C.)
| |
Collapse
|
16
|
Vazquez-Munoz R, Thompson A, Russell JT, Sobue T, Zhou Y, Dongari-Bagtzoglou A. Insights From the Lactobacillus johnsonii Genome Suggest the Production of Metabolites With Antibiofilm Activity Against the Pathobiont Candida albicans. Front Microbiol 2022; 13:853762. [PMID: 35330775 PMCID: PMC8940163 DOI: 10.3389/fmicb.2022.853762] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
Lactobacillus johnsonii is a probiotic bacterial species with broad antimicrobial properties; however, its antimicrobial activities against the pathobiont Candida albicans are underexplored. The aim of this study was to study the interactions of L. johnsonii with C. albicans and explore mechanisms of bacterial anti-fungal activities based on bacterial genomic characterization coupled with experimental data. We isolated an L. johnsonii strain (MT4) from the oral cavity of mice and characterized its effect on C. albicans growth in the planktonic and biofilm states. We also identified key genetic and phenotypic traits that may be associated with a growth inhibitory activity exhibited against C. albicans. We found that L. johnsonii MT4 displays pH-dependent and pH-independent antagonistic interactions against C. albicans, resulting in inhibition of C. albicans planktonic growth and biofilm formation. This antagonism is influenced by nutrient availability and the production of soluble metabolites with anticandidal activity.
Collapse
Affiliation(s)
- Roberto Vazquez-Munoz
- Department of Periodontology, University of Connecticut Health Center, Farmington, CT, United States
| | - Angela Thompson
- Department of Periodontology, University of Connecticut Health Center, Farmington, CT, United States
| | - Jordan T Russell
- Department of Psychiatry/Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Takanori Sobue
- Department of Periodontology, University of Connecticut Health Center, Farmington, CT, United States
| | - Yanjiao Zhou
- Department of Psychiatry/Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Anna Dongari-Bagtzoglou
- Department of Periodontology, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
17
|
Hedera rhombea inhibits the biofilm formation of Candida, thereby increases the susceptibility to antifungal agent, and reduces infection. PLoS One 2021; 16:e0258108. [PMID: 34614005 PMCID: PMC8494327 DOI: 10.1371/journal.pone.0258108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
Candida is an opportunistic pathogen and a common cause of fungal infections worldwide. Anti-fungal use against Candida infections has resulted in the appearance of resistant strains. The limited choice of anti-fungal therapy means alternative strategies are needed to control fungal infectious diseases. The aim of this study was to evaluate the inhibition of Candida biofilm formation by Hedera rhombea (Korean name: songak) extract. Biofilm formation was assessed using the crystal violet assay which showed a dose dependent reduction in the presence of extract with the biofilm formation inhibitory concentration of C. albicans (IC50 = 12.5μg/ml), C. tropicalis var. tropicalis (IC50 = 25μg/ml), C. parapsilosis var. parapsilosis (IC50 = 6.25μg/ml), C. glabrata (IC50 = 6.25μg/ml), C. tropicalis (IC50 = 12.5μg/ml), and C. parapsilosis (IC50 = 12.5μg/ml) without directly reducing Candida growth. Treatment with 6.25μg/mL of extract increased the antifungal susceptibility to miconazole from 32% decreasing of fungal growth to 98.8% of that based on the fungal growth assay. Treatment of extract dose-dependently reduced the dimorphic transition of Candida based on the dimorphic transition assay and treatment of 3.125μg/mL of extract completely blocked the adherence of Candida to the HaCaT cells. To know the molecular mechanisms of biofilm formation inhibition by extract, qRT-PCR analysis was done, and the extract was found to dose dependently reduce the expression of hyphal-associated genes (ALS3, ECE1, HWP1, PGA50, and PBR1), extracellular matrix genes (GSC1, ZAP1, ADH5, and CSH1), Ras1-cAMP-PKA pathway genes (CYR1, EFG1, and RAS1), Cph2-Tec1 pathway gene (TEC1) and MAP kinases pathway gene (HST7). In this study, Hedera rhombea extract showed inhibition of fungal biofilm formation, activation of antifungal susceptibility, and reduction of infection. These results suggest that fungal biofilm formation is good screen for developing the antifungal adjuvant and Hedera rhombea extract should be a good candidate against biofilm-related fungal infection.
Collapse
|
18
|
Villar CC, Dongari-Bagtzoglou A. Fungal diseases: Oral dysbiosis in susceptible hosts. Periodontol 2000 2021; 87:166-180. [PMID: 34463992 DOI: 10.1111/prd.12378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oral cavity is colonized by a large number of microorganisms that are referred to collectively as the oral microbiota. These indigenous microorganisms have evolved in symbiotic relationships with the oral mucosal immune system and are involved in maintaining homeostasis in the oral cavity. Although Candida species are commonly found in the healthy oral cavity without causing infection, these fungi can become pathogenic. Recents advances indicate that the development of oral candidiasis is driven both by Candida albicans overgrowth in a dysbiotic microbiome and by disturbances in the host's immune system. Perturbation of the oral microbiota triggered by host-extrinsic (ie, medications), host-intrinsic (ie, host genetics), and microbiome-intrinsic (ie, microbial interactions) factors may increase the risk of oral candidiasis. In this review, we provide an overview of the oral mycobiome, with a particular focus on the interactions of Candida albicans with some of the most common oral bacteria and the oral mucosal immune system. Also, we present a summary of our current knowledge of the host-intrinsic and host-extrinsic factors that can predispose to oral candidiasis.
Collapse
Affiliation(s)
- Cristina Cunha Villar
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| |
Collapse
|
19
|
Masfufatun M, Raharjo LH, Wiradinata H, Tania POA, Ni'matuzahroh N, Baktir A. New phenomena for clinicians, model of Candida albicans mobilization before and after biofilm formation in the intestinal mucosa of Wistar rats (Rattus norvegicus). INTERNATIONAL JOURNAL OF ONE HEALTH 2021. [DOI: 10.14202/ijoh.2021.165-170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background and Aim: The virulence and antifungal resistance of Candida albicans are recently known for their ability to form biofilm. This research aimed to construct an in vivo model of C. albicans biofilm in Wistar rats' intestinal mucosa and study their mobilization while in a planktonic and biofilm formation. In this study, there was one treatment group that was treated with three antibiotics, immunosuppressants, and C. albicans.
Materials and Methods: This study was divided into control and treatment groups. The data sampling was conducted after C. albicans inoculation. The C. albicans biofilm formation stage was monitored with colony-forming units method calculation every week post-inoculation and then observed by the confocal laser scanning microscope.
Results: The planktonic C. albicans overgrowth occurred up to 14 days after inoculation. The formation and maturation of C. albicans biofilm in the intestinal mucosa started in the 28th and 35th-day post-inoculation, respectively. The density of planktonic C. albicans in the stool was dramatically decreased on the 35th day. Before the biofilm formation, the planktonic Candida was carried away by food scraps to be released as a stool. However, there were minuscule or no planktonic Candida observed in the stool during and after biofilm formation. Instead, they were attached to the caecum's mucosa as a biofilm.
Conclusion: We have proved that the planktonic C. albicans with its mobile nature were carried into the stool along with the rest of the feed, as we observed a lot of C. albicans cells found in the stool. Meanwhile, on day 28 after administration of antibiotics and immunosuppressants, no C. albicans was found in the stool samples, and at the same time, we observed C. albicans cells and their matrix attached to the intestinal mucosa as a biofilm.
Collapse
Affiliation(s)
- Masfufatun Masfufatun
- Department of Biochemistry, Faculty of Medicine, University of Wijaya Kusuma Surabaya, Surabaya, Indonesia
| | - Loo Hariyanto Raharjo
- Department of Biochemistry, Faculty of Medicine, University of Wijaya Kusuma Surabaya, Surabaya, Indonesia
| | - Harsono Wiradinata
- Department of Biochemistry, Faculty of Medicine, University of Wijaya Kusuma Surabaya, Surabaya, Indonesia
| | - Putu Oky Ari Tania
- Department of Biomedicine and Biomolecular, Faculty of Medicine, University of Wijaya Kusuma Surabaya, Surabaya, Indonesia
| | | | - Afaf Baktir
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
20
|
Vazquez-Munoz R, Dongari-Bagtzoglou A. Anticandidal Activities by Lactobacillus Species: An Update on Mechanisms of Action. FRONTIERS IN ORAL HEALTH 2021; 2:689382. [PMID: 35048033 PMCID: PMC8757823 DOI: 10.3389/froh.2021.689382] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Lactobacilli are among the most studied bacteria in the microbiome of the orodigestive and genitourinary tracts. As probiotics, lactobacilli may provide various benefits to the host. These benefits include regulating the composition of the resident microbiota, preventing - or even potentially reverting- a dysbiotic state. Candida albicans is an opportunistic pathogen that can influence and be influenced by other members of the mucosal microbiota and, under immune-compromising conditions, can cause disease. Lactobacillus and Candida species can colonize the same mucosal sites; however, certain Lactobacillus species display antifungal activities that can contribute to low Candida burdens and prevent fungal infection. Lactobacilli can produce metabolites with direct anticandidal function or enhance the host defense mechanisms against fungi. Most of the Lactobacillus spp. anticandidal mechanisms of action remain underexplored. This work aims to comprehensively review and provide an update on the current knowledge regarding these anticandidal mechanisms.
Collapse
Affiliation(s)
- Roberto Vazquez-Munoz
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT, United States
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
21
|
Azad A, Ranjbaran A, Zareshahrabadi Z, Mehrabani D, Zahed Zahedani M, Talebanpour A, Zomorodian K. Protective Effects of the Probiotic Bacterium Streptococcus thermophilus on Candida albicans Morphogenesis and a Murine Model of Oral Candidiasis. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:207-217. [PMID: 34083853 PMCID: PMC8163705 DOI: 10.30476/ijms.2020.82080.0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/30/2019] [Accepted: 10/20/2019] [Indexed: 11/19/2022]
Abstract
Background Oral candidiasis is a frequent form of candidiasis, caused by Candida species, in particular, Candida albicans (C. albicans). The transition of C. albicans from yeast to hyphae allows its attachment to epithelial cells, followed by biofilm formation, invasion, and tissue damage. Hence, we investigated the effect of Streptococcus salivarius subspecies thermophilus (S thermophilus) on the growth as well as biofilm and germ-tube formation of C. albicans both in vitro and in vivo in a murine model. Methods This experimental study was performed in the Department of Medical Mycology and Parasitology, School of Medicine, in collaboration with the Central Research Laboratory and the Comparative Biomedical Center, Shiraz University of Medical Sciences, Shiraz, Iran (2017 to 2018). The inhibitory activity of S. thermophilus against Candida species growth was evaluated using the broth microdilution method, and the inhibition of C. albicans biofilm formation was measured using the XTT assay. The inhibition of C. albicans germ-tube formation by S. thermophilus was evaluated using the plate assay and fluorescence microscopy. The experimental activity of the probiotic bacterium was assessed by culture and histopathological methods in six groups of five mice, comprising those treated with four concentrations of probiotics, fluconazole, and distilled water. The one-way analysis of variance, followed by a Tukey post hoc test, was used and a P value of less than 0.05 was considered significant. Results S. thermophilus inhibited Candida species growth at concentrations of 16 to 512 µg/mL. This probiotic inhibited the formation of C. albicans biofilms and germ tubes in a dose-dependent manner. S. thermophilus significantly reduced the colony-forming units in the mice receiving 30 mg/mL of this probiotic treatment compared with the control group (P=0.024). The histopathological analysis showed that Candida colonization was diminished in the mice following the administration of the probiotic. Conclusion Given the inhibitory activity of S. thermophilus against the growth, transition, and biofilm formation of C. albicans, it could be used in the management of oral candidiasis.
Collapse
Affiliation(s)
- Azita Azad
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Ranjbaran
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zareshahrabadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Mehrabani
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zahed Zahedani
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asana Talebanpour
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Hacioglu M, Oyardi O, Kirinti A. Oregano essential oil inhibits Candida spp. biofilms. ACTA ACUST UNITED AC 2021; 76:443-450. [PMID: 33915040 DOI: 10.1515/znc-2021-0002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/06/2021] [Indexed: 11/15/2022]
Abstract
Candida spp. can form biofilms on mucosal surfaces and epithelial cells as well as on devices implanted in the body such as catheters and dentures, which are thought to underlie the most recalcitrant infections. It was aimed to show antifungal and antibiofilm activities of oregano oil (Origanum onites). The antifungal activities of some essential oils were investigated against C. spp. and among them, oregano oil was found to be the most effective oil and further biofilm studies were conducted with it. Oregano oil inhibited biofilm adhesion and formation of C. spp. and mature biofilms and also displayed the ability to reduce biofilm formation when they were allowed to form on surfaces previously coated with oil (up to 50% inhibition rates). In addition, oregano oil was found to be effective against dual biofilms of Candida albicans + Staphyloccocus aureus at different concentrations. This study suggests that O. onites essential oil has useful antibiofilm effects against C. spp. The inhibitory effects of O. onites essential oil, against C. spp., were demonstrated for the first time. It also had antifungal effect on biofilm formation and established biofilm even at MIC level.
Collapse
Affiliation(s)
- Mayram Hacioglu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul, 34116, Turkey
| | - Ozlem Oyardi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul, 34116, Turkey
| | - Alpcan Kirinti
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul, 34116, Turkey
| |
Collapse
|
23
|
Pellissari CVG, Jorge JH, Marin LM, Sabino-Silva R, Siqueira WL. Statherin-derived peptides as antifungal strategy against Candida albicans. Arch Oral Biol 2021; 125:105106. [PMID: 33740624 DOI: 10.1016/j.archoralbio.2021.105106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of this in vitro study was to evaluate the effect of statherin and its naturally occurring peptides (DR9-2, DR9, GE-12, IT-32, GQ-19, IP-18) on Candida albicans metabolism and biofilm development. DESIGN After the killing assay, a peptide pellicle was formed on the bottom of a polystyrene plate at the IC50 of each peptide. Over the peptide pellicle, Candida albicans biofilm (48 h) was grown. The peptides antimicrobial activity after the peptides treatment was evaluated by alamarBlue, total biofilm biomass and colony forming units (CFU) counting. RESULTS The pellicle with statherin and the peptides (DR9-2, DR9, GE-12, IP-18, GQ-19) was able to reduce he viability of Candida albicans compared to the negative control. They also decreased cell proliferation by 20 % and total biomass. IT-32 showed the highest reduction in cell proliferation and biomass, which was similar to the positive control, histatin 5. CONCLUSIONS These results suggest that the naturally occuring peptides from statherin are able to decrease Candida albicans colonization and biofilm proliferation.
Collapse
Affiliation(s)
- Claudia Viviane Guimarães Pellissari
- Department of Dental Materials and Prosthodontics, Araraquara Dental School, São Paulo State University, UNESP, 1680 Rua Humaitá, Araraquara, SP, 14801-385, Brazil; College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, S7N 5E4, Canada
| | - Janaina Habib Jorge
- Department of Dental Materials and Prosthodontics, Araraquara Dental School, São Paulo State University, UNESP, 1680 Rua Humaitá, Araraquara, SP, 14801-385, Brazil.
| | - Lina Maria Marin
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, S7N 5E4, Canada
| | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, 3Q - 2121 Av. João Naves de Ávila, Uberlandia, MG, 38400-902, Brazil
| | - Walter Luiz Siqueira
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, S7N 5E4, Canada
| |
Collapse
|
24
|
Scorzoni L, Fuchs BB, Junqueira JC, Mylonakis E. Current and promising pharmacotherapeutic options for candidiasis. Expert Opin Pharmacother 2021; 22:867-887. [PMID: 33538201 DOI: 10.1080/14656566.2021.1873951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Candida spp. are commensal yeasts capable of causing infections such as superficial, oral, vaginal, or systemic infections. Despite medical advances, the antifungal pharmacopeia remains limited and the development of alternative strategies is needed.Areas covered: We discuss available treatments for Candida spp. infections, highlighting advantages and limitations related to pharmacokinetics, cytotoxicity, and antimicrobial resistance. Moreover, we present new perspectives to improve the activity of the available antifungals, discussing their immunomodulatory potential and advances on drug delivery carriers. New therapeutic approaches are presented including recent synthesized antifungal compounds (Enchochleated-Amphotericin B, tetrazoles, rezafungin, enfumafungin, manogepix and arylamidine); drug repurposing using a diversity of antibacterial, antiviral and non-antimicrobial drugs; combination therapies with different compounds or photodynamic therapy; and innovations based on nano-particulate delivery systems.Expert opinion: With the lack of novel drugs, the available assets must be leveraged to their best advantage through modifications that enhance delivery, efficacy, and solubility. However, these efforts are met with continuous challenges presented by microbes in their infinite plight to resist and survive therapeutic drugs. The pharmacotherapeutic options in development need to focus on new antimicrobial targets. The success of each antimicrobial agent brings strategic insights to the next phased approach in treatingCandida spp. infections.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| |
Collapse
|
25
|
Ponde NO, Lortal L, Ramage G, Naglik JR, Richardson JP. Candida albicans biofilms and polymicrobial interactions. Crit Rev Microbiol 2021; 47:91-111. [PMID: 33482069 PMCID: PMC7903066 DOI: 10.1080/1040841x.2020.1843400] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022]
Abstract
Candida albicans is a common fungus of the human microbiota. While generally a harmless commensal in healthy individuals, several factors can lead to its overgrowth and cause a range of complications within the host, from localized superficial infections to systemic life-threatening disseminated candidiasis. A major virulence factor of C. albicans is its ability to form biofilms, a closely packed community of cells that can grow on both abiotic and biotic substrates, including implanted medical devices and mucosal surfaces. These biofilms are extremely hard to eradicate, are resistant to conventional antifungal treatment and are associated with high morbidity and mortality rates, making biofilm-associated infections a major clinical challenge. Here, we review the current knowledge of the processes involved in C. albicans biofilm formation and development, including the central processes of adhesion, extracellular matrix production and the transcriptional network that regulates biofilm development. We also consider the advantages of the biofilm lifestyle and explore polymicrobial interactions within multispecies biofilms that are formed by C. albicans and selected microbial species.
Collapse
Affiliation(s)
- Nicole O. Ponde
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Léa Lortal
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Gordon Ramage
- School of Medicine, Dentistry & Nursing, Glasgow Dental School and Hospital, Faculty of Medicine, University of Glasgow, G2 3JZ, United Kingdom
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Jonathan P. Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| |
Collapse
|
26
|
Clinical Characteristics and Relevance of Oral Candida Biofilm in Tongue Smears. J Fungi (Basel) 2021; 7:jof7020077. [PMID: 33499213 PMCID: PMC7912297 DOI: 10.3390/jof7020077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/09/2021] [Accepted: 01/20/2021] [Indexed: 02/02/2023] Open
Abstract
Dimorphic Candida exist as commensal yeast carriages or infiltrate hyphae in the oral cavity. Here, we investigated the clinical relevance of Candida hyphae in non-pseudomembranous oral candidiasis (OC) by smears of tongue biofilms. We conducted a retrospective study of 2829 patients who had had tongue smears regardless of OC suspicion. Clinical characteristics were evaluated using a novel method of assessing hyphae. Clinical factors (moderate/severe stimulated pain, pain aggravated by stimulation, tongue dorsum appearance and initial topical antifungal use) were highly significant in the high-grade hyphae group but were statistically similar in the low-grade hyphae and non-observed hyphae group, suggesting low-grade hyphae infection as a subclinical OC state. In addition to erythematous candidiasis (EC), a new subtype named "morphologically normal symptomatic candidiasis" (MNSC) with specific pain patterns and normal tongue morphology was identified. MNSC had a significantly higher proportion of moderate and severe stimulated pain cases than EC. Low unstimulated salivary flow rate (<0.1 mL/min) was found to be a common risk factor in MNSC and EC. In non-pseudomembranous OC, pain patterns were dependent on Candida hyphae degree regardless of tongue dorsum morphology. Morphologic differences seen in high-grade hyphae infection were not associated with systemic diseases or nutritional deficiencies.
Collapse
|
27
|
Aguilar-Marcelino L, Al-Ani LKT, Freitas Soares FED, Moreira ALE, Téllez-Téllez M, Castañeda-Ramírez GS, Lourdes Acosta-Urdapilleta MD, Díaz-Godínez G, Pineda-Alegría JA. Formation, Resistance, and Pathogenicity of Fungal Biofilms: Current Trends and Future Challenges. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Černáková L, Rodrigues CF. Microbial interactions and immunity response in oral Candida species. Future Microbiol 2020; 15:1653-1677. [PMID: 33251818 DOI: 10.2217/fmb-2020-0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oral candidiasis are among the most common noncommunicable diseases, related with serious local and systemic illnesses. Although these infections can occur in all kinds of patients, they are more recurrent in immunosuppressed ones such as patients with HIV, hepatitis, cancer or under long antimicrobial treatments. Candida albicans continues to be the most frequently identified Candida spp. in these disorders, but other non-C. albicans Candida are rising. Understanding the immune responses involved in oral Candida spp. infections is a key feature to a successful treatment and to the design of novel therapies. In this review, we performed a literature search in PubMed and WoS, in order to examine and analyze common oral Candida spp.-bacteria/Candida-Candida interactions and the host immunity response in oral candidiasis.
Collapse
Affiliation(s)
- Lucia Černáková
- Department of Microbiology & Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Célia F Rodrigues
- Department of Chemical Engineering, LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Faculty of Engineering, University of Porto, Portugal
| |
Collapse
|
29
|
Mills B, Radhakrishnan N, Karthikeyan Rajapandian SG, Rameshkumar G, Lalitha P, Prajna NV. The role of fungi in fungal keratitis. Exp Eye Res 2020; 202:108372. [PMID: 33249061 DOI: 10.1016/j.exer.2020.108372] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/07/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022]
Abstract
Fungal keratitis (FK) accounts for approximately half of the microbial keratitis encountered in low middle income countries (LMICs) and predominantly affect the working rural-poor. FK causes significant morbidity with the majority of patients left with moderate or worse visual impairment and approximately 25% requiring expensive and often unsuccessful surgical interventions. The severity of FK and the resultant corneal damage or resolution can be attributed to i) the virulence and bioburden of the fungal pathogen, ii) the host defense mechanism and immune response and iii) sub-optimal diagnostics and anti-fungal treatment strategies. This review provides a comprehensive overview of the multifaceted components that drive FK progression and resolution, highlighting where knowledge gaps exist and areas that warrant further research.
Collapse
Affiliation(s)
- Bethany Mills
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, UK
| | - Naveen Radhakrishnan
- Department of Cornea and Refractive Surgery, Aravind Eye Hospital, Madurai, India
| | | | | | - Prajna Lalitha
- Department of Ocular Microbiology, Aravind Eye Hospital, Madurai, India
| | - N Venkatesh Prajna
- Department of Cornea and Refractive Surgery, Aravind Eye Hospital, Madurai, India.
| |
Collapse
|
30
|
Oliveira LT, Medina-Alarcón KP, Singulani JDL, Fregonezi NF, Pires RH, Arthur RA, Fusco-Almeida AM, Mendes Giannini MJS. Dynamics of Mono- and Dual-Species Biofilm Formation and Interactions Between Paracoccidioides brasiliensis and Candida albicans. Front Microbiol 2020; 11:551256. [PMID: 33178146 PMCID: PMC7591818 DOI: 10.3389/fmicb.2020.551256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
The oral cavity is a highly diverse microbial environment in which microorganisms interact with each other, growing as biofilms on biotic and abiotic surfaces. Understanding the interaction among oral microbiota counterparts is pivotal for clarifying the pathogenesis of oral diseases. Candida spp. is one of the most abundant fungi in the oral mycobiome with the ability to cause severe soft tissue lesions under certain conditions. Paracoccidioides spp., the causative agent of paracoccidioidomycosis, may also colonize the oral cavity leading to soft tissue damage. It was hypothesized that both fungi can interact with each other, increasing the growth of the biofilm and its virulence, which in turn can lead to a more aggressive infectivity. Therefore, this study aimed to evaluate the dynamics of mono- and dual-species biofilm growth of Paracoccidioides brasiliensis and Candida albicans and their infectivity using the Galleria mellonella model. Biomass and fungi metabolic activity were determined by the crystal violet and the tetrazolium salt reduction tests (XTT), respectively, and the colony-forming unit (CFU) was obtained by plating. Biofilm structure was characterized by both scanning electronic- and confocal laser scanning- microscopy techniques. Survival analysis of G. mellonella was evaluated to assess infectivity. Our results showed that dual-species biofilm with P. brasiliensis plus C. albicans presented a higher biomass, higher metabolic activity and CFU than their mono-species biofilms. Furthermore, G. mellonella larvae infected with P. brasiliensis plus C. albicans presented a decrease in the survival rate compared to those infected with P. brasiliensis or C. albicans, mainly in the form of biofilms. Our data indicate that P. brasiliensis and C. albicans co-existence is likely to occur on oral mucosal biofilms, as per in vitro and in vivo analysis. These data further widen the knowledge associated with the dynamics of fungal biofilm growth that can potentially lead to the discovery of new therapeutic strategies for these infections.
Collapse
Affiliation(s)
- Lariane Teodoro Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Kaila Petronila Medina-Alarcón
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Junya de Lacorte Singulani
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Nathália Ferreira Fregonezi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | - Regina Helena Pires
- Laboratory of Mycology and Environmental Diagnosis, University of Franca, Franca, Brazil
| | - Rodrigo Alex Arthur
- Department of Preventive and Community Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | | |
Collapse
|
31
|
Yang SY, Kang MK. Biocompatibility and Antimicrobial Activity of Reynoutria elliptica Extract for Dental Application. PLANTS 2020; 9:plants9060670. [PMID: 32466520 PMCID: PMC7355611 DOI: 10.3390/plants9060670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 11/16/2022]
Abstract
This study was conducted to determine whether nature-derived Reynoutria elliptica extracts exhibit biocompatibility and antimicrobial effects against oral pathogens such as Streptococcus mutans and Candida albicans. Fine particles of Reynoutria elliptica extract were used to probe for biocompatibility and antimicrobial activity toward these pathogens, and results were evaluated with an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, spectrophotometric growth inhibitory assay, the total number of colony-forming units (CFU), an agar disk diffusion test, and scanning electron microscopy (SEM). In addition, UV/VIS spectroscopy was used to determine the levels of flavonoid and polyphenol in experimental solutions. Several experimental groups showed cell viability higher than 70%, and the antimicrobial activity toward both S. mutans and C. albicans was significantly higher than was that seen for the control group. In CFU and agar disk diffusion tests with C. albicans, increases in the concentration of Reynoutria elliptica extract led to significantly increased antimicrobial effects. Additionally, SEM results showed that Reynoutria elliptica extract changed the morphology and density of S. mutans and C. albicans. The results of this research can be applied to the use of Reynoutria elliptica extracts for the development of oral products that are biologically friendly and can control oral diseases such as dental caries and candida-associated denture stomatitis.
Collapse
Affiliation(s)
- Song-Yi Yang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Min-Kyung Kang
- Department of Dental Hygiene, Hanseo University, Chungcheongnam-do 31962, Korea
- Correspondence: ; Tel.: +82-41-660-1575
| |
Collapse
|
32
|
Souza JGS, Bertolini M, Thompson A, Mansfield JM, Grassmann AA, Maas K, Caimano MJ, Barao VAR, Vickerman MM, Dongari-Bagtzoglou A. Role of glucosyltransferase R in biofilm interactions between Streptococcus oralis and Candida albicans. THE ISME JOURNAL 2020; 14:1207-1222. [PMID: 32042100 PMCID: PMC7174356 DOI: 10.1038/s41396-020-0608-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/08/2020] [Accepted: 01/30/2020] [Indexed: 02/08/2023]
Abstract
Streptococcal glucosyltransferases (Gtf) synthesize α-glucan exopolymers which contribute to biofilm matrix. Streptococcus oralis interacts with the opportunistic pathogen Candida albicans to form hypervirulent biofilms. S. oralis 34 has a single gtf gene (gtfR). However, the role of gtfR in single and mixed species biofilms with C. albicans has never been examined. A gtfR deletion mutant, purified GtfR, and recombinant GtfR glucan-binding domain were tested in single and mixed biofilms on different substrata in vitro. A mouse oral infection model was also used. We found that in single species biofilms growing with sucrose on abiotic surfaces S. oralis gtfR increased biofilm matrix, but not bacterial biomass. In biofilms with C. albicans, S. oralis encoding gtfR showed increased bacterial biomass on all surfaces. C. albicans had a positive effect on α-glucan synthesis, and α-glucans increased C. albicans accretion on abiotic surfaces. In single and mixed infection of mice receiving sucrose S. oralis gtfR enhanced mucosal burdens. However, sucrose had a negative impact on C. albicans burdens and reduced S. oralis burdens in co-infected mice. Our data provide new insights on the GtfR-mediated interactions between the two organisms and the influence of biofilm substratum and the mucosal environment on these interactions.
Collapse
Affiliation(s)
- João Gabriel Silva Souza
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Martinna Bertolini
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Angela Thompson
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Jillian M Mansfield
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - André Alex Grassmann
- Departments of Medicine, Pediatrics and Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Kendra Maas
- Microbial Analysis, Resources, and Services Core, University of Connecticut, Storrs, CT, USA
| | - Melissa J Caimano
- Departments of Medicine, Pediatrics and Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Valentim Adelino Ricardo Barao
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - M Margaret Vickerman
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA.
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA.
| |
Collapse
|
33
|
Biofilm Interactions of Candida albicans and Mitis Group Streptococci in a Titanium-Mucosal Interface Model. Appl Environ Microbiol 2020; 86:AEM.02950-19. [PMID: 32111586 DOI: 10.1128/aem.02950-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
Streptococci from the mitis group (represented mainly by Streptococcus mitis, Streptococcus oralis, Streptococcus sanguinis, and Streptococcus gordonii) form robust biofilms with Candida albicans in different experimental models. These microorganisms have been found in polymicrobial biofilms forming on titanium biomaterial surfaces in humans with peri-implant disease. The purpose of this work was to study mutualistic interactions in biofilms forming on titanium and their effect on the adjacent mucosa, using a relevant infection model. Single and mixed biofilms of C. albicans and each Streptococcus species were grown on titanium disks. Bacterial and fungal biovolume and biomass were quantified in these biofilms. Organotypic mucosal constructs were exposed to preformed titanium surface biofilms to test their effect on secretion of proinflammatory cytokines and cell damage. C. albicans promoted bacterial biofilms of all mitis Streptococcus species on titanium surfaces. This relationship was mutualistic since all bacterial species upregulated the efg1 hypha-associated gene in C. albicans Mixed biofilms caused increased tissue damage but did not increase proinflammatory cytokine responses compared to biofilms comprising Candida alone. Interestingly, spent culture medium from tissues exposed to titanium biofilms suppressed Candida growth on titanium surfaces.IMPORTANCE Our findings provide new insights into the cross-kingdom interaction between C. albicans and Streptococcus species representative of the mitis group. These microorganisms colonize titanium-based dental implant materials, but little is known about their ability to cause inflammation and damage of the adjacent mucosal tissues. Using an in vitro biomaterial-mucosal interface infection model, we showed that mixed biofilms of each species with C. albicans enhance tissue damage. One possible mechanism for this effect is the increased fungal hypha-associated virulence gene expression we observed in mixed biofilms with these species. Interestingly, we also found that the interaction of multispecies biofilms with organotypic mucosal surfaces led to the release of growth-suppressing mediators of Candida, which may represent a homeostatic defense mechanism of the oral mucosa against fungal overgrowth. Thus, our findings provide novel insights into biofilms on biomaterials that may play an important role in the pathogenesis of mucosal infections around titanium implants.
Collapse
|
34
|
Fabricating Ultra-Smooth Diamond-Like Carbon Film and Investigating its Antifungal and Antibiofilm Activity. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2019. [DOI: 10.4028/www.scientific.net/jbbbe.43.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diamond like carbon (DLC) a carbon-based nanomaterial has been nominated as a potential solution to prevent the biofilm formation on indwelling medical devices such as dentures and heart valves.Candidaalbicansis an opportunistic fungal pathogen where biofilms are a part of its pathogenicity which primarily utilized indwelling medical devices as platform to build up the biofilm. In this work, DLC deposited on silicon substrate was prepared to accomplish the optimal characteristics for bio-coating material (roughness, purity, uniformity) and then evaluated for their ability to prevent or reduce the biofilm formation of pathogenicC.albicans(SC5314) under conditions mimicking human body. Optimized DLC was synthesized via chemical vapor deposition, and then the film was characterized by Raman spectroscopy, scan electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). The potential biofilms on DLC, silicon substrate and positive control (polyvinyl chloride-PVC) were quantified via colorimetric cell viability assay (XTT); as intact and vortexed biofilms. The characteristics of formed biofilms were carried out using confocal scanning laser microscopy (CSLM) and scan electron microscope (SEM). The result showed that DLC was successfully deposited on the silicon substrate with a root mean square (RMS) roughness of 0.183± 0.09 nm. The biofilm efficaciously grown on all samples (DLC and positive control) with thickness of 46.8 ± 6.97 μm and 42.18 ± 4.65 μm, respectively. No topological and morphological changes have been observed by SEM on biofilm-DLC compared to PVC-biofilm. Moreover, all results indicated that the hydrophobicity and roughness of DLC appeared to support the attachment and the growth ofC.albicans.In conclusion , there is no privilege of utilizing DLC over PVC in term of reduction or inhibition ofC.albicansbiofilm formation at physiological conditions. Furthermore, this study may serve as an experimental model to evaluate the potential effect of nanomaterials coating on biofilm formation at conditions mimicking human’s body.
Collapse
|
35
|
Veerapandian R, Vediyappan G. Gymnemic Acids Inhibit Adhesive Nanofibrillar Mediated Streptococcus gordonii-Candida albicans Mono-Species and Dual-Species Biofilms. Front Microbiol 2019; 10:2328. [PMID: 31681200 PMCID: PMC6797559 DOI: 10.3389/fmicb.2019.02328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
Dental caries and periodontitis are the most common oral disease of all age groups, affecting billions of people worldwide. These oral diseases are mostly associated with microbial biofilms in the oral cavity. Streptococcus gordonii, an early tooth colonizing bacterium and Candida albicans, an opportunistic pathogenic fungus, are the two abundant oral microbes that form mixed biofilms with augmented virulence, affecting oral health negatively. Understanding the molecular mechanisms of the pathogen interactions and identifying non-toxic compounds that block the growth of biofilms are important steps in the development of effective therapeutic approaches. In this in vitro study we report the inhibition of mono-species or dual-species biofilms of S. gordonii and C. albicans, and decreased levels of biofilm extracellular DNA (eDNA), when biofilms were grown in the presence of gymnemic acids (GAs), a non-toxic small molecule inhibitor of fungal hyphae. Scanning electron microscopic images of biofilms on saliva-coated hydroxyapatite (sHA) surfaces revealed attachment of S. gordonii cells to C. albicans hyphae and to sHA surfaces via nanofibrils only in the untreated control, but not in the GAs-treated biofilms. Interestingly, C. albicans produced fibrillar adhesive structures from hyphae when grown with S. gordonii as a mixed biofilm; addition of GAs abrogated the nanofibrils and reduced the growth of both hyphae and the biofilm. To our knowledge, this is the first report that C. albicans produces adhesive fibrils from hyphae in response to S. gordonii mixed biofilm growth. Semi-quantitative PCR of selected genes related to biofilms from both microbes showed differential expression in control vs. treated biofilms. Further, GAs inhibited the activity of recombinant S. gordonii glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Taken together, our results suggest that S. gordonii stimulates the expression of adhesive materials in C. albicans by direct interaction and/or signaling, and the adhesive material expression can be inhibited by GAs.
Collapse
Affiliation(s)
- Raja Veerapandian
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
36
|
Oshiro KGN, Rodrigues G, Monges BED, Cardoso MH, Franco OL. Bioactive Peptides Against Fungal Biofilms. Front Microbiol 2019; 10:2169. [PMID: 31681179 PMCID: PMC6797862 DOI: 10.3389/fmicb.2019.02169] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
Infections caused by invasive fungal biofilms have been widely associated with high morbidity and mortality rates, mainly due to the advent of antibiotic resistance. Moreover, fungal biofilms impose an additional challenge, leading to multidrug resistance. This fact, along with the contamination of medical devices and the limited number of effective antifungal agents available on the market, demonstrates the importance of finding novel drug candidates targeting pathogenic fungal cells and biofilms. In this context, an alternative strategy is the use of antifungal peptides (AFPs) against fungal biofilms. AFPs are considered a group of bioactive molecules with broad-spectrum activities and multiple mechanisms of action that have been widely used as template molecules for drug design strategies aiming at greater specificity and biological efficacy. Among the AFP classes most studied in the context of fungal biofilms, defensins, cathelicidins and histatins have been described. AFPs can also act by preventing the formation of fungal biofilms and eradicating preformed biofilms through mechanisms associated with cell wall perturbation, inhibition of planktonic fungal cells’ adhesion onto surfaces, gene regulation and generation of reactive oxygen species (ROS). Thus, considering the critical scenario imposed by fungal biofilms and associated infections and the application of AFPs as a possible treatment, this review will focus on the most effective AFPs described to date, with a core focus on antibiofilm peptides, as well as their efficacy in vivo, application on surfaces and proposed mechanisms of action.
Collapse
Affiliation(s)
- Karen G N Oshiro
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Bruna Estéfani D Monges
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
37
|
The Dysbiosis and Inter-Kingdom Synergy Model in Oropharyngeal Candidiasis, a New Perspective in Pathogenesis. J Fungi (Basel) 2019; 5:jof5040087. [PMID: 31546600 PMCID: PMC6958497 DOI: 10.3390/jof5040087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/28/2022] Open
Abstract
As more information emerges on oral microbiota using advanced sequencing methodologies, it is imperative to examine how organisms modulate the capacity of each other to colonize or trigger infection. Most mouse models of oral C. albicans infection have focused on interactions with single bacterial species. Thus, little is known about the microbiome-mediated interactions that control the switch of C. albicans from commensalism to infection. Evidence is accumulating that in immunosuppression where mucosal candidiasis is more prevalent, there is an altered oral bacterial microbiome with reduced diversity, but not an altered mycobiome. Oropharyngeal candidiasis in immunosuppressed humans and mice is associated with a further reduction in oral bacterial diversity and a dysbiotic shift with significant enrichment of streptococcal and enterococcal species. Our recent studies in a cancer chemotherapy mouse model supported the combined profound effect of immunosuppression and C. albicans in reducing oral bacterial diversity and provided the first direct evidence that these changes contribute to pathogenesis, representing dysbiosis. There is still a gap in understanding the relationship between Candida and the oral bacterial microbiome. We propose that certain oral commensal bacteria contribute to fungal pathogenesis and we identify gaps in our understanding of the mechanisms involved in this cooperative virulence.
Collapse
|
38
|
Rai LS, Singha R, Sanchez H, Chakraborty T, Chand B, Bachellier-Bassi S, Chowdhury S, d’Enfert C, Andes DR, Sanyal K. The Candida albicans biofilm gene circuit modulated at the chromatin level by a recent molecular histone innovation. PLoS Biol 2019; 17:e3000422. [PMID: 31398188 PMCID: PMC6703697 DOI: 10.1371/journal.pbio.3000422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/21/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Histone H3 and its variants regulate gene expression but the latter are absent in most ascomycetous fungi. Here, we report the identification of a variant histone H3, which we have designated H3VCTG because of its exclusive presence in the CTG clade of ascomycetes, including Candida albicans, a human pathogen. C. albicans grows both as single yeast cells and hyphal filaments in the planktonic mode of growth. It also forms a three-dimensional biofilm structure in the host as well as on human catheter materials under suitable conditions. H3VCTG null (hht1/hht1) cells of C. albicans are viable but produce more robust biofilms than wild-type cells in both in vitro and in vivo conditions. Indeed, a comparative transcriptome analysis of planktonic and biofilm cells reveals that the biofilm circuitry is significantly altered in H3VCTG null cells. H3VCTG binds more efficiently to the promoters of many biofilm-related genes in the planktonic cells than during biofilm growth, whereas the binding of the core canonical histone H3 on the corresponding promoters largely remains unchanged. Furthermore, biofilm defects associated with master regulators, namely, biofilm and cell wall regulator 1 (Bcr1), transposon enhancement control 1 (Tec1), and non-dityrosine 80 (Ndt80), are significantly rescued in cells lacking H3VCTG. The occupancy of the transcription factor Bcr1 at its cognate promoter binding sites was found to be enhanced in the absence of H3VCTG in the planktonic form of growth resulting in enhanced transcription of biofilm-specific genes. Further, we demonstrate that co-occurrence of valine and serine at the 31st and 32nd positions in H3VCTG, respectively, is essential for its function. Taken together, we show that even in a unicellular organism, differential gene expression patterns are modulated by the relative occupancy of the specific histone H3 type at the chromatin level. A variant histone H3 specific to the CTG clade of ascomycete fungi modulates the expression of the majority of the biofilm genes in the human pathogen Candida albicans by binding differentially to biofilm-relevant gene promoters.
Collapse
Affiliation(s)
- Laxmi Shanker Rai
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC2019 INRA, Paris, France
| | - Rima Singha
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Tanmoy Chakraborty
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Bipin Chand
- Genotypic Technology Private Limited, Bangalore, India
| | | | - Shantanu Chowdhury
- GNR Center for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Christophe d’Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC2019 INRA, Paris, France
| | - David R. Andes
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- * E-mail:
| |
Collapse
|
39
|
Contributions of Candida albicans Dimorphism, Adhesive Interactions, and Extracellular Matrix to the Formation of Dual-Species Biofilms with Streptococcus gordonii. mBio 2019; 10:mBio.01179-19. [PMID: 31213561 PMCID: PMC6581863 DOI: 10.1128/mbio.01179-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microbial communities have a great impact in health and disease. C. albicans interacts with multiple microorganisms in the oral cavity, frequently forming polymicrobial biofilms. We report on the synergistic interactions between C. albicans and the Gram-positive bacterium S. gordonii, for which we have examined the different contributions of adhesive interactions, filamentation, and the extracellular matrix to the formation of dual-species biofilms. Our results demonstrate that growth in the presence of the bacterium can restore the biofilm-forming ability of different C. albicans mutant strains with defects in adhesion and filamentation. The mixed-species biofilms also show high levels of resistance to antibacterial and antifungal antibiotics, and our results indicate that the fungal biofilm matrix protects bacterial cells within these mixed-species biofilms. Our observations add to a growing body of evidence indicating a high level of complexity in the reciprocal interactions and consortial behavior of fungal/bacterial biofilms. Fungal and bacterial populations coexist in the oral cavity, frequently forming mixed-species biofilms that complicate treatment against polymicrobial infections. However, despite relevance to oral health, the bidirectional interactions between these microbial populations are poorly understood. In this study, we aimed to elucidate the mechanisms underlying the interactions between the fungal species Candida albicans and the bacterial species Streptococcus gordonii as they coexist in mixed-species biofilms. Specifically, the interactions of different C. albicans mutant strains deficient in filamentation (efg1Δ/Δ and brg1Δ/Δ), adhesive interactions (als3Δ/Δ and bcr1Δ/Δ), and production of matrix exopolymeric substances (EPS) (kre5Δ/Δ, mnn9Δ/Δ, rlm1Δ/Δ, and zap1Δ/Δ) were evaluated with S. gordonii under different conditions mimicking the environment in the oral cavity. Interestingly, our results revealed that growth of the biofilm-deficient C. albicansals3Δ/Δ and bcr1Δ/Δ mutant strains in synthetic saliva or with S. gordonii restored their biofilm-forming ability. Moreover, challenging previous observations indicating an important role of morphogenetic conversions in the interactions between these two species, our results indicated a highly synergistic interaction between S. gordonii and the C. albicans filamentation-deficient efg1Δ/Δ and brg1Δ/Δ deletion mutants, which was particularly noticeable when the mixed biofilms were grown in synthetic saliva. Importantly, dual-species biofilms were found to exhibit increase in antimicrobial resistance, indicating that components of the fungal exopolymeric material confer protection to streptococcal cells against antibacterial treatment. Collectively, these findings unravel a high degree of complexity in the interactions between C. albicans and S. gordonii in mixed-species biofilms, which may impact homeostasis in the oral cavity.
Collapse
|
40
|
A novel anti Candida albicans drug screening system based on high-throughput microfluidic chips. Sci Rep 2019; 9:8087. [PMID: 31147583 PMCID: PMC6543036 DOI: 10.1038/s41598-019-44298-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
Due to the antibacterial resistance crisis, developing new antibacterials is of particular interest. In this study, we combined the antifungal drug amphotericin B with 50,520 different small molecule compounds obtained from the Chinese National Compound Library in an attempt to improve its efficacy against Candida albicans persister cells. To systematically study the antifungal effect of each compound, we utilized custom-designed high-throughput microfluidic chips. Our microfluidic chips contained microchannels ranging from 3 µm to 5 µm in width to allow Candida albicans cells to line up one-by-one to facilitate fluorescence-microscope viewing. After screening, we were left with 10 small molecule compounds that improved the antifungal effects of amphotericin B more than 30% against Candida albicans persister cells.
Collapse
|
41
|
Candida glabrata Has No Enhancing Role in the Pathogenesis of Candida-Associated Denture Stomatitis in a Rat Model. mSphere 2019; 4:4/2/e00191-19. [PMID: 30944214 PMCID: PMC6449607 DOI: 10.1128/msphere.00191-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Many denture wearers suffer from Candida-associated denture stomatitis (DS), a fungal infection of the hard palate in contact with dentures. Biofilm formation by Candida albicans on denture/palate surfaces is considered a central process in the infection onset. Although Candida glabrata is frequently coisolated with C. albicans, its role in DS pathogenesis is unknown. We show here, using a contemporary rat model that employed a patented intraoral denture system, that C. glabrata established stable colonization on the denture/palate. However, in contrast to C. albicans inoculated rats, rats inoculated with C. glabrata exhibited minimal changes in weight gain or palatal tissue damage. Likewise, coinoculation with the two Candida species resulted in no exacerbation of C. albicans-induced DS pathology. Together, our findings indicate that C. glabrata has no inducing/enhancing role in DS pathogenesis. Denture stomatitis (DS) is a condition characterized by inflammation of the oral mucosa in direct contact with dentures and affects a significant number of otherwise healthy denture wearers. Candida-associated DS is predominantly caused by Candida albicans, a dimorphic fungus that readily colonizes and forms biofilms on denture materials. Previous studies showed a requirement for Candida biofilm formation on both palate and dentures in infection and identified fungal morphogenic transcription factors, Efg1 and Bcr1, as key players in DS pathogenesis. While both C. albicans and Candida glabrata are frequently coisolated in mucosal candidiasis, a pathogenic role for C. glabrata in DS remains unknown. Using an established rat model of DS, we sought to determine whether C. glabrata alone or coinoculation with C. albicans establishes colonization and causes palatal tissue damage and inflammation. Rats fitted with custom dentures were inoculated with C. albicans and/or C. glabrata and monitored over a 4-week period for fungal burden (denture/palate), changes in body weight, and tissue damage via lactate dehydrogenase (LDH) release as well as palatal staining by hematoxylin and eosin (H&E) and immunohistochemistry for myeloperoxidase (MPO) as measures of inflammation. C. glabrata colonized the denture/palate similarly to C. albicans. In contrast to C. albicans, colonization by C. glabrata resulted in minimal changes in body weight, palatal LDH release, and MPO expression. Coinoculation with both species had no obvious modulation of C. albicans-mediated pathogenic effects. These data suggest that C. glabrata readily establishes colonization on denture and palate but has no apparent role for inducing/enhancing C. albicans pathogenesis in DS. IMPORTANCE Many denture wearers suffer from Candida-associated denture stomatitis (DS), a fungal infection of the hard palate in contact with dentures. Biofilm formation by Candida albicans on denture/palate surfaces is considered a central process in the infection onset. Although Candida glabrata is frequently coisolated with C. albicans, its role in DS pathogenesis is unknown. We show here, using a contemporary rat model that employed a patented intraoral denture system, that C. glabrata established stable colonization on the denture/palate. However, in contrast to C. albicans inoculated rats, rats inoculated with C. glabrata exhibited minimal changes in weight gain or palatal tissue damage. Likewise, coinoculation with the two Candida species resulted in no exacerbation of C. albicans-induced DS pathology. Together, our findings indicate that C. glabrata has no inducing/enhancing role in DS pathogenesis.
Collapse
|
42
|
Bertolini M, Ranjan A, Thompson A, Diaz PI, Sobue T, Maas K, Dongari-Bagtzoglou A. Candida albicans induces mucosal bacterial dysbiosis that promotes invasive infection. PLoS Pathog 2019; 15:e1007717. [PMID: 31009520 PMCID: PMC6497318 DOI: 10.1371/journal.ppat.1007717] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/02/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Infectious complications are a common cause of morbidity and mortality in cancer patients undergoing chemotherapy due to increased risk of oral and gastrointestinal candidiasis, candidemia and septicemia. Interactions between C. albicans and endogenous mucosal bacteria are important in understanding the mechanisms of invasive infection. We published a mouse intravenous chemotherapy model that recapitulates oral and intestinal mucositis, and myelosuppression in patients receiving 5-fluorouracil. We used this model to study the influence of C. albicans on the mucosal bacterial microbiome and compared global community changes in the oral and intestinal mucosa of the same mice. We validated 16S rRNA gene sequencing data by qPCR, in situ hybridization and culture approaches. Mice receiving both 5Fu and C. albicans had an endogenous bacterial overgrowth on the oral but not the small intestinal mucosa. C. albicans infection was associated with loss of mucosal bacterial diversity in both sites with indigenous Stenotrophomonas, Alphaproteobacteria and Enterococcus species dominating the small intestinal, and Enterococcus species dominating the oral mucosa. Both immunosuppression and Candida infection contributed to changes in the oral microbiota. Enterococci isolated from mice with oropharyngeal candidiasis were implicated in degrading the epithelial junction protein E-cadherin and increasing the permeability of the oral epithelial barrier in vitro. Importantly, depletion of these organisms with antibiotics in vivo attenuated oral mucosal E-cadherin degradation and C. albicans invasion without affecting fungal burdens, indicating that bacterial community changes represent overt dysbiosis. Our studies demonstrate a complex interaction between C. albicans, the resident mucosal bacterial microbiota and the host environment in pathogenesis. We shed significant new light on the role of C. albicans in shaping resident bacterial communities and driving mucosal dysbiosis.
Collapse
Affiliation(s)
- Martinna Bertolini
- Department of Oral Health Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Amit Ranjan
- Department of Oral Health Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Angela Thompson
- Department of Oral Health Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Patricia I. Diaz
- Department of Oral Health Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Takanori Sobue
- Department of Oral Health Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Kendra Maas
- Microbial Analysis, Resources, and Services Core, University of Connecticut, Storrs, Connecticut, United States of America
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| |
Collapse
|
43
|
Inhibition of Yeast-to-Hypha Transition and Virulence of Candida albicans by 2-Alkylaminoquinoline Derivatives. Antimicrob Agents Chemother 2019; 63:AAC.01891-18. [PMID: 30670437 DOI: 10.1128/aac.01891-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/05/2019] [Indexed: 12/14/2022] Open
Abstract
A rapid increase in Candida albicans infection and drug resistance has caused an emergent need for new clinical strategies against this fungal pathogen. In this study, we evaluated the inhibitory activity of a series of 2-alkylaminoquinoline derivatives against C. albicans isolates. A total of 28 compounds were assessed for their efficacy in inhibiting the yeast-to-hypha transition, which is considered one of the key virulence factors in C. albicans Several compounds showed strong activity to decrease the morphological transition and virulence of C. albicans cells. The two leading compounds, compound 1 (2-[piperidin-1-yl]quinolone) and compound 12 (6-methyl-2-[piperidin-1-yl]quinoline), remarkably attenuated C. albicans hyphal formation and cytotoxicity in a dose-dependent manner, but they showed no toxicity to either C. albicans cells or human cells. Intriguingly, compound 12 showed an excellent ability to inhibit C. albicans infection in the mouse oral mucosal infection model. This leading compound also interfered with the expression levels of hypha-specific genes in the cyclic AMP-protein kinase A and mitogen-activated protein kinase signaling pathways. Our findings suggest that 2-alkylaminoquinoline derivatives could potentially be developed as novel therapeutic agents against C. albicans infection due to their interference with the yeast-to-hypha transition.
Collapse
|
44
|
Kim H, Kang SS. Antifungal activities against Candida albicans, of cell-free supernatants obtained from probiotic Pediococcus acidilactici HW01. Arch Oral Biol 2019; 99:113-119. [PMID: 30658319 DOI: 10.1016/j.archoralbio.2019.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/24/2018] [Accepted: 01/09/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the antifungal activities of cell-free supernatants of a probiotic strain, Pediococcus acidilactici HW01, against Candida albicans. DESIGN C. albicans was cultured in the presence of different concentration of cell-free supernatants obtained from P. acidilactici HW01 (HW01 CFS) and the growth of C. albicans was determined. C. albicans was incubated with HW01 CFS for 24 h and the biofilm formation of C. albicans was determined by staining crystal violet and by using a scanning electron microscope. Biofilm quantification was determined by 2, 3-Bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay. RESULTS HW01 CFS inhibitedC. albicans growth, whereas bacteriocin, which is a well-known antimicrobial peptide of lactic acid bacteria, failed to inhibit C. albicans growth. Pre-treatment and simultaneous treatment with HW01 CFS exhibited a significant inhibition of C. albicans biofilm. Although post-treatment with HW01 CFS did not disrupt the established biofilm of C. albicans at 3 h-incubation, significant reduced C. albicans biofilm was observed after 6 h-incubation in the presence of HW01 CFS. CONCLUSION These results suggested that the CFS fromP. acidilactici HW01 was revealed as an effective antifungal agent against C. albicans by reducing the growth and biofilm formation.
Collapse
Affiliation(s)
- Hyunjin Kim
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Republic of Korea.
| |
Collapse
|
45
|
Negrini TDC, Koo H, Arthur RA. Candida–Bacterial Biofilms and Host–Microbe Interactions in Oral Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:119-141. [DOI: 10.1007/978-3-030-28524-1_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Fahim A, Himratul-Aznita WH, Abdul-Rahman PS. Polymicrobial interactions between Streptococcus mitis, Streptococcus sanguinis and oral associated Candida albicans on an in vitro salivary biofilm and differential expression of ALS1, ALS2 and ALS3 genes. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1577173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Ayesha Fahim
- Department of Oral & Craniofacial Sciences Faculty of Dentistry, University of Malaya, Kualalumpur, Malaysia
| | - Wan Harun Himratul-Aznita
- Department of Oral & Craniofacial Sciences Faculty of Dentistry, University of Malaya, Kualalumpur, Malaysia
| | | |
Collapse
|
47
|
Rahimi C, Rahimi B, Padova D, Rooholghodos SA, Bienek DR, Luo X, Kaufman G, Raub CB. Oral mucosa-on-a-chip to assess layer-specific responses to bacteria and dental materials. BIOMICROFLUIDICS 2018; 12:054106. [PMID: 30310527 PMCID: PMC6158033 DOI: 10.1063/1.5048938] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/06/2018] [Indexed: 05/24/2023]
Abstract
The human oral mucosa hosts a diverse microbiome and is exposed to potentially toxic biomaterials from dental restoratives. Mucosal health is partly determined by cell and tissue responses to challenges such as dental materials and pathogenic bacteria. An in vitro model to rapidly determine potential layer-specific responses would lead to a better understanding of mucosal homeostasis and pathology. Therefore, this study aimed to develop a co-cultured microfluidic mucosal model on-a-chip to rapidly assess mucosal remodeling and the responses of epithelial and subepithelial layers to challenges typically found in the oral environment. A gingival fibroblast-laden collagen hydrogel was assembled in the central channel of a three-channel microfluidic chamber with interconnecting pores, followed by a keratinocyte layer attached to the collagen exposed in the pores. This configuration produced apical and subepithelial side channels capable of sustaining flow. Keratinocyte, fibroblast, and collagen densities were optimized to create a co-culture tissue-like construct stable over one week. Cells were stained and imaged with epifluorescence microscopy to confirm layer characteristics. As proof-of-concept, the mucosal construct was exposed separately to a dental monomer, 2-hydroxylethyl methacrylate (HEMA), and the oral bacteria Streptococcus mutans. Exposure to HEMA lowered mucosal cell viability, while exposure to the bacteria lowered trans-epithelial electrical resistance. These findings suggest that the oral mucosa-on-a-chip is useful for studying oral mucosal interactions with bacteria and biomaterials with a histology-like view of the tissue layers.
Collapse
Affiliation(s)
- Christopher Rahimi
- Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, District of Columbia 20064, USA
| | - Benjamin Rahimi
- Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, District of Columbia 20064, USA
| | - Dominic Padova
- Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, District of Columbia 20064, USA
| | - Seyed A. Rooholghodos
- Department of Mechanical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, District of Columbia 20064, USA
| | - Diane R. Bienek
- ADA Foundation, Volpe Research Center, 100 Bureau Drive, Stop #8546, Gaithersburg, Maryland 20899, USA
| | - Xiaolong Luo
- Department of Mechanical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, District of Columbia 20064, USA
| | - Gili Kaufman
- ADA Foundation, Volpe Research Center, 100 Bureau Drive, Stop #8546, Gaithersburg, Maryland 20899, USA
| | - Christopher B. Raub
- Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Avenue NE, Washington, District of Columbia 20064, USA
| |
Collapse
|
48
|
Pharmacodynamic and Immunomodulatory Effects of Micafungin on Host Responses against Biofilms of Candida parapsilosis in Comparison to Those of Candida albicans. Antimicrob Agents Chemother 2018; 62:AAC.00478-18. [PMID: 29866877 DOI: 10.1128/aac.00478-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
Micafungin (MFG) demonstrates potent activity against biofilms of Candida albicans and Candida parapsilosis, the most frequent opportunistic fungal pathogens. Little is known about its immunopharmacologic effect on antibiofilm activity of phagocytic cells following exposure to Candida biofilms. In this study, we investigated the effects of MFG on human neutrophil-mediated damage of C. albicans and C. parapsilosis biofilms by XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] and the potential mechanisms underlying the immunomodulatory MFG activities on cultured monocyte-derived THP-1 cells in response to these biofilms by reverse transcription-PCR and sandwich and multiplex enzyme-linked immunosorbent assay. Preexposure of C. albicans to subinhibitory MFG concentrations significantly enhanced neutrophil-mediated biofilm damage, an effect that appears to be species specific since a comparable effect was not observed with drug-pretreated C. parapsilosis biofilms. Human THP-1 cells responded to both Candida biofilms through Toll-like receptor 2 (TLR2) and TLR4 upregulation, modest TLR6 involvement, and enhanced NLRP3 activation, whereas the signal was relayed to the nucleus via NF-κB p65 activation. MFG caused 2- to 3-fold lower TLR2 and TLR4 mRNA levels than those caused by either organism. C. albicans biofilms induced a robust proinflammatory response, whereas C. parapsilosis biofilms either alone or in the presence of MFG caused increased interleukin-1β (IL-1β) production, but small amounts of IL-8, IL-23, and tumor necrosis factor alpha. In conclusion, MFG may condition THP-1 cells toward an inflammatory response through TLR2/TLR4 recruitment. Inflammatory signals observed with C. albicans biofilms are considerably reduced upon exposure of THP-1 cells to C. parapsilosis biofilms, possibly enhancing fungal survival and increasing biofilm pathogenicity.
Collapse
|
49
|
Candida albicans White-Opaque Switching Influences Virulence but Not Mating during Oropharyngeal Candidiasis. Infect Immun 2018; 86:IAI.00774-17. [PMID: 29581190 DOI: 10.1128/iai.00774-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/17/2018] [Indexed: 12/13/2022] Open
Abstract
The capacity of Candida albicans to switch reversibly between the white phenotype and the opaque phenotype is required for the fungus to mate. It also influences virulence during hematogenously disseminated candidiasis. We investigated the roles of the mating type loci (MTL) and white-opaque switching in the capacity of C. albicans to mate in the oropharynx and cause oropharyngeal candidiasis (OPC). When immunosuppressed mice were orally infected with mating-competent opaque a/a and α/α cells either alone or mixed with white cells, no detectable mating occurred, indicating that the mating frequency was less than 1.6 × 10-6 Opaque cells were also highly attenuated in virulence; they either were cleared from the oropharynx or switched to the white phenotype during OPC. Although there were strain-to-strain differences in the virulence of white cells, they were consistently more virulent than opaque cells. In vitro studies indicated that relative to white cells, opaque cells had decreased capacity to invade and damage oral epithelial cells. The reduced invasion of at least one opaque strain was due to reduced surface expression of the Als3 invasin and inability to activate the epidermal growth factor receptor, which is required to stimulate the epithelial cell endocytic machinery. These results suggest that mating is a rare event during OPC because opaque cells have reduced capacity to invade and damage the epithelial cells of the oral mucosa.
Collapse
|
50
|
Patil S, Majumdar B, Sarode SC, Sarode GS, Awan KH. Oropharyngeal Candidosis in HIV-Infected Patients-An Update. Front Microbiol 2018; 9:980. [PMID: 29867882 PMCID: PMC5962761 DOI: 10.3389/fmicb.2018.00980] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/26/2018] [Indexed: 01/16/2023] Open
Abstract
Oropharyngeal candidosis (OPC) is an opportunistic fungal infection that is commonly found in HIV-infected patients, even in the twenty-first century. Candida albicans is the main pathogen, but other Candida species have been isolated. OPC usually presents months or years before other severe opportunistic infections and may indicate the presence or progression of HIV disease. The concept of OPC as a biofilm infection has changed our understanding of its pathobiology. Various anti-fungal agents (both topical and systemic) are available to treat OPC. However, anti-fungal resistance as a result of the long-term use of anti-fungal agents and recurrent oropharyngeal infection in AIDS patients require alternative anti-fungal therapies. In addition, both identifying the causative Candida species and conducting anti-fungal vulnerability testing can improve a clinician's ability to prescribe effective anti-fungal agents. The present review focuses on the current findings and therapeutic challenges for HIV-infected patients with OPC.
Collapse
Affiliation(s)
- Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jizan, Saudi Arabia
| | - Barnali Majumdar
- Department of Oral Pathology and Microbiology, Bhojia Dental College & Hospital, Baddi, India
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, India
| | - Gargi S Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, India
| | - Kamran H Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| |
Collapse
|