1
|
Radenković L, Karanović J, Pantović-Stefanović M, Lazić D, Brajušković G, Ivković M, Pešović J, Savić-Pavićević D. Dynamic Model of Serotonin Presynapse and Its Application to Suicide Attempt in Patients with Bipolar Disorder. Int J Mol Sci 2025; 26:4085. [PMID: 40362322 PMCID: PMC12072092 DOI: 10.3390/ijms26094085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/21/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Suicide attempts are prevalent among patients with bipolar disorder (BD). Impaired serotonin (5-HT) system in the pathogenesis of suicide attempt is partially heritable. To quantify the combined effects of multiple genetic variants, we developed a dynamic model of the 5-HT presynapse with functionally integrated individual genetic variants. The model includes five genetic variants in 5-HT system genes (TPH2, SLC6A4, MAOA) and quantitatively assesses their influence on 5-HT synthesis, reuptake, and degradation. The model was validated on 140 unaffected individuals and tested on 101 BD patients. Predicted mean concentrations of 5-HT, 5-HT precursor, and degradation product were compared between BD patients with and without a history of attempted suicide, and unaffected individuals. The model consists of eight differential equations that describe the temporal concentration change of model outputs. Calculated concentrations in unaffected control individuals aligned with published experimentally measured values, validating our model. BD patients with a history of suicide attempt showed lower calculated concentrations of 5-HT degradation product 5-hydroxy-3-indolacetic acid (5-HIAA) compared to unaffected individuals (p = 0.044). Additionally, higher calculated concentrations of free cellular 5-HT (p = 0.048) and stored 5-HT (p = 0.047), with the effect size d = 0.35, were observed when comparing suicide attempters to non-attempters.. Our approach illuminated a complex interplay of genetic variants in 5-HT system genes that contributes to the risk of suicide attempt, with quantitative and personalized outputs unattainable through genetic association studies.
Collapse
Affiliation(s)
- Lana Radenković
- University of Belgrade-Faculty of Biology, Centre for Human Molecular Genetics, Studentski trg 16, 11000 Belgrade, Serbia; (L.R.); (D.L.); (G.B.); (J.P.)
| | - Jelena Karanović
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444A, 11042 Belgrade, Serbia;
| | - Maja Pantović-Stefanović
- Clinic for Psychiatry, University Clinical Centre of Serbia, Pasterova 2, 11000 Belgrade, Serbia; (M.P.-S.); (M.I.)
- University of Belgrade-Faculty of Medicine, Doktora Subotića 8, 11000 Belgrade, Serbia
| | - Dušan Lazić
- University of Belgrade-Faculty of Biology, Centre for Human Molecular Genetics, Studentski trg 16, 11000 Belgrade, Serbia; (L.R.); (D.L.); (G.B.); (J.P.)
| | - Goran Brajušković
- University of Belgrade-Faculty of Biology, Centre for Human Molecular Genetics, Studentski trg 16, 11000 Belgrade, Serbia; (L.R.); (D.L.); (G.B.); (J.P.)
| | - Maja Ivković
- Clinic for Psychiatry, University Clinical Centre of Serbia, Pasterova 2, 11000 Belgrade, Serbia; (M.P.-S.); (M.I.)
- University of Belgrade-Faculty of Medicine, Doktora Subotića 8, 11000 Belgrade, Serbia
| | - Jovan Pešović
- University of Belgrade-Faculty of Biology, Centre for Human Molecular Genetics, Studentski trg 16, 11000 Belgrade, Serbia; (L.R.); (D.L.); (G.B.); (J.P.)
| | - Dušanka Savić-Pavićević
- University of Belgrade-Faculty of Biology, Centre for Human Molecular Genetics, Studentski trg 16, 11000 Belgrade, Serbia; (L.R.); (D.L.); (G.B.); (J.P.)
| |
Collapse
|
2
|
Wang M, Xiang H, Wei J, Dou Y, Yan Y, Du Y, Fan H, Zhao L, Ni R, Yang X, Ma X. Identification of blood transcriptome modules associated with suicidal ideation in patients with major depressive disorder. Sci Rep 2025; 15:1067. [PMID: 39774242 PMCID: PMC11706936 DOI: 10.1038/s41598-025-85431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
The risk of suicide in patients with major depressive disorder (MDD) poses a major concern, with studies suggesting that genetics may be a contributing factor. Although there are many transcriptomic studies on postmortem brain tissue related to suicidal behavior, the blood transcriptional mechanisms of suicidal ideation (SI) remain unknown. This study utilized a weighted gene coexpression network analysis (WGCNA) approach to investigate the associations between gene coexpression modules and SI in individuals with MDD using peripheral blood RNA-seq data from 75 MDD patients with SI (MDD_SI), 82 MDD patients without SI (MDD_nSI), and 149 healthy controls (HC). An ANCOVA was conducted to assess differences in gene coexpression modules among groups, with age and sex included as covariates. The gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases were used to annotate module functions. Results indicated that the magenta module (associated with RNA splicing processes) differentiated MDD_SI from MDD_nSI (p = 0.021), while the green module (related to immune and inflammatory responses) distinguished MDD_SI from HC (p = 0.004). Additionally, three modules showed differences between MDD_nSI and HC: magenta (p = 0.009), brown (related to innate immunity and mitochondrial metabolism; p = 0.001), and turquoise (associated with energy metabolism and neurodegeneration; p = 0.005). Our findings highlight that gene expression regulation, immune response, and inflammation may be linked to SI in patients with MDD, while pathways associated with innate immunity, energy metabolism, mitochondrial function, and neurodegeneration appear to be more broadly related to MDD.
Collapse
Affiliation(s)
- Min Wang
- Mental Health Center, Institute of Psychiatry, West China Hospital, Sichuan University, No.28 South Dianxin Street, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Hailin Xiang
- Mental Health Center, Institute of Psychiatry, West China Hospital, Sichuan University, No.28 South Dianxin Street, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Jinxue Wei
- Mental Health Center, Institute of Psychiatry, West China Hospital, Sichuan University, No.28 South Dianxin Street, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Yikai Dou
- Mental Health Center, Institute of Psychiatry, West China Hospital, Sichuan University, No.28 South Dianxin Street, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Yushun Yan
- Mental Health Center, Institute of Psychiatry, West China Hospital, Sichuan University, No.28 South Dianxin Street, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Yue Du
- Mental Health Center, Institute of Psychiatry, West China Hospital, Sichuan University, No.28 South Dianxin Street, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Huanhuan Fan
- Mental Health Center, Institute of Psychiatry, West China Hospital, Sichuan University, No.28 South Dianxin Street, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center, Institute of Psychiatry, West China Hospital, Sichuan University, No.28 South Dianxin Street, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Rongjun Ni
- Mental Health Center, Institute of Psychiatry, West China Hospital, Sichuan University, No.28 South Dianxin Street, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Xiao Yang
- Mental Health Center, Institute of Psychiatry, West China Hospital, Sichuan University, No.28 South Dianxin Street, Wuhou District, Chengdu, 610041, Sichuan, China.
| | - Xiaohong Ma
- Mental Health Center, Institute of Psychiatry, West China Hospital, Sichuan University, No.28 South Dianxin Street, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Li Z, Luo L, Ju X, Huang S, Lei L, Yu Y, Liu J, Zhang P, Chi T, Ma P, Huang C, Huang X, Ding Q, Zhang Y. Viral N protein hijacks deaminase-containing RNA granules to enhance SARS-CoV-2 mutagenesis. EMBO J 2024; 43:6444-6468. [PMID: 39567830 PMCID: PMC11649915 DOI: 10.1038/s44318-024-00314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Host cell-encoded deaminases act as antiviral restriction factors to impair viral replication and production through introducing mutations in the viral genome. We sought to understand whether deaminases are involved in SARS-CoV-2 mutation and replication, and how the viral factors interact with deaminases to trigger these processes. Here, we show that APOBEC and ADAR deaminases act as the driving forces for SARS-CoV-2 mutagenesis, thereby blocking viral infection and production. Mechanistically, SARS-CoV-2 nucleocapsid (N) protein, which is responsible for packaging viral genomic RNA, interacts with host deaminases and co-localizes with them at stress granules to facilitate viral RNA mutagenesis. N proteins from several coronaviruses interact with host deaminases at RNA granules in a manner dependent on its F17 residue, suggesting a conserved role in modulation of viral mutagenesis in other coronaviruses. Furthermore, mutant N protein bearing a F17A substitution cannot localize to deaminase-containing RNA granules and leads to reduced mutagenesis of viral RNA, providing support for its function in enhancing deaminase-dependent viral RNA editing. Our study thus provides further insight into virus-host cell interactions mediating SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Zhean Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiaohui Ju
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Shisheng Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Liqun Lei
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanying Yu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Pumin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian Chi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xingxu Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.
| | - Yu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.
| |
Collapse
|
4
|
Bruzzone SEP, Ozenne B, Fisher PM, Ortega G, Jensen PS, Dam VH, Svarer C, Knudsen GM, Lesch KP, Frokjaer VG. No association between peripheral serotonin-gene-related DNA methylation and brain serotonin neurotransmission in the healthy and depressed state. Clin Epigenetics 2024; 16:71. [PMID: 38802956 PMCID: PMC11131311 DOI: 10.1186/s13148-024-01678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Methylation of serotonin-related genes has been proposed as a plausible gene-by-environment link which may mediate environmental stress, depressive and anxiety symptoms. DNA methylation is often measured in blood cells, but little is known about the association between this peripheral epigenetic modification and brain serotonergic architecture. Here, we evaluated the association between whole-blood-derived methylation of four CpG sites in the serotonin transporter (SLC6A4) and six CpG sites of the tryptophan hydroxylase 2 (TPH2) gene and in-vivo brain levels of serotonin transporter (5-HTT) and serotonin 4 receptor (5-HT4) in a cohort of healthy individuals (N = 254) and, for 5-HT4, in a cohort of unmedicated patients with depression (N = 90). To do so, we quantified SLC6A4/TPH2 methylation using bisulfite pyrosequencing and estimated brain 5-HT4 and 5-HTT levels using positron emission tomography. In addition, we explored the association between SLC6A4 and TPH2 methylation and measures of early life and recent stress, depressive and anxiety symptoms on 297 healthy individuals. RESULTS We found no statistically significant association between peripheral DNA methylation and brain markers of serotonergic neurotransmission in patients with depression or in healthy individuals. In addition, although SLC6A4 CpG2 (chr17:30,236,083) methylation was marginally associated with the parental bonding inventory overprotection score in the healthy cohort, statistical significance did not remain after accounting for blood cell heterogeneity. CONCLUSIONS We suggest that findings on peripheral DNA methylation in the context of brain serotonin-related features should be interpreted with caution. More studies are needed to rule out a role of SLC6A4 and TPH2 methylation as biomarkers for environmental stress, depressive or anxiety symptoms.
Collapse
Affiliation(s)
- S E P Bruzzone
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B Ozenne
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - P M Fisher
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - G Ortega
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - P S Jensen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - V H Dam
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - C Svarer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - G M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - K P Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - V G Frokjaer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Psychiatric Centre Copenhagen, Mental Health Services, Frederiksberg, Capital Region of Denmark, Denmark.
| |
Collapse
|
5
|
Pereira CA, Reis-de-Oliveira G, Pierone BC, Martins-de-Souza D, Kaster MP. Depicting the molecular features of suicidal behavior: a review from an "omics" perspective. Psychiatry Res 2024; 332:115682. [PMID: 38198856 DOI: 10.1016/j.psychres.2023.115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Background Suicide is one of the leading global causes of death. Behavior patterns from suicide ideation to completion are complex, involving multiple risk factors. Advances in technologies and large-scale bioinformatic tools are changing how we approach biomedical problems. The "omics" field may provide new knowledge about suicidal behavior to improve identification of relevant biological pathways associated with suicidal behavior. Methods We reviewed transcriptomic, proteomic, and metabolomic studies conducted in blood and post-mortem brains from individuals who experienced suicide or suicidal behavior. Omics data were combined using systems biology in silico, aiming at identifying major biological mechanisms and key molecules associated with suicide. Results Post-mortem samples of suicide completers indicate major dysregulations in pathways associated with glial cells (astrocytes and microglia), neurotransmission (GABAergic and glutamatergic systems), neuroplasticity and cell survivor, immune responses and energy homeostasis. In the periphery, studies found alterations in molecules involved in immune responses, polyamines, lipid transport, energy homeostasis, and amino and nucleic acid metabolism. Limitations We included only exploratory, non-hypothesis-driven studies; most studies only included one brain region and whole tissue analysis, and focused on suicide completers who were white males with almost none confounding factors. Conclusions We can highlight the importance of synaptic function, especially the balance between the inhibitory and excitatory synapses, and mechanisms associated with neuroplasticity, common pathways associated with psychiatric disorders. However, some of the pathways highlighted in this review, such as transcriptional factors associated with RNA splicing, formation of cortical connections, and gliogenesis, point to mechanisms that still need to be explored.
Collapse
Affiliation(s)
- Caibe Alves Pereira
- Laboratory of Translational Neurosciences, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Bruna Caroline Pierone
- Laboratory of Translational Neurosciences, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil; Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico E Tecnológico, São Paulo, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil; D'Or Institute for Research and Education (IDOR), São Paulo, Brazil; INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil.
| | - Manuella Pinto Kaster
- Laboratory of Translational Neurosciences, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.
| |
Collapse
|
6
|
GWAK SEUNGHEE, LEE JUHYUN, OH EUNJI, LEE DOHYUN, HAN WONSHIK, KIM JONGMIN, KIM KYONGTAI. Vaccinia-related kinase 2 variants differentially affect breast cancer growth by regulating kinase activity. Oncol Res 2023; 32:421-432. [PMID: 38186576 PMCID: PMC10765118 DOI: 10.32604/or.2023.031031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/03/2023] [Indexed: 01/09/2024] Open
Abstract
Genetic information is transcribed from genomic DNA to mRNA, which is then translated into three-dimensional proteins. mRNAs can undergo various post-transcriptional modifications, including RNA editing that alters mRNA sequences, ultimately affecting protein function. In this study, RNA editing was identified at the 499th base (c.499) of human vaccinia-related kinase 2 (VRK2). This RNA editing changes the amino acid in the catalytic domain of VRK2 from isoleucine (with adenine base) to valine (with guanine base). Isoleucine-containing VRK2 has higher kinase activity than the valine-containing VRK2, which leads to an increase in tumor cell proliferation. Earlier we reported that VRK2 directly interacts with dystrobrevin-binding protein (dysbindin) and results in reducing its stability. Herein, we demonstrate that isoleucine-containing VRK2 decreases the level of dysbindin than valine-containing VRK2. Dysbindin interacts with cyclin D and thereby regulates its expression and function. The reduction in the level of dysbindin by isoleucine-containing VRK2 further enhances the cyclin D expression, resulting in increased tumor growth and reduction in survival rates. It has also been observed that in patient samples, VRK2 level was elevated in breast cancer tissue compared to normal breast tissue. Additionally, the isoleucine form of VRK2 exhibited a greater increase in breast cancer tissue. Therefore, it is concluded that VRK2, especially dependent on the 167th variant amino acid, can be one of the indexes of tumor progression and proliferation.
Collapse
Affiliation(s)
- SEUNG-HEE GWAK
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - JUHYUN LEE
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - EUNJI OH
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - DOHYUN LEE
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- R&D Center, NovMetaPharma Co., Ltd., Pohang, 37668, Korea
| | - WONSHIK HAN
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - JONGMIN KIM
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - KYONG-TAI KIM
- Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, 37554, Korea
| |
Collapse
|
7
|
Konjevod M, Rešetar M, Matošić A, Čičin-Šain L, Štefulj J. Association of Functional Polymorphism in TPH2 Gene with Alcohol Dependence and Personality Traits: Study in Cloninger's Type I and Type II Alcohol-Dependent Inpatients. Genes (Basel) 2023; 14:413. [PMID: 36833340 PMCID: PMC9956211 DOI: 10.3390/genes14020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
Alcohol dependence (AD) is a complex disorder with a poorly understood etiology. In this study, we investigated the relationship between genetic variation in the TPH2 gene, which encodes the enzyme responsible for serotonin synthesis in the brain, and both AD and personality traits, with attention to Cloninger's types of AD. The study included 373 healthy control subjects, 206 inpatients with type I AD, and 110 inpatients with type II AD. All subjects were genotyped for the functional polymorphism rs4290270 in the TPH2 gene, and AD patients completed the Tridimensional Personality Questionnaire (TPQ). The AA genotype and the A allele of the rs4290270 polymorphism were more frequent in both patient groups compared with the control group. In addition, a negative association was found between the number of A alleles and TPQ scores for harm avoidance in patients with type II, but not type I, AD. These results support the involvement of genetic variations of the serotonergic system in the pathogenesis of AD, especially type II AD. They also suggest that in a subset of patients, genetic variation of TPH2 could potentially influence the development of AD by affecting the personality trait of harm avoidance.
Collapse
Affiliation(s)
- Marcela Konjevod
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Mirta Rešetar
- Division of Pharmacognosy, University of Vienna, AT-1090 Vienna, Austria
| | - Ana Matošić
- Clinical Department of Psychiatry, Sestre Milosrdnice University Hospital Center, HR-10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Lipa Čičin-Šain
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Jasminka Štefulj
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
- Department of Psychology, Catholic University of Croatia, HR-10000 Zagreb, Croatia
| |
Collapse
|
8
|
Glutamine increases stability of TPH1 mRNA via p38 mitogen-activated kinase in mouse mastocytoma cells. Mol Biol Rep 2023; 50:267-277. [PMID: 36331742 PMCID: PMC9884262 DOI: 10.1007/s11033-022-07693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
Expression changes for tryptophan hydroxylase 1 (TPH1), the rate-limiting enzyme in serotonin synthesis, by environmental glutamine (GLN) were examined in mouse mastocytoma-derived P815-HTR cells. GLN-treated cells exhibited a robust increase in TPH1 mRNA after a 6 h exposure to GLN. 6-Diazo-5-oxo-L-norleucine (DON), a glutamine-utilizing glutaminase inhibitor, significantly inhibited the GLN-induction of TPH1 mRNA. Nuclear run-on assays and mRNA decay experiments demonstrated that the primary mechanism leading to increased TPH1 mRNA levels was not due to transcriptional changes, but rather due to increased TPH1 RNA stability induced by GLN. Treatment with GLN also led to activation of p38 MAP kinase, but not p42/44 MAPK. In addition, SB203580, a p38 MAP kinase specific inhibitor, completely abolished the GLN-mediated increase of TPH1 mRNA levels, suggesting the pathway stabilizing TPH1 mRNA might be mediated by the activated p38 MAP kinase pathway. Additionally, SB203580 significantly reduced the stability of TPH1 mRNA, and this reduction of the stability was not affected by GLN in the culture medium, implying a sequential signaling from GLN being mediated by p38 MAP kinase, resulting in alteration of TPH1 mRNA stability. TPH1 mRNA stability loss was also dependent on de novo protein synthesis as shown by treatment of cells with a transcriptional/translational blocker. We provide evidence that TPH1 mRNA levels are increased in response to increased exogenous GLN in mouse mastocytoma cells via a stabilization of TPH1 mRNA due to the activity of the p38 MAP kinase.
Collapse
|
9
|
Perić M, Bečeheli I, Čičin-Šain L, Desoye G, Štefulj J. Serotonin system in the human placenta - the knowns and unknowns. Front Endocrinol (Lausanne) 2022; 13:1061317. [PMID: 36531448 PMCID: PMC9751904 DOI: 10.3389/fendo.2022.1061317] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
The biogenic monoamine serotonin (5-hydroxytryptamine, 5-HT) is a chemical messenger widely distributed in the brain and various other organs. Its homeostasis is maintained by the coordinated activity of a variety of proteins, including enzymes of serotonin metabolism, transmembrane transporters of serotonin, and serotonin receptors. The serotonin system has been identified also in the placenta in rodent models as a key component of placental physiology. However, serotonin pathways in the human placenta are far from well understood. Their alterations may have long-lasting consequences for the fetus that can manifest later in life. In this review, we summarize information on the location of the components of the serotonin system in the human placenta, their regulation, function, and alterations in pathological pregnancies. We highlight current controversies and discuss important topics for future research.
Collapse
Affiliation(s)
- Maja Perić
- Laboratory of Neurochemistry and Molecular Neurobiology, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivona Bečeheli
- Laboratory of Neurochemistry and Molecular Neurobiology, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Lipa Čičin-Šain
- Laboratory of Neurochemistry and Molecular Neurobiology, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Jasminka Štefulj
- Laboratory of Neurochemistry and Molecular Neurobiology, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
10
|
C-to-U RNA Editing: A Site Directed RNA Editing Tool for Restoration of Genetic Code. Genes (Basel) 2022; 13:genes13091636. [PMID: 36140804 PMCID: PMC9498875 DOI: 10.3390/genes13091636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
The restoration of genetic code by editing mutated genes is a potential method for the treatment of genetic diseases/disorders. Genetic disorders are caused by the point mutations of thymine (T) to cytidine (C) or guanosine (G) to adenine (A), for which gene editing (editing of mutated genes) is a promising therapeutic technique. In C-to-Uridine (U) RNA editing, it converts the base C-to-U in RNA molecules and leads to nonsynonymous changes when occurring in coding regions; however, for G-to-A mutations, A-to-I editing occurs. Editing of C-to-U is not as physiologically common as that of A-to-I editing. Although hundreds to thousands of coding sites have been found to be C-to-U edited or editable in humans, the biological significance of this phenomenon remains elusive. In this review, we have tried to provide detailed information on physiological and artificial approaches for C-to-U RNA editing.
Collapse
|
11
|
Soleymanjahi S, Blanc V, Davidson N. APOBEC1 mediated C-to-U RNA editing: target sequence and trans-acting factor contribution to 177 RNA editing events in 119 murine transcripts in-vivo. RNA (NEW YORK, N.Y.) 2021; 27:rna.078678.121. [PMID: 34083494 PMCID: PMC8284327 DOI: 10.1261/rna.078678.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/31/2021] [Indexed: 05/04/2023]
Abstract
Mammalian C-to-U RNA editing was described more than 30 years ago as a single nucleotide modification in small intestinal Apob RNA, later shown to be mediated by the RNA-specific cytidine deaminase APOBEC1. Reports of other examples of C-to-U RNA editing, coupled with the advent of genome-wide transcriptome sequencing, identified an expanded range of APOBEC1 targets. Here we analyze the cis-acting regulatory components of verified murine C-to-U RNA editing targets, including nearest neighbor as well as flanking sequence requirements and folding predictions. RNA secondary structure of the editing cassette was associated with editing frequency and exhibited minimal free energy values comparable to small nuclear RNAs. We summarize findings demonstrating the relative importance of trans-acting factors (A1CF, RBM47) acting in concert with APOBEC1. Co-factor dominance was associated with editing frequency, with RNAs targeted by both RBM47 and A1CF edited at a lower frequency than RBM47 dominant targets. Using this information, we developed a multivariable linear regression model to predict APOBEC1 dependent C-to-U RNA editing efficiency, incorporating factors independently associated with editing frequencies based on 103 Sanger-confirmed editing sites, which accounted for 84% of the observed variance. This model also predicted a composite score for available human C-to-U RNA targets, which again correlated with editing frequency.
Collapse
|
12
|
Tao J, Ren CY, Wei ZY, Zhang F, Xu J, Chen JH. Transcriptome-Wide Identification of G-to-A RNA Editing in Chronic Social Defeat Stress Mouse Models. Front Genet 2021; 12:680548. [PMID: 34093668 PMCID: PMC8173075 DOI: 10.3389/fgene.2021.680548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence suggests that RNA editing is associated with stress, neurological diseases, and psychiatric disorders. However, the role of G-to-A RNA editing in chronic social defeat stress (CSDS) remains unclear. We herein identified G-to-A RNA editing and its changes in the ventral tegmental area (VTA), a key region of the brain reward system, in CSDS mouse models under emotional stress (ES) and physiological stress (PS) conditions. Our results revealed 3812 high-confidence G-to-A editing events. Among them, 56 events were significantly downregulated while 23 significantly upregulated in CSDS compared to controls. Moreover, divergent editing patterns were observed between CSDS mice under ES and PS conditions, with 42 and 21 events significantly upregulated in PS and ES, respectively. Interestingly, differential RNA editing was enriched in genes with multiple editing events. Genes differentially edited in CSDS included those genetically associated with mental or neurodevelopmental disorders, especially mood disorders, such as FAT atypical cadherin 1 and solute carrier family 6 member 1. Notably, changes of G-to-A RNA editing were also implicated in ionotropic glutamate receptors, a group of well-known targets of adenosine-to-inosine RNA editing. Such results demonstrate dynamic G-to-A RNA editing changes in the brain of CSDS mouse models, underlining its role as a potential molecular mechanism of CSDS and stress-related diseases.
Collapse
Affiliation(s)
- Ji Tao
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China.,Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chun-Yan Ren
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China.,Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China.,Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jinyu Xu
- Department of Emergency Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China.,Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
13
|
Destefanis E, Avşar G, Groza P, Romitelli A, Torrini S, Pir P, Conticello SG, Aguilo F, Dassi E. A mark of disease: how mRNA modifications shape genetic and acquired pathologies. RNA (NEW YORK, N.Y.) 2021; 27:367-389. [PMID: 33376192 PMCID: PMC7962492 DOI: 10.1261/rna.077271.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RNA modifications have recently emerged as a widespread and complex facet of gene expression regulation. Counting more than 170 distinct chemical modifications with far-reaching implications for RNA fate, they are collectively referred to as the epitranscriptome. These modifications can occur in all RNA species, including messenger RNAs (mRNAs) and noncoding RNAs (ncRNAs). In mRNAs the deposition, removal, and recognition of chemical marks by writers, erasers and readers influence their structure, localization, stability, and translation. In turn, this modulates key molecular and cellular processes such as RNA metabolism, cell cycle, apoptosis, and others. Unsurprisingly, given their relevance for cellular and organismal functions, alterations of epitranscriptomic marks have been observed in a broad range of human diseases, including cancer, neurological and metabolic disorders. Here, we will review the major types of mRNA modifications and editing processes in conjunction with the enzymes involved in their metabolism and describe their impact on human diseases. We present the current knowledge in an updated catalog. We will also discuss the emerging evidence on the crosstalk of epitranscriptomic marks and what this interplay could imply for the dynamics of mRNA modifications. Understanding how this complex regulatory layer can affect the course of human pathologies will ultimately lead to its exploitation toward novel epitranscriptomic therapeutic strategies.
Collapse
Affiliation(s)
- Eliana Destefanis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- The EPITRAN COST Action Consortium, COST Action CA16120
| | - Gülben Avşar
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Bioengineering, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Paula Groza
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Antonia Romitelli
- The EPITRAN COST Action Consortium, COST Action CA16120
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, 50139 Firenze, Italy
- Department of Medical Biotechnologies, Università di Siena, 53100 Siena, Italy
| | - Serena Torrini
- The EPITRAN COST Action Consortium, COST Action CA16120
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, 50139 Firenze, Italy
- Department of Medical Biotechnologies, Università di Siena, 53100 Siena, Italy
| | - Pınar Pir
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Bioengineering, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Silvestro G Conticello
- The EPITRAN COST Action Consortium, COST Action CA16120
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, 50139 Firenze, Italy
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Francesca Aguilo
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Erik Dassi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- The EPITRAN COST Action Consortium, COST Action CA16120
| |
Collapse
|
14
|
Serotonin deficiency induced after brain maturation rescues consequences of early life adversity. Sci Rep 2021; 11:5368. [PMID: 33686115 PMCID: PMC7940624 DOI: 10.1038/s41598-021-83592-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Brain serotonin (5-HT) system dysfunction is implicated in depressive disorders and acute depletion of 5-HT precursor tryptophan has frequently been used to model the influence of 5-HT deficiency on emotion regulation. Tamoxifen (TAM)-induced Cre/loxP-mediated inactivation of the tryptophan hydroxylase-2 gene (Tph2) was used to investigate the effects of provoked 5-HT deficiency in adult mice (Tph2 icKO) previously subjected to maternal separation (MS). The efficiency of Tph2 inactivation was validated by immunohistochemistry and HPLC. The impact of Tph2 icKO in interaction with MS stress (Tph2 icKO × MS) on physiological parameters, emotional behavior and expression of 5-HT system-related marker genes were assessed. Tph2 icKO mice displayed a significant reduction in 5-HT immunoreactive cells and 5-HT concentrations in the rostral raphe region within four weeks following TAM treatment. Tph2 icKO and MS differentially affected food and water intake, locomotor activity as well as panic-like escape behavior. Tph2 icKO prevented the adverse effects of MS stress and altered the expression of the genes previously linked to stress and emotionality. In conclusion, an experimental model was established to study the behavioral and neurobiological consequences of 5-HT deficiency in adulthood in interaction with early-life adversity potentially affecting brain development and the pathogenesis of depressive disorders.
Collapse
|
15
|
Romero-Reyes J, Molina-Hernández A, Díaz NF, Camacho-Arroyo I. Role of serotonin in vertebrate embryo development. Reprod Biol 2021; 21:100475. [PMID: 33370653 DOI: 10.1016/j.repbio.2020.100475] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 12/22/2022]
Abstract
Since its discovery in 1937, serotonin (5-HT) has become one of the most studied biogenic amines due to its predominant role in regulating several physiological processes such as mood, sleep, and food intake. This amine and the main components of the serotoninergic system are in almost all cells of the body. The presence of 5-HT and the serotoninergic system has been observed in oocytes and in different embryo development stages of fish, amphibians, birds, and mammals. In several classes of vertebrates, the change in the concentration of 5-HT or the alteration of the serotoninergic system, interfere with early embryo development. These data suggest that 5-HT participates in embryo development of vertebrates.
Collapse
Affiliation(s)
- Jessica Romero-Reyes
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. Mexico City, Mexico
| | | | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico.
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. Mexico City, Mexico.
| |
Collapse
|
16
|
Ding L, Maloney SK, Wang M, Rodger J, Chen L, Blache D. Association between temperament related traits and single nucleotide polymorphisms in the serotonin and oxytocin systems in Merino sheep. GENES BRAIN AND BEHAVIOR 2020; 20:e12714. [PMID: 33161622 DOI: 10.1111/gbb.12714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 01/26/2023]
Abstract
Animal temperament is defined as the consistent behavioral and physiological differences that are seen between individuals in response to the same stressor. Neurotransmitter systems, like serotonin and oxytocin in the central nervous system, underlie variation in behavioral traits in humans and other animals. Variations like single nucleotide polymorphisms (SNPs) in the genes for tryptophan 5-hydroxylase (TPH2), the serotonin transporter (SLC6A4), the serotonin receptor (HTR2A), and the oxytocin receptor (OXTR) are associated with behavioral phenotype in humans. Thus, the objective of this study was to identify SNPs in those genes and to test if those variations are associated with the temperament in Merino sheep. Using ewes from the University of Western Australia temperament flock, which has been selected on emotional reactivity for more than 20 generations, eight SNPs (rs107856757, rs107856818, rs107856856 and rs107857156 in TPH2, rs20917091 in SLC6A4, rs17196799 and rs17193181 in HTR2A, and rs17664565 in OXTR) were found to be distributed differently between calm and nervous sheep. These eight SNPs were then genotyped in 260 sheep from a flock that has never been selected on emotional reactivity, followed by the estimation of the behavioral traits of those 260 sheep using an arena test and an isolation box test. We found that several SNPs in TPH2 (rs107856757, rs107856818, rs107856856 and rs107857156) were in strong linkage disequilibrium, and all were associated with behavioral phenotype in the nonselected sheep. Similarly, rs17196799 in HTR2A was also associated with the behavioral phenotype.
Collapse
Affiliation(s)
- Luoyang Ding
- School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shane K Maloney
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Lianmin Chen
- Department of Genetics and Pediatrics, University of Groningen, Groningen, Netherlands
| | - Dominique Blache
- School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
17
|
Rzeszutek I, Singh A. Small RNAs, Big Diseases. Int J Mol Sci 2020; 21:E5699. [PMID: 32784829 PMCID: PMC7460979 DOI: 10.3390/ijms21165699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
The past two decades have seen extensive research done to pinpoint the role of microRNAs (miRNAs) that have led to discovering thousands of miRNAs in humans. It is not, therefore, surprising to see many of them implicated in a number of common as well as rare human diseases. In this review article, we summarize the progress in our understanding of miRNA-related research in conjunction with different types of cancers and neurodegenerative diseases, as well as their potential in generating more reliable diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Iwona Rzeszutek
- Institute of Biology and Biotechnology, Department of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aditi Singh
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| |
Collapse
|
18
|
Meng Y, Xiong T, Zhao R, Liu J, Yu G, Xiao J, Wang K, Wu T, Fu W, Guo H, Huang J, Wei S. Genome-wide association study identifies TPH2 variant as a novel locus for severe CV-A6-associated hand, foot, and mouth disease in Han Chinese. Int J Infect Dis 2020; 98:268-274. [PMID: 32634583 DOI: 10.1016/j.ijid.2020.06.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Little is known about the association between genetic susceptibility and the severity of hand, foot, and mouth disease (HFMD) infected with coxsackievirus A6 (CV-A6). METHODS Three hundred and sixty-four CV-A6 HFMD patients were enrolled, including 115 severe and 249 mild patients. A genome-wide association study (GWAS) was performed involving eight DNA pools of 115 severe and 115 mild CV-A6 HFMD patients pair-matched by age and gender. Differences in relative allele signal scores of SNPs in Illumina Human OmniZhongHua-8 BeadChips were compared between the two groups. The tag SNPS for potentially functional SNPs or their high linked SNPs were selected for individual genotyping in all 364 patients and assessed for their associations with severe CV-A6 HFMD using multivariable logistic regression analyses. RESULTS The top 30 significant SNPs obtained from pooled DNA GWAS analysis were checked for biological functions and their high linkage disequilibrium (LD) SNPs. Four tag SNPs (rs1558206, rs6927647, rs9375728 and rs10879355) were selected for further individual genotyping in 364 CV-A6 patients. Only SNP rs10879355 was associated with severe CV-A6 HFMD, with CC genotype having a greater risk of severe illness than TT+TC genotypes (OR=2.48, 95%CI: 1.34, 4.56). SNP rs4290270 is in complete LD with rs10879355 in Chinese Han children. CONCLUSIONS This is the first report that one potentially functional SNP rs4290270 in the TPH2 gene may be associated with the risk of severe CV-A6 HFMD.
Collapse
Affiliation(s)
- Yu Meng
- Department of Epidemiology and Biostatistics, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tiantian Xiong
- Baoan District Center for Disease Control and Prevention, Shenzhen, China
| | - Rongxian Zhao
- Department of Epidemiology and Biostatistics, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Liu
- People's Hospital of Baoan District, Shenzhen, China
| | - Guangqing Yu
- Baoan District Center for Disease Control and Prevention, Shenzhen, China
| | - Jinrong Xiao
- Department of Epidemiology and Biostatistics, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Wang
- Department of Epidemiology and Biostatistics, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taishun Wu
- Baoan District Center for Disease Control and Prevention, Shenzhen, China
| | - Wenshan Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Huang
- Department of Epidemiology and Biostatistics, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Latorre E, Mesonero JE, Harries LW. Alternative splicing in serotonergic system: Implications in neuropsychiatric disorders. J Psychopharmacol 2019; 33:1352-1363. [PMID: 31210090 DOI: 10.1177/0269881119856546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The serotonergic system is a key component of physiological brain function and is essential for proper neurological activity. Numerous neuropsychiatric disorders are associated with deregulation of the serotonergic system. Accordingly, many pharmacological treatments are focused on modulation of this system. While providing a promising line of therapeutic moderation, these approaches may be complicated due to the presence of alternative splicing events for key genes in this pathway. Alternative splicing is a co-transcriptional process by which different mRNA transcripts can be produced from the same gene. These different isoforms may have diverse activities and functions, and their relative balance is often critical for the maintenance of homeostasis. Alternative splicing greatly increases the production of proteins, augmenting cell plasticity, and provides an important control point for regulation of gene expression. AIM The objective of this narrative review is to discuss the potential impact of alternative splicing of different components of the serotonergic system and speculate on their involvement in several neuropsychiatric disorders. CONCLUSIONS The specific role of each isoform in disease and their relative activities in the signalling pathways involved are yet to be determined. We need to gain a better understanding of the basis of alternative isoforms of the serotonergic system in order to fully understand their impact and be able to develop new effective pharmacological isoform-specific targets.
Collapse
Affiliation(s)
- Eva Latorre
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
- Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), Zaragoza, Spain
| | - Jose Emilio Mesonero
- Instituto Agroalimentario de Aragón - IA2 (Universidad de Zaragoza - CITA), Zaragoza, Spain
- Departamento Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
20
|
Lopdell TJ, Hawkins V, Couldrey C, Tiplady K, Davis SR, Harris BL, Snell RG, Littlejohn MD. Widespread cis-regulation of RNA editing in a large mammal. RNA (NEW YORK, N.Y.) 2019; 25:319-335. [PMID: 30530731 PMCID: PMC6380278 DOI: 10.1261/rna.066902.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Post-transcriptional RNA editing may regulate transcript expression and diversity in cells, with potential impacts on various aspects of physiology and environmental adaptation. A small number of recent genome-wide studies in Drosophila, mouse, and human have shown that RNA editing can be genetically modulated, highlighting loci that quantitatively impact editing of transcripts. The potential gene expression and physiological consequences of these RNA-editing quantitative trait loci (edQTL), however, are almost entirely unknown. Here, we present analyses of RNA editing in a large domestic mammal (Bos taurus), where we use whole-genome and high-depth RNA sequencing to discover, characterize, and conduct genetic mapping studies of novel transcript edits. Using a discovery population of nine deeply sequenced cows, we identify 2413 edit sites in the mammary transcriptome, the majority of which are adenosine to inosine edits (98.6%). Most sites are predicted to reside in double-stranded secondary structures (85.1%), and quantification of the rates of editing in an additional 355 cows reveals editing is negatively correlated with gene expression in the majority of cases. Genetic analyses of RNA editing and gene expression highlight 152 cis-regulated edQTL, of which 15 appear to cosegregate with expression QTL effects. Trait association analyses in a separate population of 9989 lactating cows also shows 12 of the cis-edQTL coincide with at least one cosegregating lactation QTL. Together, these results enhance our understanding of RNA-editing dynamics in mammals, and suggest mechanistic links by which loci may impact phenotype through RNA editing mediated processes.
Collapse
Affiliation(s)
- Thomas J Lopdell
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1071, New Zealand
| | - Victoria Hawkins
- School of Biological Sciences, University of Auckland, Auckland 1071, New Zealand
| | - Christine Couldrey
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| | - Kathryn Tiplady
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| | - Stephen R Davis
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| | - Bevin L Harris
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| | - Russell G Snell
- School of Biological Sciences, University of Auckland, Auckland 1071, New Zealand
| | - Mathew D Littlejohn
- Research and Development, Livestock Improvement Corporation, Hamilton 3296, New Zealand
| |
Collapse
|
21
|
Chimienti F, Cavarec L, Vincent L, Salvetat N, Arango V, Underwood MD, Mann JJ, Pujol JF, Weissmann D. Brain region-specific alterations of RNA editing in PDE8A mRNA in suicide decedents. Transl Psychiatry 2019; 9:91. [PMID: 30770787 PMCID: PMC6377659 DOI: 10.1038/s41398-018-0331-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/26/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Phosphodiesterases (PDE) are key modulators of signal transduction and are involved in inflammatory cell activation, memory and cognition. There is a two-fold decrease in the expression of phosphodiesterase 8A (PDE8A) in the temporal cortex of major depressive disorder (MDD) patients. Here, we studied PDE8A mRNA-editing profile in two architectonically distinct neocortical regions in a clinically well-characterized cohort of age- and sex-matched non-psychiatric drug-free controls and depressed suicide decedents. By using capillary electrophoresis single-stranded conformational polymorphism (CE-SSCP), a previously validated technique to identify A-to-I RNA modifications, we report the full editing profile of PDE8A in the brain, including identification of two novel editing sites. Editing of PDE8A mRNA displayed clear regional difference when comparing dorsolateral prefrontal cortex (BA9) and anterior cingulate cortex (BA24). Furthermore, we report significant intra-regional differences between non-psychiatric control individuals and depressed suicide decedents, which could discriminate the two populations. Taken together, our results (i) highlight the importance of immune/inflammatory markers in major depressive disorder and suicide and (ii) establish a direct relationship between A-to-I RNA modifications of peripheral markers and A-to-I RNA editing-related modifications in brain. This work provides the first immune response-related brain marker for suicide and could pave the way for the identification of a blood-based biomarker that predicts suicidal behavior.
Collapse
Affiliation(s)
- Fabrice Chimienti
- ALCEDIAG/ Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France.
| | - Laurent Cavarec
- grid.465535.4Genomic Vision, Green Square, 80-84 rue des Meuniers, 92220 Bagneux, France
| | - Laurent Vincent
- grid.457349.8Commissariat à l’Energie Atomique, Fontenay aux Roses, France
| | - Nicolas Salvetat
- ALCEDIAG/ Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
| | - Victoria Arango
- 0000 0000 8499 1112grid.413734.6Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY USA ,0000000419368729grid.21729.3fDepartment of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY USA
| | - Mark D. Underwood
- 0000 0000 8499 1112grid.413734.6Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY USA ,0000000419368729grid.21729.3fDepartment of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY USA
| | - J. John Mann
- 0000 0000 8499 1112grid.413734.6Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY USA ,0000000419368729grid.21729.3fDepartment of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY USA
| | | | - Dinah Weissmann
- ALCEDIAG/ Sys2Diag, CNRS UMR 9005, Parc Euromédecine, Montpellier, France
| |
Collapse
|
22
|
Lerner T, Papavasiliou FN, Pecori R. RNA Editors, Cofactors, and mRNA Targets: An Overview of the C-to-U RNA Editing Machinery and Its Implication in Human Disease. Genes (Basel) 2018; 10:E13. [PMID: 30591678 PMCID: PMC6356216 DOI: 10.3390/genes10010013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/10/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022] Open
Abstract
One of the most prevalent epitranscriptomic modifications is RNA editing. In higher eukaryotes, RNA editing is catalyzed by one of two classes of deaminases: ADAR family enzymes that catalyze A-to-I (read as G) editing, and AID/APOBEC family enzymes that catalyze C-to-U. ADAR-catalyzed deamination has been studied extensively. Here we focus on AID/APOBEC-catalyzed editing, and review the emergent knowledge regarding C-to-U editing consequences in the context of human disease.
Collapse
Affiliation(s)
- Taga Lerner
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Centre, 69120 Heidelberg, Germany.
- Division of Biosciences, Uni Heidelberg, 69120 Heidelberg, Germany.
| | - F Nina Papavasiliou
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Centre, 69120 Heidelberg, Germany.
| | - Riccardo Pecori
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Centre, 69120 Heidelberg, Germany.
| |
Collapse
|
23
|
A Novel Alternative Splicing Mechanism That Enhances Human 5-HT1A Receptor RNA Stability Is Altered in Major Depression. J Neurosci 2018; 38:8200-8210. [PMID: 30093565 DOI: 10.1523/jneurosci.0902-18.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 11/21/2022] Open
Abstract
The serotonin-1A (5-HT1A) receptor is a key regulator of serotonergic activity and is implicated in mood and emotion. However, its post-transcriptional regulation has never been studied in humans. In the present study, we show that the "intronless" human 5-HT1A gene (HTR1A) is alternatively spliced in its 3'-UTR, yielding two novel splice variants. These variants lack a ∼1.6 kb intron, which contains an microRNA-135 (miR135) target site. Unlike the human HTR1A, the mouse HTR1A lacks the splice donor/accepter sites. Thus, in the mouse HTR1A, splicing was not detected. The two spliced mRNAs are extremely stable, are resistant to miR135-induced downregulation, and have greater translational output than the unspliced variant. Moreover, alternative HTR1A RNA splicing is oppositely regulated by the splice factors PTBP1 and nSR100, which inhibit or enhance its splicing, respectively. In postmortem human brain tissue from both sexes, HTR1A mRNA splicing was prevalent and region-specific. Unspliced HTR1A was expressed more strongly in the hippocampus and midbrain versus the prefrontal cortex (PFC), and correlated with reduced levels of nSR100. Importantly, HTR1A RNA splicing and nSR100 levels were reduced in the PFC of individuals with major depression compared with controls. Our unexpected findings uncover a novel mechanism to regulate HTR1A gene expression through alternative splicing of microRNA sites. Altered levels of splice factors could contribute to changes in regional and depression-related gene expression through alternative splicing.SIGNIFICANCE STATEMENT Alternative splicing, which is prevalent in brain tissue, increases gene diversity. The serotonin-1A receptor gene (HTR1A) is a regulator of serotonin, which is implicated in mood and emotion. Here we show that human HTR1A RNA is alternately spliced. Splicing removes a microRNA site to generate ultrastable RNA and increase HTR1A expression. This splicing varies in different brain regions and is reduced in major depression. We also identify specific splice factors for HTR1A RNA, showing they are also reduced in depression. Thus, we describe a novel mechanism to regulate gene expression through splicing. Altered levels of splice factors could contribute to depression by changing gene expression.
Collapse
|
24
|
TPH2 polymorphisms across the spectrum of psychiatric morbidity: A systematic review and meta-analysis. Neurosci Biobehav Rev 2018; 92:29-42. [PMID: 29775696 DOI: 10.1016/j.neubiorev.2018.05.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022]
Abstract
Tryptophan hydroxylase 2 (TPH2) is the rate-limiting enzyme in brain serotonin synthesis. The TPH2 gene has frequently been investigated in relation to psychiatric morbidity. The aim of the present review is to integrate results from association studies between TPH2 single nucleotide polymorphisms (SNPs) and various psychiatric disorders, which we furthermore quantified with meta-analysis. We reviewed 166 studies investigating 69 TPH2 SNPs in a broad range of psychiatric disorders, including over 30,000 patients. According to our meta-analysis, TPH2 polymorphisms show strongest associations with mood disorders, suicide (attempt) and schizophrenia. Despite small effect sizes, we conclude that TPH2 SNPs in the coding and non-coding areas (rs4570625, rs11178997, rs11178998, rs10748185, rs1843809, rs4290270, rs17110747) are each associated with one or more psychopathological conditions. Our findings highlight the possible common serotonergic mechanisms of the investigated psychiatric disorders. Yet, the functional relevance of most TPH2 polymorphisms is unclear. Characterizing how exactly the different TPH2 variants influence the serotonergic neurotransmission is a next necessary step in understanding the psychiatric disorders where serotonin is implicated.
Collapse
|
25
|
Perry LM, Goldstein-Piekarski AN, Williams LM. Sex differences modulating serotonergic polymorphisms implicated in the mechanistic pathways of risk for depression and related disorders. J Neurosci Res 2017; 95:737-762. [PMID: 27870440 DOI: 10.1002/jnr.23877] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/27/2022]
Abstract
Despite consistent observations of sex differences in depression and related emotional disorders, we do not yet know how these sex differences modulate the effects of genetic polymorphisms implicated in risk for these disorders. This Mini-Review focuses on genetic polymorphisms of the serotonergic system to illustrate how sex differences might modulate the neurobiological pathways involved in the development of depression. We consider the interacting role of environmental factors such as early-life stress. Given limited current knowledge about this topic, we highlight methodological considerations, challenges, and guidelines for future research. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- LeeAnn M Perry
- Neurosciences Program, Stanford University, Stanford, California
| | - Andrea N Goldstein-Piekarski
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.,Sierra-Pacific Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.,Sierra-Pacific Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
26
|
Peng L, Lee LJ, Xiong H, Su H, Rao J, Xiao D, He J, Wu K, Liu D. Characterization of RNA editome in primary and metastatic lung adenocarcinomas. Oncotarget 2017; 8:11517-11529. [PMID: 28009993 PMCID: PMC5355282 DOI: 10.18632/oncotarget.14076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/21/2016] [Indexed: 12/01/2022] Open
Abstract
RNA editing results in post-transcriptional modification and could potentially contribute to carcinogenesis. However, RNA editing in advanced lung adenocarcinomas has not yet been studied. Based on whole genome and transcriptome sequencing data, we identified 1,071,296 RNA editing events from matched normal, primary and metastatic samples contributed by 24 lung adenocarcinoma patients, with 91.3% A-to-G editing on average, and found significantly more RNA editing sites in tumors than in normal samples. To investigate cancer relevant editing events, we detected 67,851 hyper-editing sites in primary and 50,480 hyper-editing sites in metastatic samples. 46 genes with hyper-editing in coding regions were found to result in amino acid alterations, while hundreds of hyper-editing events in non-coding regions could modulate splicing or gene expression, including genes related to tumor stage or clinic prognosis. Comparing RNA editome of primary and metastatic samples, we also discovered hyper-edited genes that may promote metastasis development. These findings showed a landscape of RNA editing in matched normal, primary and metastatic tissues of lung adenocarcinomas for the first time and provided new insights to understand the molecular characterization of this disease.
Collapse
Affiliation(s)
- Lihua Peng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.,BGI-Shenzhen, Shenzhen 518083, China
| | - Leo J Lee
- BGI-Shenzhen, Shenzhen 518083, China.,Department of Electrical and Computer Engineering, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | | | - Hong Su
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Dakai Xiao
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Guangzhou Institute of Respiratory Disease & State Key Laboratory of Respiratory Disease, Guangzhou 510120, China.,Research Center for Translational Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jianxing He
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Guangzhou Institute of Respiratory Disease & State Key Laboratory of Respiratory Disease, Guangzhou 510120, China.,National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Kui Wu
- BGI-Shenzhen, Shenzhen 518083, China.,Department of Biology, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | | |
Collapse
|
27
|
Lualdi S, Del Zotto G, Zegarra-Moran O, Pedemonte N, Corsolini F, Bruschi M, Tomati V, Amico G, Candiano G, Dardis A, Cooper DN, Filocamo M. In vitro recapitulation of the site-specific editing (to wild-type) of mutant IDS mRNA transcripts, and the characterization of IDS protein translated from the edited mRNAs. Hum Mutat 2017; 38:849-862. [PMID: 28477385 DOI: 10.1002/humu.23243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/05/2017] [Accepted: 04/22/2017] [Indexed: 11/06/2022]
Abstract
The transfer of genomic information into the primary RNA sequence can be altered by RNA editing. We have previously shown that genomic variants can be RNA-edited to wild-type. The presence of distinct "edited" iduronate 2-sulfatase (IDS) mRNA transcripts ex vivo evidenced the correction of a nonsense and frameshift variant, respectively, in three unrelated Hunter syndrome patients. This phenomenon was confirmed in various patient samples by a variety of techniques, and was quantified by single-nucleotide primer extension. Western blotting also confirmed the presence of IDS protein similar in size to the wild-type. Since preliminary experimental evidence suggested that the "corrected" IDS proteins produced by the patients were similar in molecular weight and net charge to their wild-type counterparts, an in vitro system employing different cell types was established to recapitulate the site-specific editing of IDS RNA (uridine to cytidine conversion and uridine deletion), and to confirm the findings previously observed ex vivo in the three patients. In addition, confocal microscopy and flow cytometry analyses demonstrated the expression and lysosomal localization in HEK293 cells of GFP-labeled proteins translated from edited IDS mRNAs. Confocal high-content analysis of the two patients' cells expressing wild-type or mutated IDS confirmed lysosomal localization and showed no accumulation in the Golgi or early endosomes.
Collapse
Affiliation(s)
- Susanna Lualdi
- UOSD Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, Istituto Giannina Gaslini, Genova, Italy
| | | | | | | | - Fabio Corsolini
- UOSD Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, Istituto Giannina Gaslini, Genova, Italy
| | - Maurizio Bruschi
- Laboratory on Physiopathology of Uremia, Istituto Giannina Gaslini, Genova, Italy
| | - Valeria Tomati
- UOC Genetica Medica, Istituto Giannina Gaslini, Genova, Italy
| | - Giulia Amico
- UOSD Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, Istituto Giannina Gaslini, Genova, Italy
| | - Giovanni Candiano
- Laboratory on Physiopathology of Uremia, Istituto Giannina Gaslini, Genova, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Mirella Filocamo
- UOSD Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
28
|
Karanović J, Ivković M, Jovanović VM, Šviković S, Pantović-Stefanović M, Brkušanin M, Damjanović A, Brajušković G, Savić-Pavićević D. Effect of childhood general traumas on suicide attempt depends on TPH2 and ADARB1 variants in psychiatric patients. J Neural Transm (Vienna) 2017; 124:621-629. [PMID: 28084537 DOI: 10.1007/s00702-017-1677-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/06/2017] [Indexed: 12/14/2022]
Abstract
Suicidal behavior has been associated with a deficient serotonin neurotransmission which is likely a consequence of individual genetic architecture, exposure to environmental factors and interactions of those factors. We examined whether the interaction of child abuse, TPH2 (tryptophan hydroxylase 2) variant rs4290270, affecting alternative splicing and editing of TPH2 pre-mRNAs, and ADARB1 (adenosine deaminase acting on RNA B1) variants rs4819035 and rs9983925 may influence the risk for suicide attempt in psychiatric patients. TPH2 rs4290270 was genotyped in 165 suicide attempters and 188 suicide non-attempters diagnosed with major depressive disorder, bipolar disorder and schizophrenia. Genotyping data for ADARB1 variants were taken over from our previous study. Child abuse before the age of 18 years was assessed using the Early Trauma Inventory-Self Report. Generalized linear models and backward selection were applied to identify the main and interacting effects of environmental and genetic factors, including psychiatric diagnoses, patients' gender and age as covariates. Childhood general traumas were independently associated with suicide attempt. Two-way interaction between TPH2 rs4290270 and general traumas revealed that TT homozygotes with a history of general traumas had an increased risk for suicide attempt. Three-way interaction of general traumas, TPH2 rs4290270 and ADARB1 rs4819035 indicated that the highest predisposition to suicide attempt was observed in individuals who experienced general traumas and were TT homozygote for rs4290270 and TT homozygote for rs4819035. Our findings suggest that the risk for suicide attempt in psychiatric patients exposed to an adverse childhood environment may depend on TPH2 and ADARB1 variants.
Collapse
Affiliation(s)
- Jelena Karanović
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | - Maja Ivković
- Clinic for Psychiatry, Clinical Centre of Serbia, Pasterova 2, Belgrade, 11000, Serbia.,Medical School, University of Belgrade, Doktora Subotića 8, Belgrade, 11000, Serbia
| | - Vladimir M Jovanović
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11000, Serbia
| | - Saša Šviković
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | | | - Miloš Brkušanin
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | - Aleksandar Damjanović
- Clinic for Psychiatry, Clinical Centre of Serbia, Pasterova 2, Belgrade, 11000, Serbia.,Medical School, University of Belgrade, Doktora Subotića 8, Belgrade, 11000, Serbia
| | - Goran Brajušković
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | - Dušanka Savić-Pavićević
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia.
| |
Collapse
|
29
|
Meier JC, Kankowski S, Krestel H, Hetsch F. RNA Editing-Systemic Relevance and Clue to Disease Mechanisms? Front Mol Neurosci 2016; 9:124. [PMID: 27932948 PMCID: PMC5120146 DOI: 10.3389/fnmol.2016.00124] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/04/2016] [Indexed: 11/13/2022] Open
Abstract
Recent advances in sequencing technologies led to the identification of a plethora of different genes and several hundreds of amino acid recoding edited positions. Changes in editing rates of some of these positions were associated with diseases such as atherosclerosis, myopathy, epilepsy, major depression disorder, schizophrenia and other mental disorders as well as cancer and brain tumors. This review article summarizes our current knowledge on that front and presents glycine receptor C-to-U RNA editing as a first example of disease-associated increased RNA editing that includes assessment of disease mechanisms of the corresponding gene product in an animal model.
Collapse
Affiliation(s)
- Jochen C Meier
- Cell Physiology, Technische Universität Braunschweig Braunschweig, Germany
| | - Svenja Kankowski
- Cell Physiology, Technische Universität Braunschweig Braunschweig, Germany
| | - Heinz Krestel
- Neurology, Universitätsspital und Universität Bern Bern, Switzerland
| | - Florian Hetsch
- Cell Physiology, Technische Universität Braunschweig Braunschweig, Germany
| |
Collapse
|
30
|
Ferreira PG, Oti M, Barann M, Wieland T, Ezquina S, Friedländer MR, Rivas MA, Esteve-Codina A, Rosenstiel P, Strom TM, Lappalainen T, Guigó R, Sammeth M. Sequence variation between 462 human individuals fine-tunes functional sites of RNA processing. Sci Rep 2016; 6:32406. [PMID: 27617755 PMCID: PMC5019111 DOI: 10.1038/srep32406] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/03/2016] [Indexed: 12/23/2022] Open
Abstract
Recent advances in the cost-efficiency of sequencing technologies enabled the combined DNA- and RNA-sequencing of human individuals at the population-scale, making genome-wide investigations of the inter-individual genetic impact on gene expression viable. Employing mRNA-sequencing data from the Geuvadis Project and genome sequencing data from the 1000 Genomes Project we show that the computational analysis of DNA sequences around splice sites and poly-A signals is able to explain several observations in the phenotype data. In contrast to widespread assessments of statistically significant associations between DNA polymorphisms and quantitative traits, we developed a computational tool to pinpoint the molecular mechanisms by which genetic markers drive variation in RNA-processing, cataloguing and classifying alleles that change the affinity of core RNA elements to their recognizing factors. The in silico models we employ further suggest RNA editing can moonlight as a splicing-modulator, albeit less frequently than genomic sequence diversity. Beyond existing annotations, we demonstrate that the ultra-high resolution of RNA-Seq combined from 462 individuals also provides evidence for thousands of bona fide novel elements of RNA processing-alternative splice sites, introns, and cleavage sites-which are often rare and lowly expressed but in other characteristics similar to their annotated counterparts.
Collapse
Affiliation(s)
- Pedro G. Ferreira
- Bioinformatics and Genomics, Center for Genomic Regulation (CRG), 08003 Barcelona, Catalonia, Spain
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
- Instituto de Investigação e Inovação em Saúde, (i3S) Universidade do Porto, 4200-625 Porto, Portugal
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-625 Porto, Portugal
| | - Martin Oti
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil
| | - Matthias Barann
- Institute of Clinical Molecular Biology, Christians-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Thomas Wieland
- Institute of Human Genetics, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Suzana Ezquina
- Center for Human Genome and Stem-cell research (HUG-CELL), University of São Paulo (USP), 05508090 São Paulo, Brazil
| | - Marc R. Friedländer
- Science for Life Laboratory, Stockholm University, Box 1031, 17121 Solna, Sweden
| | - Manuel A. Rivas
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Anna Esteve-Codina
- Centre Nacional d’Anàlisi Genòmica, 08028 Barcelona, Catalonia, Spain
- Center for Research in Agricultural Genomics (CRAG), Autonome University of Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christians-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Tuuli Lappalainen
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
- Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | - Roderic Guigó
- Bioinformatics and Genomics, Center for Genomic Regulation (CRG), 08003 Barcelona, Catalonia, Spain
- Pompeu Fabra University (UPF), 08003 Barcelona, Catalonia, Spain
| | - Michael Sammeth
- Bioinformatics and Genomics, Center for Genomic Regulation (CRG), 08003 Barcelona, Catalonia, Spain
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil
- National Center of Scientific Computing (LNCC), 2233-6000 Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Hoernes TP, Erlacher MD. Translating the epitranscriptome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27345446 PMCID: PMC5215311 DOI: 10.1002/wrna.1375] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 12/14/2022]
Abstract
RNA modifications are indispensable for the translation machinery to provide accurate and efficient protein synthesis. Whereas the importance of transfer RNA (tRNA) and ribosomal RNA (rRNA) modifications has been well described and is unquestioned for decades, the significance of internal messenger RNA (mRNA) modifications has only recently been revealed. Novel experimental methods have enabled the identification of thousands of modified sites within the untranslated and translated regions of mRNAs. Thus far, N6‐methyladenosine (m6A), pseudouridine (Ψ), 5‐methylcytosine (m5C) and N1‐methyladenosine (m1A) were identified in eukaryal, and to some extent in prokaryal mRNAs. Several of the functions of these mRNA modifications have previously been reported, but many aspects remain elusive. Modifications can be important factors for the direct regulation of protein synthesis. The potential diversification of genomic information and regulation of RNA expression through editing and modifying mRNAs is versatile and many questions need to be addressed to completely elucidate the role of mRNA modifications. Herein, we summarize and highlight some recent findings on various co‐ and post‐transcriptional modifications, describing the impact of these processes on gene expression, with emphasis on protein synthesis. WIREs RNA 2017, 8:e1375. doi: 10.1002/wrna.1375 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Thomas Philipp Hoernes
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias David Erlacher
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Tajaddod M, Jantsch MF, Licht K. The dynamic epitranscriptome: A to I editing modulates genetic information. Chromosoma 2016; 125:51-63. [PMID: 26148686 PMCID: PMC4761006 DOI: 10.1007/s00412-015-0526-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 02/03/2023]
Abstract
Adenosine to inosine editing (A to I editing) is a cotranscriptional process that contributes to transcriptome complexity by deamination of adenosines to inosines. Initially, the impact of A to I editing has been described for coding targets in the nervous system. Here, A to I editing leads to recoding and changes of single amino acids since inosine is normally interpreted as guanosine by cellular machines. However, more recently, new roles for A to I editing have emerged: Editing was shown to influence splicing and is found massively in Alu elements. Moreover, A to I editing is required to modulate innate immunity. We summarize the multiple ways in which A to I editing generates transcriptome variability and highlight recent findings in the field.
Collapse
Affiliation(s)
- Mansoureh Tajaddod
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 9/5, A-1030, Vienna, Austria
| | - Michael F Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 9/5, A-1030, Vienna, Austria.
- Department of Cell Biology, Center of Cell Biology and Anatomy, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090, Vienna, Austria.
| | - Konstantin Licht
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 9/5, A-1030, Vienna, Austria.
| |
Collapse
|
33
|
López-Narváez ML, Tovilla-Zárate CA, González-Castro TB, Juárez-Rojop I, Pool-García S, Genis A, Ble-Castillo JL, Fresán A. Association analysis of TPH-1 and TPH-2 genes with suicidal behavior in patients with attempted suicide in Mexican population. Compr Psychiatry 2015; 61:72-7. [PMID: 26028568 DOI: 10.1016/j.comppsych.2015.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Suicidal behavior is a worldwide health problem. Tryptophan hydroxylase (TPH) is a rate limiting enzyme in the biosynthesis of serotonergic neurotransmission. TPH-1 and TPH-2 genes encode for TPH isoforms and have been implicated as candidate genes for suicidal behavior. The aim of this study was to evaluate the association between the genetic variants of the TPH-1 (rs21102 and 1607395) and TPH-2 (rs4290270, rs7305115 and rs1007023) genes and suicidal behavior in a Mexican population. METHODS We conducted a case-control study including 200 cases with suicide attempt and 263 controls. Patients were evaluated by a trained psychiatrist or clinical psychologists. Five polymorphisms were genotyped and assessed for allele, genotype and haplotype association with suicide attempt. RESULTS The rs7305115 polymorphism of the TPH-2 gene was associated with suicidal behavior in a Mexican population in genotype (χ(2)=6.02, df=2, p=0.04) and allele (OR=1.39, 95%IC=1.06-1.81, p=0.01) frequencies. The THP-2 haplotypes GTA (χ(2)=5.68, p=0.01) and ATT (χ(2)=5.0, p=0.02) were associated with risk for suicide attempt. CONCLUSION Our results provide evidence for an association between the rs7305115 polymorphism of the TPH-2 gene and suicidal behavior in a Mexican population. However, more studies are necessary to replicate these results using larger samples.
Collapse
Affiliation(s)
| | - Carlos Alfonso Tovilla-Zárate
- Universidad Juárez Autónoma de Tabasco, División Académica Multidisciplinaria de Comalcalco, Comalcalco, Tabasco, México.
| | - Thelma Beatriz González-Castro
- Universidad Juárez Autónoma de Tabasco, División Académica Multidisciplinaria de Jalpa de Méndez, Cunduacán, Tabasco, México.
| | - Isela Juárez-Rojop
- Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias de la Salud, Villahermosa, Tabasco, México.
| | - Sherezada Pool-García
- Hospital General de Comalcalco, Tabasco, Secretaría de Salud, Comalcalco, Tabasco, México.
| | - Alma Genis
- Instituto Nacional de Medicina Genómica (INMEGEN), Servicios de Atención Psiquiátrica (SAP), Secretaría de Salud, México, D. F., México.
| | - Jorge L Ble-Castillo
- Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias de la Salud, Villahermosa, Tabasco, México.
| | - Ana Fresán
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México, D. F., México.
| |
Collapse
|
34
|
Levran O, Peles E, Randesi M, Correa da Rosa J, Ott J, Rotrosen J, Adelson M, Kreek MJ. Susceptibility loci for heroin and cocaine addiction in the serotonergic and adrenergic pathways in populations of different ancestry. Pharmacogenomics 2015; 16:1329-42. [PMID: 26227246 PMCID: PMC4896084 DOI: 10.2217/pgs.15.86] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Drug addiction is influenced by genetic factors. AIM To determine if genetic variants in the serotonergic and adrenergic pathways are associated with heroin and/or cocaine addiction. SUBJECTS & METHODS The study examined 140 polymorphisms in 19 genes in 1855 subjects with predominantly European or African ancestries. RESULTS A total of 38 polymorphisms (13 genes) showed nominal associations, including novel associations in S100A10 (p11) and SLC18A2 (VMAT2). The association of HTR3B SNP rs11606194 with heroin addiction in the European ancestry subgroup remained significant after correction for multiple testing (p(corrected) = 0.04). CONCLUSION The study strengthens our previous findings of association of polymorphisms in HTR3A, HTR3B and ADRA1A. The study suggests partial overlap in genetic susceptibility between populations of different ancestry and between heroin and cocaine addiction.
Collapse
Affiliation(s)
- Orna Levran
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Einat Peles
- The Dr Miriam & Sheldon G Adelson Clinic for Drug Abuse Treatment & Research, Tel Aviv Elias Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthew Randesi
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Joel Correa da Rosa
- Center for Clinical & Translational Science, The Rockefeller University, New York, NY 10065, USA
| | - Jurg Ott
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- The Laboratory of Statistical Genetics, The Rockefeller University, New York, NY 10065, USA
| | - John Rotrosen
- VA New York Harbor Healthcare System & NYU School of Medicine, New York, NY 10010, USA
| | - Miriam Adelson
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
- The Dr Miriam & Sheldon G Adelson Clinic for Drug Abuse Treatment & Research, Tel Aviv Elias Sourasky Medical Center, Tel Aviv, Israel
- Dr Miriam & Sheldon G Adelson Clinic for Drug Abuse Treatment & Research, Las Vegas, NV 89169, USA
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
35
|
Niavarani A, Currie E, Reyal Y, Anjos-Afonso F, Horswell S, Griessinger E, Luis Sardina J, Bonnet D. APOBEC3A is implicated in a novel class of G-to-A mRNA editing in WT1 transcripts. PLoS One 2015; 10:e0120089. [PMID: 25807502 PMCID: PMC4373805 DOI: 10.1371/journal.pone.0120089] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/22/2015] [Indexed: 12/18/2022] Open
Abstract
Classic deamination mRNA changes, including cytidine to uridine (C-to-U) and adenosine to inosine (A-to-I), are important exceptions to the central dogma and lead to significant alterations in gene transcripts and products. Although there are a few reports of non-classic mRNA alterations, as yet there is no molecular explanation for these alternative changes. Wilms Tumor 1 (WT1) mutations and variants are implicated in several diseases, including Wilms tumor and acute myeloid leukemia (AML). We observed two alternative G-to-A changes, namely c.1303G>A and c.1586G>A in cDNA clones and found them to be recurrent in a series of 21 umbilical cord blood mononuclear cell (CBMC) samples studied. Two less conserved U-to-C changes were also observed. These alternative changes were found to be significantly higher in non-progenitor as compared to progenitor CBMCs, while they were found to be absent in a series of AML samples studied, indicating they are targeted, cell type-specific mRNA editing modifications. Since APOBEC/ADAR family members are implicated in RNA/DNA editing, we screened them by RNA-interference (RNAi) for WT1-mRNA changes and observed near complete reversal of WT1 c.1303G>A alteration upon APOBEC3A (A3A) knockdown. The role of A3A in mediating this change was confirmed by A3A overexpression in Fujioka cells, which led to a significant increase in WT1 c.1303G>A mRNA editing. Non-progenitor CBMCs showed correspondingly higher levels of A3A-mRNA and protein as compared to the progenitor ones. To our knowledge, this is the first report of mRNA modifying activity for an APOBEC3 protein and implicates A3A in a novel G-to-A form of editing. These findings open the way to further investigations into the mechanisms of other potential mRNA changes, which will help to redefine the RNA editing paradigm in both health and disease.
Collapse
MESH Headings
- Adenosine/metabolism
- Base Sequence
- Cytidine Deaminase/antagonists & inhibitors
- Cytidine Deaminase/genetics
- Cytidine Deaminase/metabolism
- Guanine/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/metabolism
- Molecular Sequence Data
- Mutation
- Proteins/antagonists & inhibitors
- Proteins/genetics
- Proteins/metabolism
- RNA Editing
- RNA Interference
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Sequence Analysis, DNA
- Umbilical Cord/cytology
- WT1 Proteins/genetics
- WT1 Proteins/metabolism
- Wilms Tumor/genetics
- Wilms Tumor/pathology
Collapse
Affiliation(s)
- Ahmadreza Niavarani
- Haematopoietic Stem Cell Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
- Digestive Disease Research Institute (DDRI), Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Erin Currie
- Haematopoietic Stem Cell Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Yasmin Reyal
- Department of Haematology, University College London Hospitals NHS Trust, London, United Kingdom
| | - Fernando Anjos-Afonso
- Haematopoietic Stem Cell Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Stuart Horswell
- Department of Bioinformatics, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Emmanuel Griessinger
- INSERM U1065, Mediterranean Centre for Molecular Medicine (C3M), Université Nice Sophia Antipolis, Nice, France
| | - Jose Luis Sardina
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Fu HJ, Zhou YR, Bao BH, Jia MX, Zhao Y, Zhang L, Li JX, He HL, Zhou XM. Tryptophan hydroxylase 1 (Tph-1)-targeted bone anabolic agents for osteoporosis. J Med Chem 2014; 57:4692-709. [PMID: 24844139 DOI: 10.1021/jm5002293] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tryptophan hydroxylase 1 (Tph-1), the principal enzyme for peripheral serotonin biosynthesis, provides a novel target to design anabolic agents for osteoporosis. Here, we present a design, synthesis of a novel series of ursolic acid derivatives under the guidance of docking technique, and bioevaluation of the derivatives using RBL2H3 cells and ovariectomized (OVX) rats. Of the compounds, 9a showed a potent inhibitory activity on serotonin biosynthesis. Further investigations revealed that 9a, as an efficient Tph-1 binder identified by SPR (estimated KD: 6.82 μM), suppressed the protein and mRNA expressions of Tph-1 and lowered serotonin contents in serum and gut without influence on brain serotonin. Moreover, oral administration of 9a elevated serum level of N-terminal propeptide of procollagen type 1 (P1NP), a bone formation marker, and improved bone microarchitecture without estrogenic side effects in ovariectomized rats. Collectively, 9a may serve as a new candidate for bone anabolic drug discovery.
Collapse
Affiliation(s)
- Hai-Jian Fu
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , 22 Hankou Road, Nanjing 210093, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Barresi S, Tomaselli S, Athanasiadis A, Galeano F, Locatelli F, Bertini E, Zanni G, Gallo A. Oligophrenin-1 (OPHN1), a gene involved in X-linked intellectual disability, undergoes RNA editing and alternative splicing during human brain development. PLoS One 2014; 9:e91351. [PMID: 24637888 PMCID: PMC3956665 DOI: 10.1371/journal.pone.0091351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/11/2014] [Indexed: 12/25/2022] Open
Abstract
Oligophrenin-1 (OPHN1) encodes for a Rho-GTPase-activating protein, important for dendritic morphogenesis and synaptic function. Mutations in this gene have been identified in patients with X-linked intellectual disability associated with cerebellar hypoplasia. ADAR enzymes are responsible for A-to-I RNA editing, an essential post-transcriptional RNA modification contributing to transcriptome and proteome diversification. Specifically, ADAR2 activity is essential for brain development and function. Herein, we show that the OPHN1 transcript undergoes post-transcriptional modifications such as A-to-I RNA editing and alternative splicing in human brain and other tissues. We found that OPHN1 editing is detectable already at the 18th week of gestation in human brain with a boost of editing at weeks 20 to 33, concomitantly with OPHN1 expression increase and the appearance of a novel OPHN1 splicing isoform. Our results demonstrate that multiple post-transcriptional events occur on OPHN1, a gene playing an important role in brain function and development.
Collapse
Affiliation(s)
- Sabina Barresi
- Molecular Medicine Laboratory, Neurosciences Department, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Sara Tomaselli
- RNA Editing Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Federica Galeano
- RNA Editing Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Franco Locatelli
- RNA Editing Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
- Università di Pavia, Pavia, Italy
| | - Enrico Bertini
- Molecular Medicine Laboratory, Neurosciences Department, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Ginevra Zanni
- Molecular Medicine Laboratory, Neurosciences Department, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
- * E-mail: (GZ); (AG)
| | - Angela Gallo
- RNA Editing Laboratory, Oncohaematology Department, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
- * E-mail: (GZ); (AG)
| |
Collapse
|
38
|
Alternative splicing of mutually exclusive exons—A review. Biosystems 2013; 114:31-8. [DOI: 10.1016/j.biosystems.2013.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/03/2013] [Indexed: 12/16/2022]
|
39
|
Serotonergic genes and suicide: a systematic review. Eur Neuropsychopharmacol 2013; 23:1125-42. [PMID: 23742855 DOI: 10.1016/j.euroneuro.2013.03.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 02/12/2013] [Accepted: 03/24/2013] [Indexed: 12/12/2022]
Abstract
Suicide is one of the leading causes of death in the world. Its aetiology is complex and diverse, however, epidemiological studies show that suicidal behavior is partly heritable. Neurobiological evidence implicates serotonergic dysfunction in suicidality, stimulating genetic research to focus on genes related to the serotonergic system. In this paper, we review evidence from studies examining the association between various serotonergic genes (Tryptophan Hydroxylase genes: TPH1; TPH2, Serotonin Transporter gene: 5-HTTLPR in SLC6A4, Serotonin Receptor genes: HTR1A, HTR2A, HTR1B, HTR2C and Monoamine Oxidase A gene: MAOA) and suicidal behavior. The data show associations between variation on the TPH1 gene and 5-HTTLPR gene and violent suicidal behavior in Caucasian populations, with the least inconsistencies. Results are mixed for the TPH2 gene and serotonin receptor genes, but for some genes, studies that include haplotypic analyses or that examine a larger coding region of the genes tend to provide more reliable results. Findings on endophenotypes of suicidality, such as aggression and impulsivity traits, show positive associations for the TPH1, HTR2A, and MAOA genes, but need further replication, since negative associations are also occasionally reported. Since genes can only partially explain suicidal risk, several studies during the past decade have tried to incorporate environmental factors in the susceptibility model. Studies to date show that variation on the 5-HTTLPR, MAOA and HTR2A gene can interact with stressful life events to increase risk for suicidal behavior. Limitations of case-control studies are discussed and future considerations are put forward with regard to endophenotypic measurements and gene-environment interactions.
Collapse
|
40
|
Solomon O, Oren S, Safran M, Deshet-Unger N, Akiva P, Jacob-Hirsch J, Cesarkas K, Kabesa R, Amariglio N, Unger R, Rechavi G, Eyal E. Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR). RNA (NEW YORK, N.Y.) 2013; 19:591-604. [PMID: 23474544 PMCID: PMC3677275 DOI: 10.1261/rna.038042.112] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Alternative mRNA splicing is a major mechanism for gene regulation and transcriptome diversity. Despite the extent of the phenomenon, the regulation and specificity of the splicing machinery are only partially understood. Adenosine-to-inosine (A-to-I) RNA editing of pre-mRNA by ADAR enzymes has been linked to splicing regulation in several cases. Here we used bioinformatics approaches, RNA-seq and exon-specific microarray of ADAR knockdown cells to globally examine how ADAR and its A-to-I RNA editing activity influence alternative mRNA splicing. Although A-to-I RNA editing only rarely targets canonical splicing acceptor, donor, and branch sites, it was found to affect splicing regulatory elements (SREs) within exons. Cassette exons were found to be significantly enriched with A-to-I RNA editing sites compared with constitutive exons. RNA-seq and exon-specific microarray revealed that ADAR knockdown in hepatocarcinoma and myelogenous leukemia cell lines leads to global changes in gene expression, with hundreds of genes changing their splicing patterns in both cell lines. This global change in splicing pattern cannot be explained by putative editing sites alone. Genes showing significant changes in their splicing pattern are frequently involved in RNA processing and splicing activity. Analysis of recently published RNA-seq data from glioblastoma cell lines showed similar results. Our global analysis reveals that ADAR plays a major role in splicing regulation. Although direct editing of the splicing motifs does occur, we suggest it is not likely to be the primary mechanism for ADAR-mediated regulation of alternative splicing. Rather, this regulation is achieved by modulating trans-acting factors involved in the splicing machinery.
Collapse
Affiliation(s)
- Oz Solomon
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
- The Everard & Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Shirley Oren
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michal Safran
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
| | - Naamit Deshet-Unger
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
| | - Pinchas Akiva
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jasmine Jacob-Hirsch
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
| | - Karen Cesarkas
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
| | - Reut Kabesa
- The Everard & Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Ninette Amariglio
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
| | - Ron Unger
- The Everard & Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Gideon Rechavi
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eran Eyal
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Ramat Gan, Israel
- Corresponding authorE-mail
| |
Collapse
|
41
|
Penn AC, Balik A, Greger IH. Reciprocal regulation of A-to-I RNA editing and the vertebrate nervous system. Front Neurosci 2013; 7:61. [PMID: 23616744 PMCID: PMC3629306 DOI: 10.3389/fnins.2013.00061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/02/2013] [Indexed: 12/30/2022] Open
Abstract
The fine control of molecules mediating communication in the nervous system is key to adjusting neuronal signaling during development and in maintaining the stability of established networks in the face of altered sensory input. To prevent the culmination of pathological recurrent network excitation or debilitating periods of quiescence, adaptive alterations occur in the signaling molecules and ion channels that control membrane excitability and synaptic transmission. However, rather than encoding (and thus "hardwiring") modified gene copies, the nervous systems of metazoa have opted for expanding on post-transcriptional pre-mRNA splicing by altering key encoded amino acids using a conserved mechanism of A-to-I RNA editing: the enzymatic deamination of adenosine to inosine. Inosine exhibits similar base-pairing properties to guanosine with respect to tRNA codon recognition, replication by polymerases, and RNA secondary structure (i.e.,: forming-capacity). In addition to recoding within the open reading frame, adenosine deamination also occurs with high frequency throughout the non-coding transcriptome, where it affects multiple aspects of RNA metabolism and gene expression. Here, we describe the recoding function of key RNA editing targets in the mammalian central nervous system and their potential to be regulated. We will then discuss how interactions of A-to-I editing with gene expression and alternative splicing could play a wider role in regulating the neuronal transcriptome. Finally, we will highlight the increasing complexity of this multifaceted control hub by summarizing new findings from high-throughput studies.
Collapse
Affiliation(s)
- Andrew C Penn
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297 Bordeaux, France ; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297 Bordeaux, France
| | | | | |
Collapse
|
42
|
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene 2013; 514:1-30. [PMID: 22909801 PMCID: PMC5632952 DOI: 10.1016/j.gene.2012.07.083] [Citation(s) in RCA: 548] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 12/15/2022]
Abstract
Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in 'splicing programs', which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed.
Collapse
Affiliation(s)
- Olga Kelemen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Paolo Convertini
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuan Wen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
43
|
The role of the serotonergic system at the interface of aggression and suicide. Neuroscience 2013; 236:160-85. [PMID: 23333677 DOI: 10.1016/j.neuroscience.2013.01.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/01/2013] [Accepted: 01/05/2013] [Indexed: 02/07/2023]
Abstract
Alterations in serotonin (5-HT) neurochemistry have been implicated in the aetiology of all major neuropsychiatric disorders, ranging from schizophrenia to mood and anxiety-spectrum disorders. This review will focus on the multifaceted implications of 5-HT-ergic dysfunctions in the pathophysiology of aggressive and suicidal behaviours. After a brief overview of the anatomical distribution of the 5-HT-ergic system in the key brain areas that govern aggression and suicidal behaviours, the implication of 5-HT markers (5-HT receptors, transporter as well as synthetic and metabolic enzymes) in these conditions is discussed. In this regard, particular emphasis is placed on the integration of pharmacological and genetic evidence from animal studies with the findings of human experimental and genetic association studies. Traditional views postulated an inverse relationship between 5-HT and aggression and suicidal behaviours; however, ample evidence has shown that this perspective may be overly simplistic, and that such pathological manifestations may reflect alterations in 5-HT homoeostasis due to the interaction of genetic, environmental and gender-related factors, particularly during early critical developmental stages. The development of animal models that may capture the complexity of such interactions promises to afford a powerful tool to elucidate the pathophysiology of impulsive aggression and suicidability, and identify new effective therapies for these conditions.
Collapse
|
44
|
Siesser WB, Sachs BD, Ramsey AJ, Sotnikova TD, Beaulieu JM, Zhang X, Caron MG, Gainetdinov RR. Chronic SSRI treatment exacerbates serotonin deficiency in humanized Tph2 mutant mice. ACS Chem Neurosci 2013; 4:84-8. [PMID: 23336047 DOI: 10.1021/cn300127h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/01/2012] [Indexed: 01/12/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are a major class of antidepressants that act by blocking inward transport of serotonin (5-HT) into presynaptic neurons mediated by the serotonin transporter (SERT). Both reuptake and ongoing synthesis are essential in supporting intraneuronal serotonin concentrations in serotonergic neurons. A rare mutation in tryptophan hydroxylase 2 (Tph2), the rate limiting enzyme for 5-HT synthesis, was identified in several patients with major depression, and knock-in mice expressing the analogous mutation (R439H Tph2 KI) show 80% reduction in 5-HT synthesis and tissue levels. Chronic treatment with SSRIs (fluoxetine and paroxetine) resulted in a dramatic further depletion of 5-HT tissue levels in R439H Tph2 KI mice (down to 1-3% of wild type levels) while having little effects in wild-type controls. Treatment with the 5-HT precursor 5-hydroxytryptophan (5-HTP) restored 5-HT tissue content in mutant mice, and cotreatment with 5-HTP and fluoxetine essentially prevented the depleting effect of a chronic SSRI. These data demonstrate that chronic SSRI treatment could further exacerbate the 5-HT deficiency in Tph2 mutation carriers, and this can be prevented by 5-HTP supplementation.
Collapse
Affiliation(s)
- William B. Siesser
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, United
States
| | - Benjamin D. Sachs
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, United
States
| | - Amy J. Ramsey
- Department of Pharmacology
and
Toxicology, University of Toronto, ON,
Canada M5S 1A8
| | - Tatyana D. Sotnikova
- Department
of Neuroscience and
Brain Technologies, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163 Italy
| | - Jean-Martin Beaulieu
- Department of Psychiatry and
Neuroscience, Université Laval/IUSMQ, Québec, Canada
| | - Xiaodong Zhang
- Neuroscience & Behavioral Disorders Program, Duke−NUS Graduate Medical School Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore
- Department
of Psychiatry and
Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Marc G. Caron
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, United
States
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina
27710, United States
| | - Raul R. Gainetdinov
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, United
States
- Department
of Neuroscience and
Brain Technologies, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163 Italy
| |
Collapse
|
45
|
Lesch KP, Araragi N, Waider J, van den Hove D, Gutknecht L. Targeting brain serotonin synthesis: insights into neurodevelopmental disorders with long-term outcomes related to negative emotionality, aggression and antisocial behaviour. Philos Trans R Soc Lond B Biol Sci 2012; 367:2426-43. [PMID: 22826343 DOI: 10.1098/rstb.2012.0039] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aggression, which comprises multi-faceted traits ranging from negative emotionality to antisocial behaviour, is influenced by an interaction of biological, psychological and social variables. Failure in social adjustment, aggressiveness and violence represent the most detrimental long-term outcome of neurodevelopmental disorders. With the exception of brain-specific tryptophan hydroxylase-2 (Tph2), which generates serotonin (5-HT) in raphe neurons, the contribution of gene variation to aggression-related behaviour in genetically modified mouse models has been previously appraised (Lesch 2005 Novartis Found Symp. 268, 111-140; Lesch & Merschdorf 2000 Behav. Sci. Law 18, 581-604). Genetic inactivation of Tph2 function in mice led to the identification of phenotypic changes, ranging from growth retardation and late-onset obesity, to enhanced conditioned fear response, increased aggression and depression-like behaviour. This spectrum of consequences, which are amplified by stress-related epigenetic interactions, are attributable to deficient brain 5-HT synthesis during development and adulthood. Human data relating altered TPH2 function to personality traits of negative emotionality and neurodevelopmental disorders characterized by deficits in cognitive control and emotion regulation are based on genetic association and are therefore not as robust as the experimental mouse results. Mouse models in conjunction with approaches focusing on TPH2 variants in humans provide unexpected views of 5-HT's role in brain development and in disorders related to negative emotionality, aggression and antisocial behaviour.
Collapse
Affiliation(s)
- Klaus-Peter Lesch
- Division of Molecular Psychiatry (MP), Laboratory of Translational Neuroscience (LTN), Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Wuerzburg, , Fuechsleinstrasse 15, 97080 Wuerzburg, Germany.
| | | | | | | | | |
Collapse
|
46
|
A method to identify RNA A-to-I editing targets using I-specific cleavage and exon array analysis. Mol Cell Probes 2012; 27:38-45. [PMID: 22960667 DOI: 10.1016/j.mcp.2012.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/17/2012] [Accepted: 08/20/2012] [Indexed: 11/21/2022]
Abstract
RNA A-to-I editing is the most common single-base editing in the animal kingdom. Dysregulations of RNA A-to-I editing are associated with developmental defects in mouse and human diseases. Mouse knockout models deficient in ADAR activities show lethal phenotypes associated with defects in nervous system, failure of hematopoiesis and reduced tolerance to stress. While several methods of identifying RNA A-to-I editing sites are currently available, most of the critical editing targets responsible for the important biological functions of ADARs remain unknown. Here we report a method to systematically analyze RNA A-to-I editing targets by combining I-specific cleavage and exon array analysis. Our results show that I-specific cleavage on editing sites causes more than twofold signal reductions in edited exons of known targets such as Gria2, Htr2c, Gabra3 and Cyfip2 in mice. This method provides an experimental approach for genome-wide analysis of RNA A-to-I editing targets with exon-level resolution. We believe this method will help expedite inquiry into the roles of RNA A-to-I editing in various biological processes and diseases.
Collapse
|
47
|
Abe R, Watanabe Y, Tachibana A, Nunokawa A, Shindo M, Hasegawa N, Someya T. Exploration of a possible association between the tryptophan hydroxylase 2 (TPH2) gene and panic symptoms induced by carbon dioxide in healthy individuals. Psychiatry Res 2012; 197:358-9. [PMID: 22365257 DOI: 10.1016/j.psychres.2011.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/05/2011] [Accepted: 11/11/2011] [Indexed: 10/28/2022]
|
48
|
Lin W, Piskol R, Tan MH, Li JB. Comment on "Widespread RNA and DNA sequence differences in the human transcriptome". Science 2012; 335:1302; author reply 1302. [PMID: 22422964 DOI: 10.1126/science.1210419] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Li et al. (Research Articles, 1 July 2011, p. 53; published online 19 May 2011) reported widespread differences between the RNA and DNA sequences of the same human cells, including all 12 possible mismatch types. Before accepting such a fundamental claim, a deeper analysis of the sequencing data is required to discern true differences between RNA and DNA from potential artifacts.
Collapse
Affiliation(s)
- Wei Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|
49
|
Chen GL, Miller GM. Advances in tryptophan hydroxylase-2 gene expression regulation: new insights into serotonin-stress interaction and clinical implications. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:152-71. [PMID: 22241550 PMCID: PMC3587664 DOI: 10.1002/ajmg.b.32023] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serotonin (5-HT) modulates the stress response by interacting with the hormonal hypothalamic-pituitary-adrenal (HPA) axis and neuronal sympathetic nervous system (SNS). Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in 5-HT biosynthesis, and the recent identification of a second, neuron-specific TPH isoform (TPH2) opened up a new area of research. While TPH2 genetic variance has been linked to numerous behavioral traits and disorders, findings on TPH2 gene expression have not only reinforced, but also provided new insights into, the long-recognized but not yet fully understood 5-HT-stress interaction. In this review, we summarize advances in TPH2 expression regulation and its relevance to the stress response and clinical implications. Particularly, based on findings on rhesus monkey TPH2 genetics and other relevant literature, we propose that: (i) upon activation of adrenal cortisol secretion, the cortisol surge induces TPH2 expression and de novo 5-HT synthesis; (ii) the induced 5-HT in turn inhibits cortisol secretion by modulating the adrenal sensitivity to ACTH via the suprachiasmatic nuclei (SCN)-SNS-adrenal system, such that it contributes to the feedback inhibition of cortisol production; (iii) basal TPH2 expression or 5-HT synthesis, as well as early-life experience, influence basal cortisol primarily via the hormonal HPA axis; and (iv) 5'- and 3'-regulatory polymorphisms of TPH2 may differentially influence the stress response, presumably due to their differential roles in gene expression regulation. Our increasing knowledge of TPH2 expression regulation not only helps us better understand the 5-HT-stress interaction and the pathophysiology of neuropsychiatric disorders, but also provides new strategies for the treatment of stress-associated diseases.
Collapse
Affiliation(s)
- Guo-Lin Chen
- Harvard Medical School, New England Primate Research Center, Division of Neuroscience, Southborough, MA 01772-9102, USA.
| | | |
Collapse
|
50
|
Kiran A, Loughran G, O'Mahony JJ, Baranov PV. Identification of A-to-I RNA editing: dotting the i's in the human transcriptome. BIOCHEMISTRY (MOSCOW) 2012; 76:915-23. [PMID: 22022965 DOI: 10.1134/s0006297911080074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The phenomenon of adenosine-to-inosine (A-to-I) RNA editing has attracted considerable attention from the scientific community due to its potential relationship to the evolution of cognition in animals. While A-to-I editing exists in all organisms with neurons, including those with primitive neuronal systems (hydra and nematodes), it is particularly frequent in organisms with a highly developed central nervous system (primates, especially humans). Diversification of RNA transcript sequences via A-to-I editing serves a number of different functional roles, such as altering the genome-templated identity of particular amino acids in proteins or altering splice site junctions and modulating regulation of alternatively spliced mRNA variants. Here we provide an overview of current computational and experimental methods for the high-throughput discovery of edited RNA nucleotides in the human transcriptome, as well as a survey of the existing RNA editing bioinformatics resources and an outlook of future perspectives.
Collapse
Affiliation(s)
- A Kiran
- Biochemistry Department, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|