1
|
Shrivastava R, Pradhan G, Ghosh S, Mukhopadhyay S. Rabaptin5 acts as a key regulator for Rab7l1-mediated phagosome maturation process. Immunology 2021; 165:328-340. [PMID: 34888849 DOI: 10.1111/imm.13438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/22/2021] [Accepted: 11/27/2021] [Indexed: 11/27/2022] Open
Abstract
Phagosome maturation is an important innate defense mechanism of macrophages against pathogen infections. Phagosome-lysosome (P-L) fusion is a highly regulated process. Different RabGTPases are involved in P-L fusion. Rab7l1 is shown to regulate P-L fusion process. In the present study, we demonstrate that Rabaptin5 is a Guanine nucleotide exchange factor (GEF) for Rab7l1. We reveal that Rabaptin5 interacts with Rab7l1-GTP form and promotes its recruitment to phagosome. In the absence of Rabaptin5, localization of P-L markers like EEA1, Rab7, LAMP1 and LAMP2 was found to be poorer. Thus, our data suggest that Rabaptin5 works upstream to Rab7l1 and triggers Rab7l1 activation for further recruitment of P-L markers and downstream regulation of phagosomal maturation process.
Collapse
Affiliation(s)
- Rohini Shrivastava
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gourango Pradhan
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sudip Ghosh
- Molecular Biology Unit, ICMR-National Institute of Nutrition, Jamai Osmania PO, Hyderabad - 500001, Telangana, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| |
Collapse
|
2
|
Bezeljak U, Loya H, Kaczmarek B, Saunders TE, Loose M. Stochastic activation and bistability in a Rab GTPase regulatory network. Proc Natl Acad Sci U S A 2020; 117:6540-6549. [PMID: 32161136 PMCID: PMC7104049 DOI: 10.1073/pnas.1921027117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The eukaryotic endomembrane system is controlled by small GTPases of the Rab family, which are activated at defined times and locations in a switch-like manner. While this switch is well understood for an individual protein, how regulatory networks produce intracellular activity patterns is currently not known. Here, we combine in vitro reconstitution experiments with computational modeling to study a minimal Rab5 activation network. We find that the molecular interactions in this system give rise to a positive feedback and bistable collective switching of Rab5. Furthermore, we find that switching near the critical point is intrinsically stochastic and provide evidence that controlling the inactive population of Rab5 on the membrane can shape the network response. Notably, we demonstrate that collective switching can spread on the membrane surface as a traveling wave of Rab5 activation. Together, our findings reveal how biochemical signaling networks control vesicle trafficking pathways and how their nonequilibrium properties define the spatiotemporal organization of the cell.
Collapse
Affiliation(s)
- Urban Bezeljak
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Hrushikesh Loya
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Beata Kaczmarek
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore 119077;
- Department of Biological Sciences, National University of Singapore, Singapore 119077
| | - Martin Loose
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria;
| |
Collapse
|
3
|
Ehrmann A, Nguyen B, Seifert U. Interlinked GTPase cascades provide a motif for both robust switches and oscillators. J R Soc Interface 2019; 16:20190198. [PMID: 31387482 DOI: 10.1098/rsif.2019.0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
GTPases regulate a wide range of cellular processes, such as intracellular vesicular transport, signal transduction and protein translation. These hydrolase enzymes operate as biochemical switches by toggling between an active guanosine triphosphate (GTP)-bound state and an inactive guanosine diphosphate (GDP)-bound state. We compare two network motifs, a single-species switch and an interlinked cascade that consists of two species coupled through positive and negative feedback loops. We find that interlinked cascades are closer to the ideal all-or-none switch and are more robust against fluctuating signals. While the single-species switch can only achieve bistability, interlinked cascades can be converted into oscillators by tuning the cofactor concentrations, which catalyse the activity of the cascade. These regimes can only be achieved with sufficient chemical driving provided by GTP hydrolysis. In this study, we present a thermodynamically consistent model that can achieve bistability and oscillations with the same feedback motif.
Collapse
Affiliation(s)
- Andreas Ehrmann
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Basile Nguyen
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
4
|
Linnane E, Davey P, Zhang P, Puri S, Edbrooke M, Chiarparin E, Revenko AS, Macleod A, Norman JC, Ross SJ. Differential uptake, kinetics and mechanisms of intracellular trafficking of next-generation antisense oligonucleotides across human cancer cell lines. Nucleic Acids Res 2019; 47:4375-4392. [PMID: 30927008 PMCID: PMC6511877 DOI: 10.1093/nar/gkz214] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/11/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023] Open
Abstract
Antisense oligonucleotides (ASOs) modulate cellular target gene expression through direct binding to complementary RNA. Advances in ASO chemistry have led to the development of phosphorothioate (PS) ASOs with constrained-ethyl modifications (cEt). These next-generation cEt-ASOs can enter cells without transfection reagents. Factors involved in intracellular uptake and trafficking of cEt-ASOs leading to successful target knockdown are highly complex and not yet fully understood. AZD4785 is a potent and selective therapeutic KRAS cEt-ASO currently under clinical development for the treatment of cancer. Therefore, we used this to investigate mechanisms of cEt-ASO trafficking across a panel of cancer cells. We found that the extent of ASO-mediated KRAS mRNA knockdown varied significantly between cells and that this did not correlate with bulk levels of intracellular accumulation. We showed that in cells with good productive uptake, distribution of ASO was perinuclear and in those with poor productive uptake distribution was peripheral. Furthermore, ASO rapidly trafficked to the late endosome/lysosome in poor productive uptake cells compared to those with more robust knockdown. An siRNA screen identified several factors mechanistically involved in productive ASO uptake, including the endosomal GTPase Rab5C. This work provides novel insights into the trafficking of cEt-ASOs and mechanisms that may determine their cellular fate.
Collapse
Affiliation(s)
- Emily Linnane
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, CB10 1XL, UK
| | - Paul Davey
- Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Pei Zhang
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, CB10 1XL, UK
| | - Sanyogitta Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, CB21 6GH, UK
| | - Mark Edbrooke
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, CB10 1XL, UK
| | | | | | | | - Jim C Norman
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Sarah J Ross
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, CB10 1XL, UK
| |
Collapse
|
5
|
Wen MH, Wang JY, Chiu YT, Wang MP, Lee SP, Tai CY. N-Cadherin Regulates Cell Migration Through a Rab5-Dependent Temporal Control of Macropinocytosis. Traffic 2016; 17:769-85. [DOI: 10.1111/tra.12402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Meng-Hsuan Wen
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei 114 Taiwan
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
| | - Jen-Yeu Wang
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
| | - Yu-Ting Chiu
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
- Institute of Genomics Sciences; National Yang-Ming University; Taipei 112 Taiwan
| | - Mei-Pin Wang
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
- Institute of Pharmaceutics; Development Center for Biotechnology; New Taipei City 221 Taiwan
| | - Sue-Ping Lee
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
| | - Chin-Yin Tai
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei 114 Taiwan
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
- Institute of Genomics Sciences; National Yang-Ming University; Taipei 112 Taiwan
- Institute of Pharmaceutics; Development Center for Biotechnology; New Taipei City 221 Taiwan
| |
Collapse
|
6
|
Sharma V, Sharma P, Selvapandiyan A, Salotra P. Leishmania donovani-specific Ub-related modifier-1: an early endosome-associated ubiquitin-like conjugation inLeishmania donovani. Mol Microbiol 2015; 99:597-610. [DOI: 10.1111/mmi.13253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Vanila Sharma
- National Institute of Pathology (ICMR); Safdarjang Hospital Campus; New Delhi 110029 India
- Symbiosis School of Biomedical Sciences; Symbiosis International University; Pune 412115 Maharashtra India
| | - Paresh Sharma
- National Institute of Pathology (ICMR); Safdarjang Hospital Campus; New Delhi 110029 India
| | - Angamuthu Selvapandiyan
- Institute of Molecular Medicine; 254 Okhla Industrial Estate, Phase III New Delhi 110020 India
| | - Poonam Salotra
- National Institute of Pathology (ICMR); Safdarjang Hospital Campus; New Delhi 110029 India
| |
Collapse
|
7
|
Kälin S, Hirschmann DT, Buser DP, Spiess M. Rabaptin5 is recruited to endosomes by Rab4 and Rabex5 to regulate endosome maturation. J Cell Sci 2015; 128:4126-37. [PMID: 26430212 DOI: 10.1242/jcs.174664] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022] Open
Abstract
Rab GTPases control membrane identity, fusion and transport by interaction with effector proteins. Effectors that influence the activation-inactivation cycle of their own or other Rab proteins contribute to the timely conversion of Rab membrane identities. Rab5 and its effector rabaptin5 (Rbpt5, also known as RABEP1) are generally considered the prime example for a positive-feedback loop in which Rab5-GTP recruits Rbpt5 in complex with Rabex5 (also known as RABGEF1), the GDP/GTP exchange factor of Rab5, to early endosomes, thus maintaining the Rab5 membrane identity. By deletion analysis, we found that the membrane recruitment of Rabaptin5 required binding to Rab4 and Rabex5, but not Rab5. Deletion of either one of the two Rab5-binding domains or silencing of Rab5 expression did not affect Rabaptin5 recruitment, but produced giant endosomes with early and late endosomal characteristics. The results contradict the model of feedback activation of Rab5 and instead indicate that Rbpt5 is recruited by both Rabex5 recognizing ubiquitylated cargo and by Rab4 to activate Rab5 in a feed-forward manner.
Collapse
Affiliation(s)
- Simone Kälin
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - David T Hirschmann
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Dominik P Buser
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Martin Spiess
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| |
Collapse
|
8
|
Krishnan J, Mois K, Suwanmajo T. The behaviour of basic autocatalytic signalling modules in isolation and embedded in networks. J Chem Phys 2014; 141:175102. [DOI: 10.1063/1.4898370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Zhang Z, Zhang T, Wang S, Gong Z, Tang C, Chen J, Ding J. Molecular mechanism for Rabex-5 GEF activation by Rabaptin-5. eLife 2014; 3. [PMID: 24957337 PMCID: PMC4102244 DOI: 10.7554/elife.02687] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 06/20/2014] [Indexed: 01/30/2023] Open
Abstract
Rabex-5 and Rabaptin-5 function together to activate Rab5 and further promote early endosomal fusion in endocytosis. The Rabex-5 GEF activity is autoinhibited by the Rabex-5 CC domain (Rabex-5CC) and activated by the Rabaptin-5 C2-1 domain (Rabaptin-5C21) with yet unknown mechanism. We report here the crystal structures of Rabex-5 in complex with the dimeric Rabaptin-5C21 (Rabaptin-5C212) and in complex with Rabaptin-5C212 and Rab5, along with biophysical and biochemical analyses. We show that Rabex-5CC assumes an amphipathic α-helix which binds weakly to the substrate-binding site of the GEF domain, leading to weak autoinhibition of the GEF activity. Binding of Rabaptin-5C21 to Rabex-5 displaces Rabex-5CC to yield a largely exposed substrate-binding site, leading to release of the GEF activity. In the ternary complex the substrate-binding site of Rabex-5 is completely exposed to bind and activate Rab5. Our results reveal the molecular mechanism for the regulation of the Rabex-5 GEF activity. DOI:http://dx.doi.org/10.7554/eLife.02687.001 Cells need to allow various molecules to pass through the plasma membrane on their surface. Some molecules have to enter the cell, whereas others have to leave. Cells rely on a process called endocytosis to move large molecules into the cell. This involves part of the membrane engulfing the molecule to form a ‘bubble’ around it. This bubble, which is called an endosome, then moves the molecule to final destination inside the cell. A protein called Rab5 controls how a new endosome is produced. However, before this can happen, various other molecules—including two proteins called Rabex-5 and Rabaptin-5—must activate the Rab5 protein. Exactly how these three proteins interact with each other was unknown. Zhang et al. used X-ray crystallography to examine the structures of the complexes formed when Rabex-5 and Rabaptin-5 bind to each other, both when Rab5 is present, and also when it is absent. Biochemical and biophysical experiments confirmed that the Rabex-5/Rabaptin-5 complex is able to activate Rab5. Zhang et al. also found that Rabex-5, on its own, folds so that the site that normally binds to Rab5 instead binds to a different part of Rabex-5, thus preventing endocytosis. However, when Rabaptin-5 forms a complex with Rabex-5, the Rab5 binding site is freed up. The Rabex-5/Rabaptin-5 complex can switch between a V shape and a linear structure. Binding to Rab5 stabilizes the linear form of the complex, which then helps activate Rab5, and subsequently the activated Rab5 can interact with other downstream molecules, triggering endocytosis. DOI:http://dx.doi.org/10.7554/eLife.02687.002
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tianlong Zhang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shanshan Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Chun Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
10
|
Hagiwara M, Kokubu E, Sugiura S, Komatsu T, Tada H, Isoda R, Tanigawa N, Kato Y, Ishida N, Kobayashi K, Nakashima M, Ishihara K, Matsushita K. Vinculin and Rab5 complex is required [correction of requited]for uptake of Staphylococcus aureus and interleukin-6 expression. PLoS One 2014; 9:e87373. [PMID: 24466349 PMCID: PMC3900708 DOI: 10.1371/journal.pone.0087373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/24/2013] [Indexed: 01/27/2023] Open
Abstract
Vinculin, a 116-kDa membrane cytoskeletal protein, is an important molecule for cell adhesion; however, little is known about its other cellular functions. Here, we demonstrated that vinculin binds to Rab5 and is required for Staphylococcus aureus (S. aureus) uptake in cells. Viunculin directly bound to Rab5 and enhanced the activation of S. aureus uptake. Over-expression of active vinculin mutants enhanced S. aureus uptake, whereas over-expression of an inactive vinculin mutant decreased S. aureus uptake. Vinculin bound to Rab5 at the N-terminal region (1-258) of vinculin. Vinculin and Rab5 were involved in the S. aureus-induced phosphorylation of MAP kinases (p38, Erk, and JNK) and IL-6 expression. Finally, vinculin and Rab5 knockdown reduced infection of S. aureus, phosphorylation of MAPKs and IL-6 expression in murine lungs. Our results suggest that vinculin binds to Rab5 and that these two molecules cooperatively enhance bacterial infection and the inflammatory response.
Collapse
Affiliation(s)
- Makoto Hagiwara
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, Chiba, Japan
| | - Shinsuke Sugiura
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Toshinori Komatsu
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Hiroyuki Tada
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Ryutaro Isoda
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Naomi Tanigawa
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yoshiko Kato
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Naoyuki Ishida
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kaoru Kobayashi
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Misako Nakashima
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | | | - Kenji Matsushita
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- * E-mail:
| |
Collapse
|
11
|
Qian H, Roy S. An Information Theoretical Analysis of Kinase Activated Phosphorylation Dephosphorylation Cycle. IEEE Trans Nanobioscience 2012; 11:289-95. [DOI: 10.1109/tnb.2011.2182658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Greene W, Zhang W, He M, Witt C, Ye F, Gao SJ. The ubiquitin/proteasome system mediates entry and endosomal trafficking of Kaposi's sarcoma-associated herpesvirus in endothelial cells. PLoS Pathog 2012; 8:e1002703. [PMID: 22615563 PMCID: PMC3355089 DOI: 10.1371/journal.ppat.1002703] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 03/30/2012] [Indexed: 01/12/2023] Open
Abstract
Ubiquitination, a post-translational modification, mediates diverse cellular functions including endocytic transport of molecules. Kaposi's sarcoma-associated herpesvirus (KSHV), an enveloped herpesvirus, enters endothelial cells primarily through clathrin-mediated endocytosis. Whether ubiquitination and proteasome activity regulates KSHV entry and endocytosis remains unknown. We showed that inhibition of proteasome activity reduced KSHV entry into endothelial cells and intracellular trafficking to nuclei, thus preventing KSHV infection of the cells. Three-dimensional (3-D) analyses revealed accumulation of KSHV particles in a cytoplasmic compartment identified as EEA1+ endosomal vesicles upon proteasome inhibition. KSHV particles are colocalized with ubiquitin-binding proteins epsin and eps15. Furthermore, ubiquitination mediates internalization of both KSHV and one of its receptors integrin β1. KSHV particles are colocalized with activated forms of the E3 ligase c-Cbl. Knock-down of c-Cbl or inhibition of its phosphorylation reduced viral entry and intracellular trafficking, resulting in decreased KSHV infectivity. These results demonstrate that ubiquitination mediates internalization of both KSHV and one of its cognate receptors integrin β1, and identify c-Cbl as a potential E3 ligase that facilitates this process. Ubiquitination, a post-translational modification, mediates important cellular functions including endocytic transport of molecules. Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus linked to the development of Kaposi's sarcoma, an endothelial malignancy commonly found in AIDS patients, and several other malignancies. KSHV enters endothelial cells primarily through clathrin-mediated endocytosis. In this study, we show that the proteasome activity is required for KSHV entry into endothelial cells and intracellular trafficking to nuclei. Inhibition of proteasome activity reduced KSHV infectivity and led to the accumulation of KSHV particles in EEA1+ early endosomal vesicles. Furthermore, we show that ubiquitination mediates the internalization of both KSHV and one of its receptors integrin β1. KSHV particles are colocalized with ubiquitin-binding proteins epsin and eps15, as well as activated forms of the E3 ligase c-Cbl. Knock-down of c-Cbl or inhibition of its phosphorylation blocked KSHV entry and trafficking, thus preventing KSHV infection of endothelial cells. Together, these results illustrate the essential role of ubiquitination during the internalization of KSHV and its cognate receptor integrin β1. The identification of an E3 ligase that mediates the ubiquitination of KSHV and its cognate receptor integrin β1 leading to viral entry provide a potential therapeutic target for this oncogenic virus.
Collapse
Affiliation(s)
- Whitney Greene
- Tumor Virology Program, Greehey Children's Cancer Research Institute, and Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Wei Zhang
- Tumor Virology Program, Greehey Children's Cancer Research Institute, and Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Meilan He
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Colleen Witt
- Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Fengchun Ye
- Tumor Virology Program, Greehey Children's Cancer Research Institute, and Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Shou-Jiang Gao
- Tumor Virology Program, Greehey Children's Cancer Research Institute, and Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Feng S, Knödler A, Ren J, Zhang J, Zhang X, Hong Y, Huang S, Peränen J, Guo W. A Rab8 guanine nucleotide exchange factor-effector interaction network regulates primary ciliogenesis. J Biol Chem 2012; 287:15602-9. [PMID: 22433857 DOI: 10.1074/jbc.m111.333245] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Primary cilia are microtubule-based solitary membrane projections on the cell surface that play important roles in signaling and development. Recent studies have demonstrated that polarized vesicular trafficking involving the small GTPase Rab8 and its guanine nucleotide exchange factor Rabin8 is essential for primary ciliogenesis. In this study, we show that a highly conserved region of Rabin8 is pivotal for its activation as a guanine nucleotide exchange factor for Rab8. In addition, in its activated conformation, Rabin8 interacts with Sec15, a subunit of the exocyst and downstream effector of Rab8. Expression of constitutively activated Rab8 promotes the association of Sec15 with Rabin8. Using immunofluorescence microscopy, we found that Sec15 co-localized with Rab8 along the primary cilium. Inhibition of Sec15 function in cells led to defects in primary ciliogenesis. The Rabin8-Rab8-Sec15 interaction may couple the activation of Rab8 to the recruitment of the Rab8 effector and is involved in the regulation of vesicular trafficking for primary cilium formation.
Collapse
Affiliation(s)
- Shanshan Feng
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhan K, Xie H, Gall J, Ma M, Griesbeck O, Salehi A, Rao J. Real-time imaging of Rab5 activity using a prequenched biosensor. ACS Chem Biol 2011; 6:692-9. [PMID: 21506516 DOI: 10.1021/cb100377m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A key regulator of receptor-mediated endocytosis, Rab5, plays a pivotal role in cargo receptor internalization, endosomal maturation, and transduction and degradation of internalized signaling molecules and recycling cargo receptor. Stressful conditions within cells lead to increased Rab5 activation, and increasing evidence correlates Rab5 activity abnormalities with certain diseases. Current antibody-based imaging methods cannot distinguish active Rab5 from total Rab5 population and provide dynamic information on magnitude and duration of Rab5 activation in cellular events and pathogenesis. We report here novel molecular imaging probes that specifically target GTP-bound Rab5 associated with the early endosome membrane in live cells and fixed mouse brain tissues. Our Rab5 activity fluorescent biosensor (RAFB) contains the Rab5 binding domain of the Rab5 effector Rabaptin 5, a fluorophore (a quantum dot or fluorescent dye) and a cell-penetrating peptide for live-cell delivery. The quantum dot conjugated RAFB was able to image the elevated Rab5 activity in both the cortex and hippocampi tissues of a Ts65Dn mouse. A prequenched RAFB based on fluorescence resonance energy transfer (FRET) can image cytosolic active Rab5 in single live cells. This novel method should enable imaging of the biological process in which Rab5 activity is regulated in various cellular systems.
Collapse
Affiliation(s)
| | | | | | | | - Oliver Griesbeck
- Max-Planck-Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ahmad Salehi
- Palo Alto VA Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, United States
| | - Jianghong Rao
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
15
|
de la Vega M, Burrows JF, Johnston JA. Ubiquitination: Added complexity in Ras and Rho family GTPase function. Small GTPases 2011; 2:192-201. [PMID: 22145091 DOI: 10.4161/sgtp.2.4.16707] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/08/2011] [Accepted: 07/08/2011] [Indexed: 12/17/2022] Open
Abstract
The regulation of the small GTPases leading to their membrane localization has long been attributed to processing of their C-terminal CAAX box. As deregulation of many of these GTPases have been implicated in cancer and other disorders, prenylation and methylation of this CAAX box has been studied in depth as a possibility for drug targeting, but unfortunately, to date no drug has proved clinically beneficial. However, these GTPases also undergo other modifications that may be important for their regulation. Ubiquitination has long been demonstrated to regulate the fate of numerous cellular proteins and recently it has become apparent that many GTPases, along with their GAPs, GeFs and GDis, undergo ubiquitination leading to a variety of fates such as re-localization or degradation. in this review we focus on the recent literature demonstrating that the regulation of small GTPases by ubiquitination, either directly or indirectly, plays a considerable role in controlling their function and that targeting these modifications could be important for disease treatment.
Collapse
Affiliation(s)
- Michelle de la Vega
- Centre for Infection and Immunity; School of Medicine, Dentistry and Biomedical Sciences; Queen's University; Belfast, UK
| | | | | |
Collapse
|
16
|
Shi PZ, Qian H. A perturbation analysis of rate theory of self-regulating genes and signaling networks. J Chem Phys 2011; 134:065104. [PMID: 21322737 DOI: 10.1063/1.3535561] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A thorough kinetic analysis of the rate theory for stochastic self-regulating gene networks is presented. The chemical master equation kinetic model in terms of a coupled birth-death process is deconstructed into several simpler kinetic modules. We formulate and improve upon the rate theory of self-regulating genes in terms of perturbation theory. We propose a simple five-state scheme as a faithful caricature that elucidates the full kinetics including the "resonance phenomenon" discovered by Walczak et al. [Proc. Natl. Acad. Sci. U.S.A. 102, 18926 (2005)]. The same analysis can be readily applied to other biochemical networks such as phosphorylation signaling with fluctuating kinase activity. Generalization of the present approach can be included in multiple time-scale numerical computations for large biochemical networks.
Collapse
Affiliation(s)
- Pei-Zhe Shi
- Department of Applied Mathematics, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
17
|
Abstract
RAS proteins conduct signaling from surface receptors to cytoplasmic effectors, and RAS gain-of-function mutations are pervasive in cancer. A new mechanism for RAS signal attenuation with implications for receptor trafficking has been uncovered.
Collapse
Affiliation(s)
- John Colicelli
- Department of Biological Chemistry, Molecular Biology Institute and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
18
|
Qian H, Bishop LM. The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: linear single-molecule enzyme kinetics and nonlinear biochemical reaction networks. Int J Mol Sci 2010; 11:3472-500. [PMID: 20957107 PMCID: PMC2956107 DOI: 10.3390/ijms11093472] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 09/14/2010] [Indexed: 11/16/2022] Open
Abstract
We develop the stochastic, chemical master equation as a unifying approach to the dynamics of biochemical reaction systems in a mesoscopic volume under a living environment. A living environment provides a continuous chemical energy input that sustains the reaction system in a nonequilibrium steady state with concentration fluctuations. We discuss the linear, unimolecular single-molecule enzyme kinetics, phosphorylation-dephosphorylation cycle (PdPC) with bistability, and network exhibiting oscillations. Emphasis is paid to the comparison between the stochastic dynamics and the prediction based on the traditional approach based on the Law of Mass Action. We introduce the difference between nonlinear bistability and stochastic bistability, the latter has no deterministic counterpart. For systems with nonlinear bistability, there are three different time scales: (a) individual biochemical reactions, (b) nonlinear network dynamics approaching to attractors, and (c) cellular evolution. For mesoscopic systems with size of a living cell, dynamics in (a) and (c) are stochastic while that with (b) is dominantly deterministic. Both (b) and (c) are emergent properties of a dynamic biochemical network; We suggest that the (c) is most relevant to major cellular biochemical processes such as epi-genetic regulation, apoptosis, and cancer immunoediting. The cellular evolution proceeds with transitions among the attractors of (b) in a "punctuated equilibrium" manner.
Collapse
Affiliation(s)
- Hong Qian
- *Authors to whom correspondence should be addressed; E-Mails: (H.Q.); (L.M.B.)
| | - Lisa M. Bishop
- *Authors to whom correspondence should be addressed; E-Mails: (H.Q.); (L.M.B.)
| |
Collapse
|