1
|
Mistri SK, Hilton BM, Horrigan KJ, Andretta ES, Savard R, Dienz O, Hampel KJ, Gerrard DL, Rose JT, Sidiropoulos N, Majumdar D, Boyson JE. SLAM/SAP signaling regulates discrete γδ T cell developmental checkpoints and shapes the innate-like γδ TCR repertoire. eLife 2024; 13:RP97229. [PMID: 39656519 PMCID: PMC11630817 DOI: 10.7554/elife.97229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
During thymic development, most γδ T cells acquire innate-like characteristics that are critical for their function in tumor surveillance, infectious disease, and tissue repair. The mechanisms, however, that regulate γδ T cell developmental programming remain unclear. Recently, we demonstrated that the SLAM/SAP signaling pathway regulates the development and function of multiple innate-like γδ T cell subsets. Here, we used a single-cell proteogenomics approach to identify SAP-dependent developmental checkpoints and to define the SAP-dependent γδ TCR repertoire in mice. SAP deficiency resulted in both a significant loss of an immature Gzma+Blk+Etv5+Tox2+ γδT17 precursor population and a significant increase in Cd4+Cd8+Rorc+Ptcra+Rag1+ thymic γδ T cells. SAP-dependent diversion of embryonic day 17 thymic γδ T cell clonotypes into the αβ T cell developmental pathway was associated with a decreased frequency of mature clonotypes in neonatal thymus, and an altered γδ TCR repertoire in the periphery. Finally, we identify TRGV4/TRAV13-4(DV7)-expressing T cells as a novel, SAP-dependent Vγ4 γδT1 subset. Together, the data support a model in which SAP-dependent γδ/αβ T cell lineage commitment regulates γδ T cell developmental programming and shapes the γδ TCR repertoire.
Collapse
MESH Headings
- Animals
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Mice
- Signal Transduction
- Signaling Lymphocytic Activation Molecule Associated Protein/metabolism
- Signaling Lymphocytic Activation Molecule Associated Protein/genetics
- Immunity, Innate
- Mice, Inbred C57BL
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Cell Differentiation
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Signaling Lymphocytic Activation Molecule Family
Collapse
Affiliation(s)
- Somen K Mistri
- Department of Surgery, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Brianna M Hilton
- Department of Surgery, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Katherine J Horrigan
- Department of Surgery, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Emma S Andretta
- Department of Surgery, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Remi Savard
- Department of Surgery, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Oliver Dienz
- Department of Surgery, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Kenneth J Hampel
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical CenterBurlingtonUnited States
| | - Diana L Gerrard
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical CenterBurlingtonUnited States
| | - Joshua T Rose
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical CenterBurlingtonUnited States
| | - Nikoletta Sidiropoulos
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical CenterBurlingtonUnited States
| | - Dev Majumdar
- Department of Surgery, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Jonathan E Boyson
- Department of Surgery, Larner College of Medicine, University of VermontBurlingtonUnited States
| |
Collapse
|
2
|
Chittilla M, Uzoma C, Brewer D, Razzaque MS. Potential association between arsenic and vitamin D. Front Endocrinol (Lausanne) 2024; 15:1430980. [PMID: 39086904 PMCID: PMC11288811 DOI: 10.3389/fendo.2024.1430980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Affiliation(s)
- Mythri Chittilla
- Department of Pathology, Lake Erie College of Osteopathic Medicine (LECOM), Erie, PA, United States
| | - Chantal Uzoma
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX, United States
| | - Desiree Brewer
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX, United States
| | - Mohammed S. Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine (LECOM), Erie, PA, United States
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX, United States
| |
Collapse
|
3
|
Mistri SK, Hilton BM, Horrigan KJ, Andretta ES, Savard R, Dienz O, Hampel KJ, Gerrard DL, Rose JT, Sidiropoulos N, Majumdar D, Boyson JE. SLAM/SAP signaling regulates discrete γδ T cell developmental checkpoints and shapes the innate-like γδ TCR repertoire. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575073. [PMID: 38260519 PMCID: PMC10802474 DOI: 10.1101/2024.01.10.575073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
During thymic development, most γδ T cells acquire innate-like characteristics that are critical for their function in tumor surveillance, infectious disease, and tissue repair. The mechanisms, however, that regulate γδ T cell developmental programming remain unclear. Recently, we demonstrated that the SLAM-SAP signaling pathway regulates the development and function of multiple innate-like γδ T cell subsets. Here, we used a single-cell proteogenomics approach to identify SAP-dependent developmental checkpoints and to define the SAP-dependent γδ TCR repertoire. SAP deficiency resulted in both a significant loss of an immature Gzma + Blk + Etv5 + Tox2 + γδT17 precursor population, and a significant increase in Cd4 + Cd8+ Rorc + Ptcra + Rag1 + thymic γδ T cells. SAP-dependent diversion of embryonic day 17 thymic γδ T cell clonotypes into the αβ T cell developmental pathway was associated with a decreased frequency of mature clonotypes in neonatal thymus, and an altered γδ TCR repertoire in the periphery. Finally, we identify TRGV4/TRAV13-4(DV7)-expressing T cells as a novel, SAP-dependent Vγ4 γδT1 subset. Together, the data suggest that SAP-dependent γδ/αβ T cell lineage commitment regulates γδ T cell developmental programming and shapes the γδ TCR repertoire.
Collapse
Affiliation(s)
- Somen K Mistri
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Brianna M. Hilton
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Katherine J. Horrigan
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Emma S. Andretta
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Remi Savard
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Oliver Dienz
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Kenneth J Hampel
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont 05405, USA
| | - Diana L. Gerrard
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont 05405, USA
| | - Joshua T. Rose
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont 05405, USA
| | - Nikoletta Sidiropoulos
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont 05405, USA
| | - Devdoot Majumdar
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | - Jonathan E. Boyson
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
4
|
Cho EA, Zhang P, Kumar V, Kavalchuk M, Zhang H, Huang Q, Duncan JS, Wu J. Phosphorylation of RIAM by src promotes integrin activation by unmasking the PH domain of RIAM. Structure 2020; 29:320-329.e4. [PMID: 33275877 DOI: 10.1016/j.str.2020.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Integrin activation controls cell adhesion, migration, invasion, and extracellular matrix remodeling. RIAM (RAP1-GTP-interacting adaptor molecule) is recruited by activated RAP1 to the plasma membrane (PM) to mediate integrin activation via an inside-out signaling pathway. This process requires the association of the pleckstrin homology (PH) domain of RIAM with the membrane PIP2. We identify a conserved intermolecular interface that masks the PIP2-binding site in the PH domains of RIAM. Our data indicate that phosphorylation of RIAM by Src family kinases disrupts this PH-mediated interface, unmasks the membrane PIP2-binding site, and promotes integrin activation. We further demonstrate that this process requires phosphorylation of Tyr267 and Tyr427 in the RIAM PH domain by Src. Our data reveal an unorthodox regulatory mechanism of small GTPase effector proteins by phosphorylation-dependent PM association of the PH domain and provide new insights into the link between Src kinases and integrin signaling.
Collapse
Affiliation(s)
- Eun-Ah Cho
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Pingfeng Zhang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Vikas Kumar
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Mikhail Kavalchuk
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Hao Zhang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - James S Duncan
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jinhua Wu
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
5
|
Wu D, Huo M, Chen X, Zhang Y, Qiao Y. Mechanism of tanshinones and phenolic acids from Danshen in the treatment of coronary heart disease based on co-expression network. BMC Complement Med Ther 2020; 20:28. [PMID: 32020855 PMCID: PMC7076864 DOI: 10.1186/s12906-019-2712-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background The tanshinones and phenolic acids in Salvia miltiorrhiza (also named Danshen) have been confirmed for the treatment of coronary heart disease (CHD), but the action mechanisms remain elusive. Methods In the current study, the co-expression protein interaction network (Ce-PIN) was used to illustrate the differences between the tanshinones and phenolic acids of Danshen in the treatment of CHD. By integrating the gene expression profile data and protein-protein interactions (PPIs) data, the Ce-PINs of tanshinones and phenolic acids were constructed. Then, the Ce-PINs were analyzed by gene ontology enrichment analyzed based on the optimal algorithm. Results It turned out that Danshen is able to treat CHD by regulating the blood circulation, immune response and lipid metabolism. However, phenolic acids may regulate the blood circulation by Extracellular calcium-sensing receptor (CaSR), Endothelin-1 receptor (EDNRA), Endothelin-1 receptor (EDNRB), Kininogen-1 (KNG1), tanshinones may regulate the blood circulation by Guanylate cyclase soluble subunit alpha-1 (GUCY1A3) and Guanylate cyclase soluble subunit beta-1 (GUCY1B3). In addition, both the phenolic acids and tanshinones may regulate the immune response or inflammation by T-cell surface glycoprotein CD4 (CD4), Receptor-type tyrosine-protein phosphatase C (PTPRC). Conclusion Through the same targets of the same biological process and different targets of the same biological process, the tanshinones and phenolic acids synergistically treat coronary heart disease.
Collapse
Affiliation(s)
- Dongxue Wu
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China
| | - Mengqi Huo
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China
| | - Xi Chen
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China
| | - Yanling Zhang
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China.
| | - Yanjiang Qiao
- Beijing University of Chinese Medicine, State Administration of Traditional Chinese Medicine, Research Center of TCM-Information Engineering, Beijing, 100102, China.
| |
Collapse
|
6
|
Ben Khalaf N, Al-Mashoor W, Saeed A, Al-Mehatab D, Taha S, Bakhiet M, Fathallah MD. The mouse intron-nested gene, Israa, is expressed in the lymphoid organs and involved in T-cell activation and signaling. Mol Immunol 2019; 111:209-219. [PMID: 31096062 DOI: 10.1016/j.molimm.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 03/25/2019] [Accepted: 04/13/2019] [Indexed: 10/26/2022]
Abstract
We have previously reported Israa, immune-system-released activating agent, as a novel gene nested in intron 8 of the mouse Zmiz1 gene. We have also shown that Israa encodes for a novel FYN-binding protein and might be involved in the regulation of T-cell activation. In this report, we demonstrate that Israa gene product regulates the expression of a pool of genes involved in T-cell activation and signaling. Real time PCR and GFP knock-in expression analysis showed that Israa is transcribed and expressed in the spleen mainly by CD3+CD8+ cells as well as in the thymus by CD3+ (DP and DN), CD4+SP and CD8+SP cells at different developmental stages. We also showed that Israa is downregulated in T-cells following activation of T-cell receptor. Using yeast two-hybrid analysis, we identified ELF1, a transcription factor involved in T-cell regulation, as an ISRAA-binding partner. Transcriptomic analysis of an EL4 cell line overexpressing ISRAA revealed differential expression of several genes involved in T-cell signaling, activation and development. Among these genes, Prkcb, Mib2, Fos, Ndfip2, Cxxc5, B2m, Gata3 and Cd247 were upregulated whereas Itk, Socs3, Tigit, Ifng, Il2ra and FoxJ1 were downregulated. Our findings support the existence in mouse of a novel FYN-related T-cell regulation pathway involving the product of an intron-nested gene.
Collapse
Affiliation(s)
- Noureddine Ben Khalaf
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, Arabian Gulf University, Manama, Bahrain
| | - Wedad Al-Mashoor
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, Arabian Gulf University, Manama, Bahrain
| | - Azhar Saeed
- University of Michigan Medical School, MI, USA
| | - Dalal Al-Mehatab
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, Arabian Gulf University, Manama, Bahrain
| | - Safa Taha
- Department of Molecular Medicine, Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
| | - Moiz Bakhiet
- Department of Molecular Medicine, Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Bahrain
| | - M Dahmani Fathallah
- Department of Life Sciences, Health Biotechnology Program, College of Graduates Studies, Arabian Gulf University, Manama, Bahrain.
| |
Collapse
|
7
|
The actin remodeling protein cofilin is crucial for thymic αβ but not γδ T-cell development. PLoS Biol 2018; 16:e2005380. [PMID: 29985916 PMCID: PMC6053251 DOI: 10.1371/journal.pbio.2005380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/19/2018] [Accepted: 06/22/2018] [Indexed: 12/16/2022] Open
Abstract
Cofilin is an essential actin remodeling protein promoting depolymerization and severing of actin filaments. To address the relevance of cofilin for the development and function of T cells in vivo, we generated knock-in mice in which T-cell-specific nonfunctional (nf) cofilin was expressed instead of wild-type (WT) cofilin. Nf cofilin mice lacked peripheral αβ T cells and showed a severe thymus atrophy. This was caused by an early developmental arrest of thymocytes at the double negative (DN) stage. Importantly, even though DN thymocytes expressed the TCRβ chain intracellularly, they completely lacked TCRβ surface expression. In contrast, nf cofilin mice possessed normal numbers of γδ T cells. Their functionality was confirmed in the γδ T-cell-driven, imiquimod (IMQ)-induced, psoriasis-like murine model. Overall, this study not only highlights the importance of cofilin for early αβ T-cell development but also shows for the first time that an actin-binding protein is differentially involved in αβ versus γδ T-cell development.
Collapse
|
8
|
Liu F, Zhao Y, Gong C, Xu T, Zhang Y, Mei J, Lu J, Feng X, Rong Y, Wu Y. Identification of Methylated Gene Markers in Childhood Atopic Asthma by Integrating Gene Expression and Methylation Profiles Based on Bioinformatic Analysis. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2018. [DOI: 10.1089/ped.2017.0793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Fang Liu
- Department of Pediatrics, Shanghai East Hospital affiliated to Tongji University, Shanghai, China
| | - YuHua Zhao
- Department of Pediatrics, Shanghai East Hospital affiliated to Tongji University, Shanghai, China
| | - ChunHua Gong
- Department of Pediatrics, Shanghai East Hospital affiliated to Tongji University, Shanghai, China
| | - Tong Xu
- Department of Pediatrics, Changzheng Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - YanBin Zhang
- Department of Pediatrics, Shanghai East Hospital affiliated to Tongji University, Shanghai, China
| | - Jun Mei
- Department of Pediatrics, Shanghai East Hospital affiliated to Tongji University, Shanghai, China
| | - JieMin Lu
- Department of Pediatrics, Shanghai East Hospital affiliated to Tongji University, Shanghai, China
| | - XiaoYan Feng
- Department of Pediatrics, Shanghai East Hospital affiliated to Tongji University, Shanghai, China
| | - YanMing Rong
- Department of Pediatrics, Shanghai East Hospital affiliated to Tongji University, Shanghai, China
| | - YaHui Wu
- Department of Pediatrics, Shanghai East Hospital affiliated to Tongji University, Shanghai, China
| |
Collapse
|
9
|
Wiemer DF, Wiemer AJ. Opportunities and challenges in development of phosphoantigens as Vγ9Vδ2 T cell agonists. Biochem Pharmacol 2014; 89:301-12. [DOI: 10.1016/j.bcp.2014.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 01/29/2023]
|
10
|
Dopfer E, Hartl F, Oberg HH, Siegers G, Yousefi OS, Kock S, Fiala G, Garcillán B, Sandstrom A, Alarcón B, Regueiro J, Kabelitz D, Adams E, Minguet S, Wesch D, Fisch P, Schamel W. The CD3 Conformational Change in the γδ T Cell Receptor Is Not Triggered by Antigens but Can Be Enforced to Enhance Tumor Killing. Cell Rep 2014; 7:1704-1715. [DOI: 10.1016/j.celrep.2014.04.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 03/15/2014] [Accepted: 04/23/2014] [Indexed: 12/24/2022] Open
|
11
|
Laird RM, Wolf BJ, Princiotta MF, Hayes SM. γδ T cells acquire effector fates in the thymus and differentiate into cytokine-producing effectors in a Listeria model of infection independently of CD28 costimulation. PLoS One 2013; 8:e63178. [PMID: 23671671 PMCID: PMC3650071 DOI: 10.1371/journal.pone.0063178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/30/2013] [Indexed: 11/18/2022] Open
Abstract
Both antigen recognition and CD28 costimulation are required for the activation of naïve αβ T cells and their subsequent differentiation into cytokine-producing or cytotoxic effectors. Notably, this two-signal paradigm holds true for all αβ T cell subsets, regardless of whether they acquire their effector function in the periphery or the thymus. Because of contradictory results, however, it remains unresolved as to whether CD28 costimulation is necessary for γδ T cell activation and differentiation. Given that γδ T cells have been recently shown to acquire their effector fates in the thymus, it is conceivable that the contradictory results may be explained, in part, by a differential requirement for CD28 costimulation in the development or differentiation of each γδ T cell effector subset. To test this, we examined the role of CD28 in γδ T cell effector fate determination and function. We report that, although IFNγ-producing γδ T (γδ-IFNγ) cells express higher levels of CD28 than IL-17-producing γδ T (γδ-17) cells, CD28-deficiency had no effect on the thymic development of either subset. Also, following Listeria infection, we found that the expansion and differentiation of γδ-17 and γδ-IFNγ effectors were comparable between CD28+/+ and CD28−/− mice. To understand why CD28 costimulation is dispensable for γδ T cell activation and differentiation, we assessed glucose uptake and utilization by γδ T cells, as CD28 costimulation is known to promote glycolysis in αβ T cells. Importantly, we found that γδ T cells express higher surface levels of glucose transporters than αβ T cells and, when activated, exhibit effector functions over a broader range of glucose concentrations than activated αβ T cells. Together, these data not only demonstrate an enhanced glucose metabolism in γδ T cells but also provide an explanation for why γδ T cells are less dependent on CD28 costimulation than αβ T cells.
Collapse
MESH Headings
- Animals
- CD28 Antigens/genetics
- CD28 Antigens/immunology
- CD28 Antigens/metabolism
- Cell Differentiation/immunology
- Cell Proliferation
- Cells, Cultured
- Cytokines/immunology
- Cytokines/metabolism
- Flow Cytometry
- Glucose/immunology
- Glucose/metabolism
- Host-Pathogen Interactions/immunology
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Listeria monocytogenes/immunology
- Listeria monocytogenes/physiology
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/microbiology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Renee M. Laird
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Benjamin J. Wolf
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Michael F. Princiotta
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Sandra M. Hayes
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Abstract
T cells employ a cell surface heterodimeric molecule, the T cell receptor (TCR), to recognize specific antigens (Ags) presented by major histocompatibility complex (MHC) molecules and carry out adaptive immune responses. Most T cells possess a TCR with an α and a β chain. However, a TCR constituted by a γ and a δ chain has been described, defining a novel subset of T cells. γδ TCRs specific for a wide variety of ligands, including bacterial phosphoantigens, nonclassical MHC-I molecules and unprocessed proteins, have been found, greatly expanding the horizons of T cell immune recognition. This review aims to provide background in γδ T cell history and function in mouse and man, as well as to provide a critical view of some of the latest developments on this still enigmatic class of immune cells.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Molecular and Cellular Biology and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
13
|
Samuelson EM, Laird RM, Maue AC, Rochford R, Hayes SM. Blk haploinsufficiency impairs the development, but enhances the functional responses, of MZ B cells. Immunol Cell Biol 2011; 90:620-9. [PMID: 21894171 DOI: 10.1038/icb.2011.76] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Blk was identified two decades ago as a B-cell-specific member of the Src family of tyrosine kinases. Recent studies, however, have discovered that Blk is expressed in many cell types outside of the B lineage, including early thymic precursors, interleukin-17-producing γδ T cells and pancreatic β-cells. In light of these recent discoveries, we performed a more comprehensive analysis of Blk expression patterns in hematopoietic cells and found that Blk is differentially expressed in mature B-cell subsets, with marginal zone (MZ) B cells expressing high levels, B1 B cells expressing intermediate-to-high levels and follicular (FO) B cells expressing low levels of Blk. To determine whether these differences in Blk expression levels reflected differential requirements for Blk in MZ, B1 and FO B-cell development, we analyzed the effects of reducing and eliminating Blk expression on B-cell development. We report that both Blk haploinsufficiency and Blk deficiency impaired the generation of MZ B cells. Moreover, although there were fewer MZ B cells in Blk(+/-) and Blk(-/-) mice as compared with Blk(+/+) mice, Blk-mutant MZ B cells were hyper-responsive to B-cell receptor stimulation, both in vitro and in vivo. Thus, this study has revealed a previously unappreciated role for Blk in the development and activation of MZ B cells.
Collapse
Affiliation(s)
- Elizabeth M Samuelson
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
14
|
Laird RM, Laky K, Hayes SM. Unexpected role for the B cell-specific Src family kinase B lymphoid kinase in the development of IL-17-producing γδ T cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:6518-27. [PMID: 20974990 DOI: 10.4049/jimmunol.1002766] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Ag receptors on αβ and γδ T cells differ not only in the nature of the ligands that they recognize but also in their signaling potential. We hypothesized that the differences in αβ- and γδTCR signal transduction were due to differences in the intracellular signaling pathways coupled to these two TCRs. To investigate this, we used transcriptional profiling to identify genes encoding signaling molecules that are differentially expressed in mature αβ and γδ T cell populations. Unexpectedly, we found that B lymphoid kinase (Blk), a Src family kinase expressed primarily in B cells, is expressed in γδ T cells but not in αβ T cells. Analysis of Blk-deficient mice revealed that Blk is required for the development of IL-17-producing γδ T cells. Furthermore, Blk is expressed in lymphoid precursors and, in this capacity, plays a role in regulating thymus cellularity during ontogeny.
Collapse
Affiliation(s)
- Renee M Laird
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | |
Collapse
|
15
|
Hayes SM, Laird RM, Love PE. Beyond alphabeta/gammadelta lineage commitment: TCR signal strength regulates gammadelta T cell maturation and effector fate. Semin Immunol 2010; 22:247-51. [PMID: 20452783 PMCID: PMC3129014 DOI: 10.1016/j.smim.2010.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 04/02/2010] [Accepted: 04/14/2010] [Indexed: 12/25/2022]
Abstract
Signaling by the gammadelta T cell receptor (TCR) is required not only for alphabeta/gammadelta lineage commitment but also to activate and elicit effector functions in mature gammadelta T cells. Notably, at both of these stages, the signal delivered by the gammadeltaTCR is more robust than the one delivered by either the preTCR or the alphabetaTCR. Recent studies now provide evidence that signaling by the gammadeltaTCR is also required at other stages during gammadelta T cell development. Remarkably, the strength of the gammadeltaTCR signal also plays a role at these other stages, as evidenced by the findings that genetic manipulation of gammadeltaTCR signal strength affects gammadelta T cell maturation and effector fate. In this review, we discuss how a strong TCR signal is a recurring theme in gammadelta T cell development and activation.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Lineage
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Signal Transduction
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Sandra M Hayes
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | |
Collapse
|