1
|
Sportelli L, Eisenberg DP, Passiatore R, D'Ambrosio E, Antonucci LA, Bettina JS, Chen Q, Goldman AL, Gregory MD, Griffiths K, Hyde TM, Kleinman JE, Pardiñas AF, Parihar M, Popolizio T, Rampino A, Shin JH, Veronese M, Ulrich WS, Zink CF, Bertolino A, Howes OD, Berman KF, Weinberger DR, Pergola G. Dopamine signaling enriched striatal gene set predicts striatal dopamine synthesis and physiological activity in vivo. Nat Commun 2024; 15:3342. [PMID: 38688917 PMCID: PMC11061310 DOI: 10.1038/s41467-024-47456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
The polygenic architecture of schizophrenia implicates several molecular pathways involved in synaptic function. However, it is unclear how polygenic risk funnels through these pathways to translate into syndromic illness. Using tensor decomposition, we analyze gene co-expression in the caudate nucleus, hippocampus, and dorsolateral prefrontal cortex of post-mortem brain samples from 358 individuals. We identify a set of genes predominantly expressed in the caudate nucleus and associated with both clinical state and genetic risk for schizophrenia that shows dopaminergic selectivity. A higher polygenic risk score for schizophrenia parsed by this set of genes predicts greater dopamine synthesis in the striatum and greater striatal activation during reward anticipation. These results translate dopamine-linked genetic risk variation into in vivo neurochemical and hemodynamic phenotypes in the striatum that have long been implicated in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Leonardo Sportelli
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Daniel P Eisenberg
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| | - Roberta Passiatore
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Enrico D'Ambrosio
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Linda A Antonucci
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Jasmine S Bettina
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| | - Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Aaron L Goldman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Michael D Gregory
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| | - Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
- Holmusk Technologies, New York, NY, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Madhur Parihar
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Teresa Popolizio
- Radiology Department, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonio Rampino
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Azienda Ospedaliero Universitaria Consorziale Policlinico, Bari, Italy
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Mattia Veronese
- Department of Information Engineering, University of Padua, Padua, Italy
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - William S Ulrich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Caroline F Zink
- Baltimore Research and Education Foundation, Baltimore, MD, USA
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
- Azienda Ospedaliero Universitaria Consorziale Policlinico, Bari, Italy
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Karen F Berman
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, NIH, DHHS, Bethesda, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Giulio Pergola
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.
- Group of Psychiatric Neuroscience, Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Blum K, Bowirrat A, Baron D, Elman I, Makale MT, Cadet JL, Thanos PK, Hanna C, Ahmed R, Gondre-Lewis MC, Dennen CA, Braverman ER, Soni D, Carney P, Khalsa J, Modestino EJ, Barh D, Bagchi D, Badgaiyan RD, McLaughlin T, Cortese R, Ceccanti M, Murphy KT, Gupta A, Makale MT, Sunder K, Gold MS. Identification of stress-induced epigenetic methylation onto dopamine D2 gene and neurological and behavioral consequences. GENE & PROTEIN IN DISEASE 2024; 3:10.36922/gpd.1966. [PMID: 38766604 PMCID: PMC11100097 DOI: 10.36922/gpd.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The D2 dopamine receptor (DRD2) gene has garnered substantial attention as one of the most extensively studied genes across various neuropsychiatric disorders. Since its initial association with severe alcoholism in 1990, particularly through the identification of the DRD2 Taq A1 allele, numerous international investigations have been conducted to elucidate its role in different conditions. As of February 22, 2024, there are 5485 articles focusing on the DRD2 gene listed in PUBMED. There have been 120 meta-analyses with mixed results. In our opinion, the primary cause of negative reports regarding the association of various DRD2 gene polymorphisms is the inadequate screening of controls, not adequately eliminating many hidden reward deficiency syndrome behaviors. Moreover, pleiotropic effects of DRD2 variants have been identified in neuropsychologic, neurophysiologic, stress response, social stress defeat, maternal deprivation, and gambling disorder, with epigenetic DNA methylation and histone post-translational negative methylation identified as discussed in this article. There are 70 articles listed in PUBMED for DNA methylation and 20 articles listed for histone methylation as of October 19, 2022. For this commentary, we did not denote DNA and/or histone methylation; instead, we provided a brief summary based on behavioral effects. Based on the fact that Blum and Noble characterized the DRD2 Taq A1 allele as a generalized reward gene and not necessarily specific alcoholism, it now behooves the field to find ways to either use effector moieties to edit the neuroepigenetic insults or possibly harness the idea of potentially removing negative mRNA-reduced expression by inducing "dopamine homeostasis."
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of the Health Sciences, Pomona, CA, United States of America
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Psychiatry, University of Vermont, Burlington, VT 05405, United States of America
- Department of Psychiatry, Wright University Boonshoft School of Medicine, Dayton, OH, United States of America
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX United States of America
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
- Department of Nutrigenomic Research, Victory Nutrition International, Inc., Bonita Springs, FL, United States of America
- Division of Personalized Neuromodulation Research, Sunder Foundation, Palm Springs, CA, United States of America
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - David Baron
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of the Health Sciences, Pomona, CA, United States of America
| | - Igor Elman
- Division of Personalized Neuromodulation Research, Sunder Foundation, Palm Springs, CA, United States of America
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, United States of America
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, UC San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, United States of America
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD., United States of America
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America; Department of Psychology, State University of New York at Buffalo, Buffalo, NY., United States of America
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America; Department of Psychology, State University of New York at Buffalo, Buffalo, NY., United States of America
| | - Rania Ahmed
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America; Department of Psychology, State University of New York at Buffalo, Buffalo, NY., United States of America
| | - Marjorie C. Gondre-Lewis
- Department of Anatomy, Howard University College of Medicine, and Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, Washington D.C., United States of America
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, United States of America
| | - Eric R. Braverman
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX United States of America
| | - Diwanshu Soni
- Division of Addiction Research & Education, Center for Sports, Exercise & Mental Health, Western University of the Health Sciences, Pomona, CA, United States of America
| | - Paul Carney
- Division Pediatric Neurology, University of Missouri, School of Medicine, Columbia, MO., United States of America
| | - Jag Khalsa
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Edward J. Modestino
- Department of Psychology, Curry College, Milton, MA., United States of America
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, Texas Southern University College of Pharmacy and Health Sciences, Houston, TX, United States of America
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland OH., 44106, USA and Department of Psychiatry, Mt. Sinai School of Medicine, New York, NY, United States of America
| | - Thomas McLaughlin
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, Austin, TX United States of America
| | - Rene Cortese
- Department of Child Health – Child Health Research Institute, & Department of Obstetrics, Gynecology and Women’s Health School of Medicine, University of Missouri, MO, United States of America
| | - Mauro Ceccanti
- Alcohol Addiction Program, Latium Region Referral Center, Sapienza University of Rome, Roma, Italy
| | - Kevin T. Murphy
- Division of Personalized Neuromodulation and Patient Care, PeakLogic, LLC, Del Mar, CA, United States of America
| | - Ashim Gupta
- Future Biologics, Lawrenceville, Georgia, 30043, United States of America
| | - Miles T. Makale
- Department of Psychology, UC San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, United States of America
| | - Keerthy Sunder
- Division of Personalized Neuromodulation Research, Sunder Foundation, Palm Springs, CA, United States of America
- Department of Psychiatry, UC Riverside School of Medicine, Riverside, CA, United States of America
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
3
|
Sportelli L, Eisenberg DP, Passiatore R, D'Ambrosio E, Antonucci LA, Chen Q, Czarapata J, Goldman AL, Gregory M, Griffiths K, Hyde TM, Kleinman JE, Pardiñas AF, Parihar M, Popolizio T, Rampino A, Shin JH, Veronese M, Ulrich WS, Zink CF, Bertolino A, Howes OD, Berman KF, Weinberger DR, Pergola G. Dopamine and schizophrenia from bench to bedside: Discovery of a striatal co-expression risk gene set that predicts in vivo measures of striatal function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558594. [PMID: 37786720 PMCID: PMC10541621 DOI: 10.1101/2023.09.20.558594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Schizophrenia (SCZ) is characterized by a polygenic risk architecture implicating diverse molecular pathways important for synaptic function. However, how polygenic risk funnels through these pathways to translate into syndromic illness is unanswered. To evaluate biologically meaningful pathways of risk, we used tensor decomposition to characterize gene co-expression in post-mortem brain (of neurotypicals: N=154; patients with SCZ: N=84; and GTEX samples N=120) from caudate nucleus (CN), hippocampus (HP), and dorsolateral prefrontal cortex (DLPFC). We identified a CN-predominant gene set showing dopaminergic selectivity that was enriched for genes associated with clinical state and for genes associated with SCZ risk. Parsing polygenic risk score for SCZ based on this specific gene set (parsed-PRS), we found that greater pathway-specific SCZ risk predicted greater in vivo striatal dopamine synthesis capacity measured by [ 18 F]-FDOPA PET in three independent cohorts of neurotypicals and patients (total N=235) and greater fMRI striatal activation during reward anticipation in two additional independent neurotypical cohorts (total N=141). These results reveal a 'bench to bedside' translation of dopamine-linked genetic risk variation in driving in vivo striatal neurochemical and hemodynamic phenotypes that have long been implicated in the pathophysiology of SCZ.
Collapse
|
4
|
Moore SC, Vaz de Castro PAS, Yaqub D, Jose PA, Armando I. Anti-Inflammatory Effects of Peripheral Dopamine. Int J Mol Sci 2023; 24:13816. [PMID: 37762126 PMCID: PMC10530375 DOI: 10.3390/ijms241813816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Dopamine is synthesized in the nervous system where it acts as a neurotransmitter. Dopamine is also synthesized in a number of peripheral organs as well as in several types of cells and has organ-specific functions and, as demonstrated more recently, is involved in the regulation of the immune response and inflammatory reaction. In particular, the renal dopaminergic system is very important in the regulation of sodium transport and blood pressure and is particularly sensitive to stimuli that cause oxidative stress and inflammation. This review is focused on how dopamine is synthesized in organs and tissues and the mechanisms by which dopamine and its receptors exert their effects on the inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | - Ines Armando
- Division of Kidney Diseases and Hypertension, Department of Medicine, The George Washington School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.C.M.); (P.A.S.V.d.C.); (D.Y.); (P.A.J.)
| |
Collapse
|
5
|
Dopamine Dynamics and Neurobiology of Non-Response to Antipsychotics, Relevance for Treatment Resistant Schizophrenia: A Systematic Review and Critical Appraisal. Biomedicines 2023; 11:biomedicines11030895. [PMID: 36979877 PMCID: PMC10046109 DOI: 10.3390/biomedicines11030895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Treatment resistant schizophrenia (TRS) is characterized by a lack of, or suboptimal response to, antipsychotic agents. The biological underpinnings of this clinical condition are still scarcely understood. Since all antipsychotics block dopamine D2 receptors (D2R), dopamine-related mechanisms should be considered the main candidates in the neurobiology of antipsychotic non-response, although other neurotransmitter systems play a role. The aims of this review are: (i) to recapitulate and critically appraise the relevant literature on dopamine-related mechanisms of TRS; (ii) to discuss the methodological limitations of the studies so far conducted and delineate a theoretical framework on dopamine mechanisms of TRS; and (iii) to highlight future perspectives of research and unmet needs. Dopamine-related neurobiological mechanisms of TRS may be multiple and putatively subdivided into three biological points: (1) D2R-related, including increased D2R levels; increased density of D2Rs in the high-affinity state; aberrant D2R dimer or heteromer formation; imbalance between D2R short and long variants; extrastriatal D2Rs; (2) presynaptic dopamine, including low or normal dopamine synthesis and/or release compared to responder patients; and (3) exaggerated postsynaptic D2R-mediated neurotransmission. Future points to be addressed are: (i) a more neurobiologically-oriented phenotypic categorization of TRS; (ii) implementation of neurobiological studies by directly comparing treatment resistant vs. treatment responder patients; (iii) development of a reliable animal model of non-response to antipsychotics.
Collapse
|
6
|
Khani P, Ansari Dezfouli M, Nasri F, Rahemi M, Ahmadloo S, Afkhami H, Saeidi F, Tereshchenko S, Bigdeli MR, Modarressi MH. Genetic and epigenetic effects on couple adjustment in context of romantic relationship: A scoping systematic review. Front Genet 2023; 14:1002048. [PMID: 36816018 PMCID: PMC9937082 DOI: 10.3389/fgene.2023.1002048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction: Couples' relationships defined by a complex interaction between the two partners and their intrapersonal traits. Romantic; relationships and love are associated with marital satisfaction and stability, as well as couples' happiness and health. Personality traits influence romantic relationships and, personality influenced by genetical and non-genetically factors. The roles of non-genetically factors such as socioeconomic position and external appearance have revealed in determining the quality of romantic relationships. Methods: We; performed a scoping systematic review to assess the association between genetics and epigenetic factors and romantic relationship. Relevant articles were identified by PubMed, EMBASE, Web of Science, Scopus, and the APA PsycInfo searching between inception and 4 June 2022. Results: Different studies evaluated the associated polymorphisms in 15 different genes or chromosomal regions. In the first step; we classified them into four groups: (1) Oxytocin-related signaling pathway (OXTR, CD38, and AVPR1A); (2) Serotonin-related signaling pathway (SLC6A4, HTR1A, and HTR2A); (3) Dopamine and catecholamine-related signaling pathway (DRD1, DRD2, DRD4, ANKK1, and COMT); and (4) other genes (HLA, GABRA2, OPRM1, and Y-DNA haplogroup D-M55). Then, we evaluated and extracted significant polymorphisms that affect couple adjustment and romantic relationships. Discussion: Overall, the findings suggest that genetic and epigenetics variants play a key role in marital adjustment and romantic relationships over time.
Collapse
Affiliation(s)
- Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mitra Ansari Dezfouli
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farzad Nasri
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Rahemi
- Department of stem cell technology and tissue regeneration, Faculty of Science, Tehran University, Tehran, Iran
| | - Salma Ahmadloo
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Sciences, Tehran, Iran
| | - Farzane Saeidi
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sergey Tereshchenko
- Research Institute of Medical Problems of the North, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, Krasnoyarsk, Russia
| | - Mohammad Reza Bigdeli
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
7
|
Ferrera D, Gómez-Esquer F, Peláez I, Barjola P, Fernandes-Magalhaes R, Carpio A, De Lahoz ME, Martín-Buro MC, Mercado F. Working memory dysfunction in fibromyalgia is associated with genotypes of the catechol- O-methyltransferase gene: an event-related potential study. Eur Arch Psychiatry Clin Neurosci 2023; 273:25-40. [PMID: 36100778 PMCID: PMC9958168 DOI: 10.1007/s00406-022-01488-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
Recent findings have associated different COMT genotypes with working memory capacity in patients with fibromyalgia. Although it is thought that the COMT gene may influence neural correlates (P2 and P3 ERP components) underlying working memory impairment in this chronic-pain syndrome, it has not yet been explored. Therefore, the aim of the present research was to investigate the potential effect of the COMT gene in fibromyalgia patients on ERP working memory indices (P2 and P3 components). For this purpose, 102 participants (51 patients and 51 healthy control participants) took part in the experiment. Event-related potentials and behavioral responses were recorded while participants performed a spatial n-back task. Participants had to decide if the stimulus coincided or not in the same location as the one presented one (1-back condition) or two (2-back condition) trials before. Genotypes of the COMT gene were determined through a saliva sample from all participants. Present results significantly showed lower working memory performance (p < 0.05) in patients with fibromyalgia as compared to control participants (higher rate of errors and slower reaction times). At neural level, we found that patients exhibited enhanced frontocentral and parieto-occipital P2 amplitudes compared to control participants (p < 0.05). Interestingly, we also observed that only fibromyalgia patients carrying the Val/Val genotype of the COMT gene showed higher frontocentral P2 amplitudes than control participants (p < 0.05). Current results (behavioral outcomes and P2 amplitudes) confirmed the presence of an alteration in working memory functioning in fibromyalgia. The enhancement of frontocentral P2 could be reflecting that these patients would manifest an inefficient way of activating executive attention processes, in carriers of the Val/Val genotype of COMT. To our knowledge, the present findings are the first linking neural indices of working memory dysfunctions and COMT genotypes in fibromyalgia. Applying a subgroup of patient's strategy based on this genetic marker could be useful to establish more tailored therapeutical approaches.
Collapse
Affiliation(s)
- David Ferrera
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Francisco Gómez-Esquer
- grid.28479.300000 0001 2206 5938Emerging Research Group of Anatomical, Molecular and Human Development Bases, Department of Basic Health Sciences, School of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Irene Peláez
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Paloma Barjola
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Roberto Fernandes-Magalhaes
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Alberto Carpio
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - María Eugenia De Lahoz
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - María Carmen Martín-Buro
- grid.28479.300000 0001 2206 5938Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Francisco Mercado
- Department of Psychology, School of Health Sciences, Rey Juan Carlos University, Av. Atenas s/n. 28922, Alcorcón, Madrid, Spain.
| |
Collapse
|
8
|
D'Ambrosio E, Pergola G, Pardiñas AF, Dahoun T, Veronese M, Sportelli L, Taurisano P, Griffiths K, Jauhar S, Rogdaki M, Bloomfield MAP, Froudist-Walsh S, Bonoldi I, Walters JTR, Blasi G, Bertolino A, Howes OD. A polygenic score indexing a DRD2-related co-expression network is associated with striatal dopamine function. Sci Rep 2022; 12:12610. [PMID: 35871219 PMCID: PMC9308811 DOI: 10.1038/s41598-022-16442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
The D2 dopamine receptor (D2R) is the primary site of the therapeutic action of antipsychotics and is involved in essential brain functions relevant to schizophrenia, such as attention, memory, motivation, and emotion processing. Moreover, the gene coding for D2R (DRD2) has been associated with schizophrenia at a genome-wide level. Recent studies have shown that a polygenic co-expression index (PCI) predicting the brain-specific expression of a network of genes co-expressed with DRD2 was associated with response to antipsychotics, brain function during working memory in patients with schizophrenia, and with the modulation of prefrontal cortex activity after pharmacological stimulation of D2 receptors. We aimed to investigate the relationship between the DRD2 gene network and in vivo striatal dopaminergic function, which is a phenotype robustly associated with psychosis and schizophrenia. To this aim, a sample of 92 healthy subjects underwent 18F-DOPA PET and was genotyped for genetic variations indexing the co-expression of the DRD2-related genetic network in order to calculate the PCI for each subject. The PCI was significantly associated with whole striatal dopamine synthesis capacity (p = 0.038). Exploratory analyses on the striatal subdivisions revealed a numerically larger effect size of the PCI on dopamine function for the associative striatum, although this was not significantly different than effects in other sub-divisions. These results are in line with a possible relationship between the DRD2-related co-expression network and schizophrenia and extend it by identifying a potential mechanism involving the regulation of dopamine synthesis. Future studies are needed to clarify the molecular mechanisms implicated in this relationship.
Collapse
Affiliation(s)
- Enrico D'Ambrosio
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Giulio Pergola
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Tarik Dahoun
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Leonardo Sportelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Paolo Taurisano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Sameer Jauhar
- Centre for Affective Disorders, Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Maria Rogdaki
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Michael A P Bloomfield
- Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London, W1T 7NF, UK
| | | | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Giuseppe Blasi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy.
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London, UK.
- H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark.
| |
Collapse
|
9
|
Zhou J, Li J, Zhao Q, Ou P, Zhao W. Working memory deficits in children with schizophrenia and its mechanism, susceptibility genes, and improvement: A literature review. Front Psychiatry 2022; 13:899344. [PMID: 35990059 PMCID: PMC9389215 DOI: 10.3389/fpsyt.2022.899344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The negative influence on the cognitive ability of schizophrenia is one of the issues widely discussed in recent years. Working memory deficits are thought to be a core cognitive symptom of schizophrenia and lead to poorer social functions and worse academic performance. Previous studies have confirmed that working memory deficits tend to appear in the prodromal phase of schizophrenia. Therefore, considering that children with schizophrenia have better brain plasticity, it is critical to explore the development of their working memory. Although the research in this field developed gradually in recent years, few researchers have summarized these findings. The current study aims to review the recent studies from both behavior and neuroimaging aspects to summarize the working memory deficits of children with schizophrenia and to discuss the pathogenic factors such as genetic susceptibility. In addition, this study put forward some practicable interventions to improve cognitive symptoms of schizophrenia from psychological and neural perspectives.
Collapse
Affiliation(s)
- Jintao Zhou
- School of Psychology, Nanjing Normal University, Nanjing, China.,Department of Psychology, Fudan University, Shanghai, China
| | - Jingfangzhou Li
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Qi Zhao
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macao, Macao SAR, China
| | - Peixin Ou
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macao, Macao SAR, China
| | - Wan Zhao
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
10
|
Magistrelli L, Ferrari M, Furgiuele A, Milner AV, Contaldi E, Comi C, Cosentino M, Marino F. Polymorphisms of Dopamine Receptor Genes and Parkinson's Disease: Clinical Relevance and Future Perspectives. Int J Mol Sci 2021; 22:ijms22073781. [PMID: 33917417 PMCID: PMC8038729 DOI: 10.3390/ijms22073781] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease caused by loss of dopaminergic neurons in the midbrain. PD is clinically characterized by a variety of motor and nonmotor symptoms, and treatment relies on dopaminergic replacement. Beyond a common pathological hallmark, PD patients may present differences in both clinical progression and response to drug therapy that are partly affected by genetic factors. Despite extensive knowledge on genetic variability of dopaminergic receptors (DR), few studies have addressed their relevance as possible influencers of clinical heterogeneity in PD patients. In this review, we summarized available evidence regarding the role of genetic polymorphisms in DR as possible determinants of PD development, progression and treatment response. Moreover, we examined the role of DR in the modulation of peripheral immunity, in light of the emerging role of the peripheral immune system in PD pathophysiology. A better understanding of all these aspects represents an important step towards the development of precise and personalized disease-modifying therapies for PD.
Collapse
Affiliation(s)
- Luca Magistrelli
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy; (L.M.); (A.F.)
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
| | - Marco Ferrari
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
| | - Alessia Furgiuele
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy; (L.M.); (A.F.)
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
| | - Anna Vera Milner
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
| | - Elena Contaldi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
- PhD Program in Medical Sciences and Biotechnology, University of Piemonte Orientale, 28100 Novara, Italy
| | - Cristoforo Comi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
- Correspondence:
| | - Marco Cosentino
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
- Center of Research in Neuroscience, University of Insubria, 21100 Varese, Italy
| | - Franca Marino
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
- Center of Research in Neuroscience, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
11
|
Ji Y, Zhang X, Wang Z, Qin W, Liu H, Xue K, Tang J, Xu Q, Zhu D, Liu F, Yu C. Genes associated with gray matter volume alterations in schizophrenia. Neuroimage 2020; 225:117526. [PMID: 33147509 DOI: 10.1016/j.neuroimage.2020.117526] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Although both schizophrenia and gray matter volume (GMV) show high heritability, however, genes accounting for GMV alterations in schizophrenia remain largely unknown. Based on risk genes identified in schizophrenia by the genome-wide association study of the Schizophrenia Working Group of the Psychiatric Genomics Consortium, we used transcription-neuroimaging association analysis to test that which of these genes are associated with GMV changes in schizophrenia. For each brain tissue sample, the expression profiles of 196 schizophrenia risk genes were extracted from six donated normal brains of the Allen Human Brain Atlas, and GMV differences between patients with schizophrenia and healthy controls were calculated based on five independent case-control structural MRI datasets (276 patients and 284 controls). Genes associated with GMV changes in schizophrenia were identified by performing cross-sample spatial correlations between expression levels of each gene and case-control GMV difference derived from the five MRI datasets integrated by harmonization and meta-analysis. We found that expression levels of 98 genes consistently showed significant cross-sample spatial correlations with GMV changes in schizophrenia. These genes were functionally enriched for chemical synaptic transmission, central nervous system development, and cell projection. Overall, this study provides a set of genes possibly associated with GMV changes in schizophrenia, which could be used as candidate genes to explore biological mechanisms underlying the structural impairments in schizophrenia.
Collapse
Affiliation(s)
- Yuan Ji
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xue Zhang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zirui Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huaigui Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kaizhong Xue
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jie Tang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiang Xu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dan Zhu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
12
|
The effect of rs1076560 (DRD2) and rs4680 (COMT) on tardive dyskinesia and cognition in schizophrenia subjects. Psychiatr Genet 2020; 30:125-135. [PMID: 32931693 PMCID: PMC10111058 DOI: 10.1097/ypg.0000000000000258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The aim of the study is to test the association of a functional variant each in DRD2 and COMT genes with schizophrenia and its endophenotypes. BASIC METHODS Effect of two functional variants rs1076560 in DRD2 and rs4680 in COMT on (1) schizophrenia (502 cases, 448 controls) diagnosed by Diagnostic and Statistical Manual of Mental Disorders-IV criteria and in subsets with (2) tardive dyskinesia (80 positive, 103 negative), assessed by Abnormal Involuntary Movement Scale (AIMS), positive and negative symptoms assessed by Positive and Negative Syndrome Scale (PANSS) and (3) cognition (299 cases, 245 controls), estimated by Penn Computerized Neurocognitive Battery, were analysed either using analysis of variance (ANOVA) or regression analysis. MAIN RESULTS No association of two SNPs with schizophrenia, but association of rs4680 (P < 0.05) with tardive dyskinesia was observed. On ANOVA, main effect of smoking [F(2,148) = 16.3; P = 3.9 × 10]; rs4680 [F(2,148) = 3.3; P = 0.04] and interaction effect of tardive dyskinesia-status*Smoking [F(2,148) = 5.4, P = 0.006]; Smoking*rs1076560 [F(3,148) = 3.6; P = 0.01]; Smoking*rs4680 [F(4,148) = 5.3; P = 4.7 × 10] were significant with AIMS tardive dyskinesia score. The main effect of rs1076560 [F(2,148) = 4.5; P = 0.013] and rs4680 [F(2,148) = 4.0; P = 0.02] were significant with limb truncal tardive dyskinesia. Allelic/genotypic (P = 0.004/P = 0.01) association of rs1076560 with negative scale of PANSS in tardive dyskinesia-negative; diminished expression factor of PANSS in tardive dyskinesia-negative subcohort (allelic/genotypic P = 3.3 × 10/6.6 × 10) and tardive dyskinesia cohorts (P = 0.003/0.002); genotypic association (P = 0.05) with disorganised/concrete factor in tardive dyskinesia-positive subcohorts were observed by regression analysis using gPLINKv2.050. Further allelic/genotypic (P = 0.02) association of rs4680 with depressed factor of PANSS in tardive dyskinesia cohort was observed. Allelic/genotypic association of rs1076560 with abstraction and mental flexibilityaccuracy (P = 0.03/0.04), abstraction and mental flexibilityefficiency (P = 0.01/0.02); allelic association with spatial abilityprocessing speed (P = 0.03), emotionefficiency (P = 0.05); and with spatial abilityefficiency (genotypic, P = 0.05) in healthy controls and allelic association of rs4680 with emotionefficiency in cases with schizophrenia (P = 0.04) were notable. PRINCIPAL CONCLUSION Dopaminergic genes seem to contribute to tardive dyskinesia and cognition warranting replication.
Collapse
|
13
|
Effects of COMT Genotypes on Working Memory Performance in Fibromyalgia Patients. J Clin Med 2020; 9:jcm9082479. [PMID: 32752289 PMCID: PMC7464119 DOI: 10.3390/jcm9082479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022] Open
Abstract
Growing research has reported the presence of a clear impairment of working memory functioning in fibromyalgia. Although different genetic factors involving dopamine availability (i.e, the COMT gene) have been associated with the more severe presentation of key symptoms in fibromyalgia, scientific evidence regarding the influence of COMT genotypes on cognitive impairment in these patients is still lacking. To this end, 167 participants took part in the present investigation. Working memory performance was assessed by the application of the SST (Spatial Span Test) and LNST (Letter and Number Sequence Test) belonging to the Weschler Memory Scale III. Significant working memory impairment was shown by the fibromyalgia patients. Remarkably, our results suggest that performance according to different working memory measures might be influenced by different genotypes of the COMT gene. Specifically, fibromyalgia patients carrying the Val/Val genotype exhibited significantly worse outcomes for the span of SST backward, SST backward score, SST total score and the Working Memory Index (WMI) than the Val/Val healthy carriers. Furthermore, the Val/Val patients performed worse on the SST backward and SST score than heterozygotes. Our findings are the first to show a link between the COMT gene and working memory dysfunction in fibromyalgia, supporting the idea that higher COMT enzyme activity would contribute to more severe working memory impairment in fibromyalgia.
Collapse
|
14
|
Suchanecka A, Chmielowiec J, Chmielowiec K, Masiak J, Sipak-Szmigiel O, Sznabowicz M, Czarny W, Michałowska-Sawczyn M, Trybek G, Grzywacz A. Dopamine Receptor DRD2 Gene rs1076560, Personality Traits and Anxiety in the Polysubstance Use Disorder. Brain Sci 2020; 10:brainsci10050262. [PMID: 32365807 PMCID: PMC7287957 DOI: 10.3390/brainsci10050262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022] Open
Abstract
Development of an addiction is conditioned by many factors. The dopaminergic system has been shown to be the key element in this process. In this paper, we analyzed the influence of dopamine receptor 2 polymorphism rs1076560 in two groups—polysubstance-dependent male patients (n = 299) and the controls matched for age (n = 301). In both groups, we applied the same questionnaires for testing—Mini-international neuropsychiatric interview, the NEO Five-Factor Inventory, and the State–Trait Anxiety Inventory. The real-time PCR method was used for genotyping. When we compared the controls with the case group subjects, we observed significantly higher scores in the second group on both the state and trait scales of anxiety, as well as on the Neuroticism and Openness scales of the NEO-FFI; and lower scores on the scales of Extraversion and Agreeability of the NEO-FFI. The model 2 × 3 factorial ANOVA of the addicted subjects and controls was performed, and the DRD2 rs1076560 variant interaction was found for the anxiety state and trait scales, and for the NEO-FFI Neuroticism scale. The observed associations allow noticing that analysis of psychological factors in combination with genetic data opens new possibilities in addiction research.
Collapse
Affiliation(s)
- Aleksandra Suchanecka
- Independent Laboratory of Health Promotion of the Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland;
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Gora, Poland; (J.C.); (K.C.)
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Gora, Poland; (J.C.); (K.C.)
| | - Jolanta Masiak
- Neurophysiological Independent Unit, Department of Psychiatry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Olimpia Sipak-Szmigiel
- Department of Obstetrics and Pathology of Pregnancy, Pomeranian Medical University, 48 Żołnierska St., 71-210 Szczecin, Poland;
| | - Mariusz Sznabowicz
- Indywidual Medical Practice MD M Sznabowicz, Lutówko 14, 74-320 Barlinek, Poland;
| | - Wojciech Czarny
- Faculty of Physical Education, University of Rzeszów, Towarnickiego 3 St., 35-959 Rzeszów, Poland;
| | - Monika Michałowska-Sawczyn
- Faculty of Physical Culture, Gdańsk University of Physical Education and Sport, Kazimierza Górskiego 1 St., 80-336 Gdańsk, Poland;
| | - Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. St., 70-111 Szczecin, Poland;
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion of the Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
15
|
Torretta S, Rampino A, Basso M, Pergola G, Di Carlo P, Shin JH, Kleinman JE, Hyde TM, Weinberger DR, Masellis R, Blasi G, Pennuto M, Bertolino A. NURR1 and ERR1 Modulate the Expression of Genes of a DRD2 Coexpression Network Enriched for Schizophrenia Risk. J Neurosci 2020; 40:932-941. [PMID: 31811028 PMCID: PMC6975285 DOI: 10.1523/jneurosci.0786-19.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple schizophrenia (SCZ) risk loci may be involved in gene co-regulation mechanisms, and analysis of coexpressed gene networks may help to clarify SCZ molecular basis. We have previously identified a dopamine D2 receptor (DRD2) coexpression module enriched for SCZ risk genes and associated with cognitive and neuroimaging phenotypes of SCZ, as well as with response to treatment with antipsychotics. Here we aimed to identify regulatory factors modulating this coexpression module and their relevance to SCZ. We performed motif enrichment analysis to identify transcription factor (TF) binding sites in human promoters of genes coexpressed with DRD2. Then, we measured transcript levels of a group of these genes in primary mouse cortical neurons in basal conditions and upon overexpression and knockdown of predicted TFs. Finally, we analyzed expression levels of these TFs in dorsolateral prefrontal cortex (DLPFC) of SCZ patients. Our in silico analysis revealed enrichment for NURR1 and ERR1 binding sites. In neuronal cultures, the expression of genes either relevant to SCZ risk (Drd2, Gatad2a, Slc28a1, Cnr1) or indexing coexpression in our module (Btg4, Chit1, Osr1, Gpld1) was significantly modified by gain and loss of Nurr1 and Err1. Postmortem DLPFC expression data analysis showed decreased expression levels of NURR1 and ERR1 in patients with SCZ. For NURR1 such decreased expression is associated with treatment with antipsychotics. Our results show that NURR1 and ERR1 modulate the transcription of DRD2 coexpression partners and support the hypothesis that NURR1 is involved in the response to SCZ treatment.SIGNIFICANCE STATEMENT In the present study, we provide in silico and experimental evidence for a role of the TFs NURR1 and ERR1 in modulating the expression pattern of genes coexpressed with DRD2 in human DLPFC. Notably, genetic variations in these genes is associated with SCZ risk and behavioral and neuroimaging phenotypes of the disease, as well as with response to treatment. Furthermore, this study presents novel findings on a possible interplay between D2 receptor-mediated dopamine signaling involved in treatment with antipsychotics and the transcriptional regulation mechanisms exerted by NURR1. Our results suggest that coexpression and co-regulation mechanisms may help to explain some of the complex biology of genetic associations with SCZ.
Collapse
Affiliation(s)
- Silvia Torretta
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari 70124, Italy
| | - Antonio Rampino
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari 70124, Italy
- Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, 70124, Italy
| | - Manuela Basso
- Laboratory of Transcriptional Neurobiology, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento 38123, Italy
| | - Giulio Pergola
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari 70124, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland 21205
| | - Pasquale Di Carlo
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari 70124, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland 21205
| | - Joo H Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland 21205
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland 21205
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland 21205
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Departments of Neurology
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland 21205
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Neuroscience
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | - Rita Masellis
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari 70124, Italy
- Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, 70124, Italy
| | - Giuseppe Blasi
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari 70124, Italy
- Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, 70124, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova 35129, Italy
- Dulbecco Telethon Institute, CIBIO, University of Trento, 38123, Italy
- Padova Neuroscience Center, 35131 Padova, Italy, and
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari 70124, Italy,
- Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, 70124, Italy
| |
Collapse
|
16
|
Hagerty SL, YorkWilliams SL, Bidwell LC, Weiland BJ, Sabbineni A, Blaine SK, Bryan AD, Hutchison KE. DRD2 methylation is associated with executive control network connectivity and severity of alcohol problems among a sample of polysubstance users. Addict Biol 2020; 25:e12684. [PMID: 30370960 PMCID: PMC7326368 DOI: 10.1111/adb.12684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 12/21/2022]
Abstract
Chronic exposure to alcohol and other drugs of abuse has been associated with deleterious consequences, including functional connectivity deficits within neural networks associated with executive control. Altered functional connectivity within the executive control network (ECN) might underlie the progressive inability to control consumption of alcohol and other drugs as substance use disorders progress. Genetic and epigenetic factors have been associated with substance use disorders (SUDs). For example, dopamine receptor 2 (DRD2) functioning has been associated with alcohol use disorder (AUD) and related phenotypes, including correlates of executive functioning. The present study aims to explore the relationship between a continuous measure of alcohol-related problems, epigenetic markers (methylation) within the DRD2 gene, and functional connectivity within the ECN among a sample of polysubstance users. A community sample of 658 subjects, whose consumption of alcohol, nicotine, and cannabis span across a spectrum of quantity and frequency of use, were obtained across previous studies in polysubstance using populations. Resting state functional magnetic resonance imaging was analyzed to identify intrinsic connectivity networks using a priori regions of interest. Methylation measurement of functionally relevant sites within the DRD2 gene was achieved via pyrosequencing. Regression-based models, including mediation and moderation models, tested the association between DRD2 methylation, functional connectivity within intrinsic neural networks (including the ECN), and severity of alcohol problems. Results suggest that average DRD2 methylation was negatively associated with right ECN (RECN) and left ECN (LECN) connectivity, but not associated with other networks tested, and DRD2 methylation was significantly associated with alcohol problems severity. Mediation models were not supported, although moderation models suggested that connectivity between edges within the RECN moderated the relationship between DRD2 methylation and AUD severity. Results support a theoretical model in which epigenetic factors are associated with neurobiological correlates of alcohol consumption among a sample of polysubstance users.
Collapse
Affiliation(s)
- Sarah L. Hagerty
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Sophie L. YorkWilliams
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - L. Cinnamon Bidwell
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado
| | - Barbara J. Weiland
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado
| | - Amithrupa Sabbineni
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Sara K. Blaine
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Angela D. Bryan
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Kent E. Hutchison
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
17
|
The Beneficial Effect of Acute Exercise on Motor Memory Consolidation is Modulated by Dopaminergic Gene Profile. J Clin Med 2019; 8:jcm8050578. [PMID: 31035583 PMCID: PMC6572639 DOI: 10.3390/jcm8050578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022] Open
Abstract
When aerobic exercise is performed following skilled motor practice, it can enhance motor memory consolidation. Previous studies have suggested that dopamine may play a role in motor memory consolidation, but whether it is involved in the exercise effects on consolidation is unknown. Hence, we aimed to investigate the influence of dopaminergic pathways on the exercise-induced modulation of motor memory consolidation. We compared the effect of acute exercise on motor memory consolidation between the genotypes that are known to affect dopaminergic transmission and learning. By combining cluster analyses and fitting linear models with and without included polymorphisms, we provide preliminary evidence that exercise benefits the carriers of alleles that are associated with low synaptic dopamine content. In line with previous reports, our findings implicate dopamine as a modulator of the exercise-induced effects on motor memory consolidation, and suggest exercise as a potential clinical tool to counteract low endogenous dopamine bioavailability. Further experiments are needed to establish causal relations.
Collapse
|
18
|
DRD2 Genotype-Based Variants Modulates D2 Receptor Distribution in Ventral Striatum. Mol Neurobiol 2019; 56:6512-6520. [PMID: 30847741 DOI: 10.1007/s12035-019-1543-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/27/2019] [Indexed: 12/14/2022]
Abstract
Dopaminergic signaling within the striatum is crucial for motor planning and mental function. Neurons within the striatum contain two dopamine D2 receptor isoforms-D2 long and D2 short. The amount of expression for these receptor isoforms is affected by the genotype within two single nucleotide polymorphisms (SNPs), rs2283265 and rs1076560 (both are in high linkage disequilibrium; C > A), found in the DRD2 gene. However, it is unclear how these SNPs affect the distribution of D2 receptors in vivo within the nigrostriatal dopaminergic system. We aim to elucidate this with PET imaging in healthy young adults using [11C]-(+)-PHNO. Participants were genotyped for the DRD2 rs2283265 SNP and a total of 20 enrolled: 9 with CC, 6 with CA, and 5 with AA genotype. The main effect of genotype on [11C]-(+)-PHNO binding was tested and we found significant group effect within the ventral striatum. Specifically, CC and CA carriers had higher binding in this region compared to AA carriers. There were no observed differences between genotypes in other regions within the basal ganglia. Our preliminary results implicate that the polymorphism genotype affects the dopaminergic signaling by controlling either the quantity of D2 receptors, D2 affinity, or a combination thereof within the ventral striatum.
Collapse
|
19
|
Burns JA, Kroll DS, Feldman DE, Kure Liu C, Manza P, Wiers CE, Volkow ND, Wang GJ. Molecular Imaging of Opioid and Dopamine Systems: Insights Into the Pharmacogenetics of Opioid Use Disorders. Front Psychiatry 2019; 10:626. [PMID: 31620026 PMCID: PMC6759955 DOI: 10.3389/fpsyt.2019.00626] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Opioid use in the United States has steadily risen since the 1990s, along with staggering increases in addiction and overdose fatalities. With this surge in prescription and illicit opioid abuse, it is paramount to understand the genetic risk factors and neuropsychological effects of opioid use disorder (OUD). Polymorphisms disrupting the opioid and dopamine systems have been associated with increased risk for developing substance use disorders. Molecular imaging studies have revealed how these polymorphisms impact the brain and contribute to cognitive and behavioral differences across individuals. Here, we review the current molecular imaging literature to assess how genetic variations in the opioid and dopamine systems affect function in the brain's reward, cognition, and stress pathways, potentially resulting in vulnerabilities to OUD. Continued research of the functional consequences of genetic variants and corresponding alterations in neural mechanisms will inform prevention and treatment of OUD.
Collapse
Affiliation(s)
- Jamie A Burns
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | | | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,National Institute on Drug Abuse, Bethesda, MD, United States
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| |
Collapse
|
20
|
Schwarz AP, Rotov AY, Chuprina OI, Krytskaya DU, Trofimov AN, Kosheverova VV, Ischenko AM, Zubareva OE. Developmental prefrontal mRNA expression of D2 dopamine receptor splice variants and working memory impairments in rats after early life Interleukin-1β elevation. Neurobiol Learn Mem 2018; 155:231-238. [PMID: 30092312 DOI: 10.1016/j.nlm.2018.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 11/29/2022]
Abstract
Long (D2L) and Short (D2S) isoforms of D2 dopamine receptor differ in their biochemical and physiological properties, which could affect functioning of prefrontal cortex. Contribution of distinct D2 dopamine receptor isoforms to cognitive dysfunctions and its developmental regulation are currently not fully elucidated. In the present study, we evaluated developmental mRNA expression of D2S/D2L dopamine receptor isoforms within the rat medial prefrontal cortex (mPFC) in the model of neurodevelopmental cognitive dysfunction. Working memory performance (Y-maze spontaneous alternations) and D2S/D2L mRNA expression in the mPFC (by qRT-PCR) were evaluated in juvenile (P27), adolescent (P42-47) and adult (P75-90) rats after chronic early life treatment with proinflammatory cytokine interleukin (IL)-1β (1 µg/kg i.p. daily P15-21). It was shown that IL-1β elevation during the 3rd week of life leads to working memory deficit originating in juvenile animals and persisting into adulthood. D2S mRNA expression was strongly downregulated during adolescence, and such downregulation was exaggerated in animals injected with IL-1β during P15-21. Early life IL-1β administrations influenced developmental changes in the D2S/D2L mRNA ratio. This measure was found to be decreased in adolescent and adult control (intact and vehicle-treated) rats compared to juvenile control, while in the case of IL-1β-treated animals, the decrease in D2S/D2L ratio was observed only in adulthood but not in adolescence compared to juvenile rats. During the adolescence, D2S mRNA expression was downregulated and D2S/D2L ratio was upregulated in the mPFC of rats treated with IL-1β during the 3rd week of life compared to controls. Based on these data we conclude that changes in the developmental expression of D2 dopamine receptor splice variants within mPFC may underlie long-lasting cognitive deficit associated with neonatal pathology.
Collapse
Affiliation(s)
- Alexander P Schwarz
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia.
| | - Alexander Yu Rotov
- Laboratory of Evolution of the Sensory Organs, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez avenue 44, 199223 St. Petersburg, Russia
| | - Olga I Chuprina
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia
| | - Darya U Krytskaya
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia
| | - Alexander N Trofimov
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia
| | - Vera V Kosheverova
- Laboratory of Intracellular Membranes Dynamics, Department of the Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky avenue 4, 194064 St. Petersburg, Russia
| | - Alexander M Ischenko
- Laboratory of Protein Biochemistry, Research Institute of Highly Pure Biopreparations, Pudozhskaya street 7, 197110 St. Petersburg, Russia
| | - Olga E Zubareva
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia; Laboratory of Molecular Mechanisms of Neuronal Interactions, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez avenue 44, 199223 St. Petersburg, Russia
| |
Collapse
|
21
|
Rampino A, Marakhovskaia A, Soares-Silva T, Torretta S, Veneziani F, Beaulieu JM. Antipsychotic Drug Responsiveness and Dopamine Receptor Signaling; Old Players and New Prospects. Front Psychiatry 2018; 9:702. [PMID: 30687136 PMCID: PMC6338030 DOI: 10.3389/fpsyt.2018.00702] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022] Open
Abstract
Antipsychotic drugs targeting dopamine neurotransmission are still the principal mean of therapeutic intervention for schizophrenia. However, about one third of people do not respond to dopaminergic antipsychotics. Genome wide association studies (GWAS), have shown that multiple genetic factors play a role in schizophrenia pathophysiology. Most of these schizophrenia risk variants are not related to dopamine or antipsychotic drugs mechanism of action. Genetic factors have also been implicated in defining response to antipsychotic medication. In contrast to disease risk, variation of genes coding for molecular targets of antipsychotics have been associated with treatment response. Among genes implicated, those involved in dopamine signaling mediated by D2-class dopamine receptor, including DRD2 itself and its molecular effectors, have been implicated as key genetic predictors of response to treatments. Studies have also reported that genetic variation in genes coding for proteins that cross-talk with DRD2 at the molecular level, such as AKT1, GSK3B, Beta-catenin, and PPP2R2B are associated with response to antipsychotics. In this review we discuss the relative contribution to antipsychotic drug responsiveness of candidate genes and GWAS identified genes encoding proteins involved in dopamine responses. We also suggest that in addition of these older players, a deeper investigation of new GWAS identified schizophrenia risk genes such as FXR1 can provide new prospects that are not clearly engaged in dopamine function while being targeted by dopamine-associated signaling molecules. Overall, further examination of genes proximally or distally related to signaling mechanisms engaged by medications and associated with disease risk and/or treatment responsiveness may uncover an interface between genes involved in disease causation with those affecting disease remediation. Such a nexus would provide realistic targets for therapy and further the development of genetically personalized approaches for schizophrenia.
Collapse
Affiliation(s)
- Antonio Rampino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy.,Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | | | - Tiago Soares-Silva
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Silvia Torretta
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Federica Veneziani
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Jean Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Schwarz AP, Trofimov AN, Zubareva OE, Lioudyno VI, Kosheverova VV, Ischenko AM, Klimenko VM. Prefrontal mRNA expression of long and short isoforms of D2 dopamine receptor: Possible role in delayed learning deficit caused by early life interleukin-1β treatment. Behav Brain Res 2017; 333:118-122. [PMID: 28673768 DOI: 10.1016/j.bbr.2017.06.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 01/11/2023]
Abstract
Long (D2L) and short (D2S) isoform of the D2 dopamine receptor are believed to play different roles in behavioral regulation. However, little is known about differential regulation of these isoforms mRNA expression during the process of learning in physiological and pathological states. In this study, we have investigated the combined effect of training in active avoidance (AA) paradigm and chronic early life treatment with pro-inflammatory cytokine interleukin (IL)-1β (1μg/kg i.p., P15-21) on D2S and D2L dopamine receptor mRNA expression in the medial prefrontal cortex (mPFC) of adult rats. We have shown differential regulation of D2 short and long mRNA isoform expression in the mPFC. There was no effect of AA-training on D2S mRNA expression, while D2L mRNA was downregulated in AA-trained control (intact and saline-treated) animals, and this effect was not observed in rats treated with IL-1β. D2S mRNA expression level negatively correlated with learning ability within control (saline-treated and intact) groups but not in IL-1β-treated animals. Thus, prefrontal expression of distinct D2 dopamine receptor splice variants is supposed to be implicated in cognitive decline caused by early life immune challenge.
Collapse
Affiliation(s)
- Alexander P Schwarz
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia.
| | - Alexander N Trofimov
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia
| | - Olga E Zubareva
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia; Laboratory of Molecular Mechanisms of Neuronal Interactions, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez Avenue 44, 199223 St. Petersburg, Russia
| | - Victoria I Lioudyno
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia
| | - Vera V Kosheverova
- Laboratory of Intracellular Membranes Dynamics, Department of the Intracellular Signalling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 St. Petersburg, Russia
| | - Alexander M Ischenko
- Laboratory of Protein Biochemistry, Research Institute of Highly Pure Biopreparations, Pudozhskaya 7, 197110 St. Petersburg, Russia
| | - Victor M Klimenko
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia
| |
Collapse
|
23
|
Blokland GAM, Wallace AK, Hansell NK, Thompson PM, Hickie IB, Montgomery GW, Martin NG, McMahon KL, de Zubicaray GI, Wright MJ. Genome-wide association study of working memory brain activation. Int J Psychophysiol 2017; 115:98-111. [PMID: 27671502 PMCID: PMC5364069 DOI: 10.1016/j.ijpsycho.2016.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 08/05/2016] [Accepted: 09/15/2016] [Indexed: 11/30/2022]
Abstract
In a population-based genome-wide association (GWA) study of n-back working memory task-related brain activation, we extracted the average percent BOLD signal change (2-back minus 0-back) from 46 regions-of-interest (ROIs) in functional MRI scans from 863 healthy twins and siblings. ROIs were obtained by creating spheres around group random effects analysis local maxima, and by thresholding a voxel-based heritability map of working memory brain activation at 50%. Quality control for test-retest reliability and heritability of ROI measures yielded 20 reliable (r>0.7) and heritable (h2>20%) ROIs. For GWA analysis, the cohort was divided into a discovery (n=679) and replication (n=97) sample. No variants survived the stringent multiple-testing-corrected genome-wide significance threshold (p<4.5×10-9), or were replicated (p<0.0016), but several genes were identified that are worthy of further investigation. A search of 529,379 genomic markers resulted in discovery of 31 independent single nucleotide polymorphisms (SNPs) associated with BOLD signal change at a discovery level of p<1×10-5. Two SNPs (rs7917410 and rs7672408) were associated at a significance level of p<1×10-7. Only one, most strongly affecting BOLD signal change in the left supramarginal gyrus (R2=5.5%), had multiple SNPs associated at p<1×10-5 in linkage disequilibrium with it, all located in and around the BANK1 gene. BANK1 encodes a B-cell-specific scaffold protein and has been shown to negatively regulate CD40-mediated AKT activation. AKT is part of the dopamine-signaling pathway, suggesting a mechanism for the involvement of BANK1 in the BOLD response to working memory. Variants identified here may be relevant to (the susceptibility to) common disorders affecting brain function.
Collapse
Affiliation(s)
- Gabriëlla A M Blokland
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, 300 Herston Road, Brisbane, QLD, 4006, Australia; Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Psychology, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Angus K Wallace
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Narelle K Hansell
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, 300 Herston Road, Brisbane, QLD, 4006, Australia; Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, 2001 North Soto Street - Room 102, Marina del Rey, Los Angeles, CA 90032, United States
| | - Ian B Hickie
- Brain & Mind Research Institute, The University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Katie L McMahon
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Greig I de Zubicaray
- School of Psychology, The University of Queensland, St Lucia, QLD, 4072, Australia; Faculty of Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Margaret J Wright
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, 300 Herston Road, Brisbane, QLD, 4006, Australia; Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Psychology, The University of Queensland, St Lucia, QLD, 4072, Australia; Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
24
|
New Repeat Polymorphism in the AKT1 Gene Predicts Striatal Dopamine D2/D3 Receptor Availability and Stimulant-Induced Dopamine Release in the Healthy Human Brain. J Neurosci 2017; 37:4982-4991. [PMID: 28416594 DOI: 10.1523/jneurosci.3155-16.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022] Open
Abstract
The role of the protein kinase Akt1 in dopamine neurotransmission is well recognized and has been implicated in schizophrenia and psychosis. However, the extent to which variants in the AKT1 gene influence dopamine neurotransmission is not well understood. Here we investigated the effect of a newly characterized variant number tandem repeat (VNTR) polymorphism in AKT1 [major alleles: L- (eight repeats) and H- (nine repeats)] on striatal dopamine D2/D3 receptor (DRD2) availability and on dopamine release in healthy volunteers. We used PET and [11C]raclopride to assess baseline DRD2 availability in 91 participants. In 54 of these participants, we also measured intravenous methylphenidate-induced dopamine release to measure dopamine release. Dopamine release was quantified as the difference in specific binding of [11C]raclopride (nondisplaceable binding potential) between baseline values and values following methylphenidate injection. There was an effect of AKT1 genotype on DRD2 availability at baseline for the caudate (F(2,90) = 8.2, p = 0.001) and putamen (F(2,90) = 6.6, p = 0.002), but not the ventral striatum (p = 0.3). For the caudate and putamen, LL showed higher DRD2 availability than HH; HL were in between. There was also a significant effect of AKT1 genotype on dopamine increases in the ventral striatum (F(2,53) = 5.3, p = 0.009), with increases being stronger in HH > HL > LL. However, no dopamine increases were observed in the caudate (p = 0.1) or putamen (p = 0.8) following methylphenidate injection. Our results provide evidence that the AKT1 gene modulates both striatal DRD2 availability and dopamine release in the human brain, which could account for its association with schizophrenia and psychosis. The clinical relevance of the newly characterized AKT1 VNTR merits investigation.SIGNIFICANCE STATEMENT The AKT1 gene has been implicated in schizophrenia and psychosis. This association is likely to reflect modulation of dopamine signaling by Akt1 kinase since striatal dopamine hyperstimulation is associated with psychosis and schizophrenia. Here, using PET with [11C]raclopride, we identified in the AKT1 gene a new variable number tandem repeat (VNTR) marker associated with baseline striatal dopamine D2/D3 receptor availability and with methylphenidate-induced striatal dopamine increases in healthy volunteers. Our results confirm the involvement of the AKT1 gene in modulating striatal dopamine signaling in the human brain. Future studies are needed to assess the association of this new VNTR AKT1 variant in schizophrenia and drug-induced psychoses.
Collapse
|
25
|
The DRD2 rs1076560 polymorphism and schizophrenia-related intermediate phenotypes: A systematic review and meta-analysis. Neurosci Biobehav Rev 2017; 74:214-224. [DOI: 10.1016/j.neubiorev.2017.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/27/2016] [Accepted: 01/06/2017] [Indexed: 01/11/2023]
|
26
|
Pergola G, Di Carlo P, D'Ambrosio E, Gelao B, Fazio L, Papalino M, Monda A, Scozia G, Pietrangelo B, Attrotto M, Apud JA, Chen Q, Mattay VS, Rampino A, Caforio G, Weinberger DR, Blasi G, Bertolino A. DRD2 co-expression network and a related polygenic index predict imaging, behavioral and clinical phenotypes linked to schizophrenia. Transl Psychiatry 2017; 7:e1006. [PMID: 28094815 PMCID: PMC5545721 DOI: 10.1038/tp.2016.253] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/28/2016] [Accepted: 10/13/2016] [Indexed: 12/14/2022] Open
Abstract
Genetic risk for schizophrenia (SCZ) is determined by many genetic loci whose compound biological effects are difficult to determine. We hypothesized that co-expression pathways of SCZ risk genes are associated with system-level brain function and clinical phenotypes of SCZ. We examined genetic variants related to the dopamine D2 receptor gene DRD2 co-expression pathway and associated them with working memory (WM) behavior, the related brain activity and treatment response. Using two independent post-mortem prefrontal messenger RNA (mRNA) data sets (total N=249), we identified a DRD2 co-expression pathway enriched for SCZ risk genes. Next, we identified non-coding single-nucleotide polymorphisms (SNPs) associated with co-expression of this pathway. These SNPs were associated with regulatory genetic loci in the dorsolateral prefrontal cortex (P<0.05). We summarized their compound effect on co-expression into a Polygenic Co-expression Index (PCI), which predicted DRD2 pathway co-expression in both mRNA data sets (all P<0.05). We associated the PCI with brain activity during WM performance in two independent samples of healthy individuals (total N=368) and 29 patients with SCZ who performed the n-back task. Greater predicted DRD2 pathway prefrontal co-expression was associated with greater prefrontal activity and longer WM reaction times (all corrected P<0.05), thus indicating inefficient WM processing. Blind prediction of treatment response to antipsychotics in two independent samples of patients with SCZ suggested better clinical course of patientswith greater PCI (total N=87; P<0.05). The findings on this DRD2 co-expression pathway are a proof of concept that gene co-expression can parse SCZ risk genes into biological pathways associated with intermediate phenotypes as well as with clinically meaningful information.
Collapse
Affiliation(s)
- G Pergola
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - P Di Carlo
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - E D'Ambrosio
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - B Gelao
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - L Fazio
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - M Papalino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - A Monda
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - G Scozia
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - B Pietrangelo
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - M Attrotto
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - J A Apud
- National Institutes of Health, National Institute of Mental Health, Clinical and Translational Neuroscience Branch, NIMH, Bethesda, MD, USA
| | - Q Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - V S Mattay
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Departments of Neurology and Radiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - A Rampino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Institute of Psychiatry, Department of Neuroscience, Sense Organs and Locomotive System, Bari University Hospital, Bari, Italy
| | - G Caforio
- Institute of Psychiatry, Department of Neuroscience, Sense Organs and Locomotive System, Bari University Hospital, Bari, Italy
| | - D R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Departments of Psychiatry, Neurology, Neuroscience and The Mckusick-Nathans Institute of Genomic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - G Blasi
- Institute of Psychiatry, Department of Neuroscience, Sense Organs and Locomotive System, Bari University Hospital, Bari, Italy
| | - A Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Institute of Psychiatry, Department of Neuroscience, Sense Organs and Locomotive System, Bari University Hospital, Bari, Italy
| |
Collapse
|
27
|
Simpson EH, Kellendonk C. Insights About Striatal Circuit Function and Schizophrenia From a Mouse Model of Dopamine D 2 Receptor Upregulation. Biol Psychiatry 2017; 81:21-30. [PMID: 27720388 PMCID: PMC5121031 DOI: 10.1016/j.biopsych.2016.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 01/24/2023]
Abstract
The dopamine hypothesis of schizophrenia is supported by a large number of imaging studies that have identified an increase in dopamine binding at the D2 receptor selectively in the striatum. We review a decade of work using a regionally restricted and temporally regulated transgenic mouse model to investigate the behavioral, molecular, electrophysiological, and anatomical consequences of selective D2 receptor upregulation in the striatum. These studies have identified new and potentially important biomarkers at the circuit and molecular level that can now be explored in patients with schizophrenia. They provide an example of how animal models and their detailed level of neurobiological analysis allow a deepening of our understanding of the relationship between neuronal circuit function and symptoms of schizophrenia, and as a consequence generate new hypotheses that are testable in patients.
Collapse
Affiliation(s)
- Eleanor H. Simpson
- Department of Psychiatry, Columbia University,Neurobiology and Behavior, New York State Psychiatric Institute,Corresponding author: Eleanor H. Simpson, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 87, New York, New York 10032, , +1-646-774-6835
| | - Christoph Kellendonk
- Department of Pharmacology, Columbia University,Molecular Therapeutics, New York State Psychiatric Institute
| |
Collapse
|
28
|
Zhang S, Zhang J. The Association of DRD2 with Insight Problem Solving. Front Psychol 2016; 7:1865. [PMID: 27933030 PMCID: PMC5121534 DOI: 10.3389/fpsyg.2016.01865] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/10/2016] [Indexed: 11/15/2022] Open
Abstract
Although the insight phenomenon has attracted great attention from psychologists, it is still largely unknown whether its variation in well-functioning human adults has a genetic basis. Several lines of evidence suggest that genes involved in dopamine (DA) transmission might be potential candidates. The present study explored for the first time the association of dopamine D2 receptor gene (DRD2) with insight problem solving. Fifteen single-nucleotide polymorphisms (SNPs) covering DRD2 were genotyped in 425 unrelated healthy Chinese undergraduates, and were further tested for association with insight problem solving. Both single SNP and haplotype analysis revealed several associations of DRD2 SNPs and haplotypes with insight problem solving. In conclusion, the present study provides the first evidence for the involvement of DRD2 in insight problem solving, future studies are necessary to validate these findings.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Psychology, Shandong Normal University Jinan, China
| | - Jinghuan Zhang
- Department of Psychology, Shandong Normal University Jinan, China
| |
Collapse
|
29
|
Quarto T, Fasano MC, Taurisano P, Fazio L, Antonucci LA, Gelao B, Romano R, Mancini M, Porcelli A, Masellis R, Pallesen KJ, Bertolino A, Blasi G, Brattico E. Interaction between DRD2 variation and sound environment on mood and emotion-related brain activity. Neuroscience 2016; 341:9-17. [PMID: 27867061 DOI: 10.1016/j.neuroscience.2016.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 02/02/2023]
Abstract
Sounds, like music and noise, are capable of reliably affecting individuals' mood and emotions. However, these effects are highly variable across individuals. A putative source of variability is genetic background. Here we explored the interaction between a functional polymorphism of the dopamine D2 receptor gene (DRD2 rs1076560, G>T, previously associated with the relative expression of D2S/L isoforms) and sound environment on mood and emotion-related brain activity. Thirty-eight healthy subjects were genotyped for DRD2 rs1076560 (G/G=26; G/T=12) and underwent functional magnetic resonance imaging (fMRI) during performance of an implicit emotion-processing task while listening to music or noise. Individual variation in mood induction was assessed before and after the task. Results showed mood improvement after music exposure in DRD2GG subjects and mood deterioration after noise exposure in GT subjects. Moreover, the music, as opposed to noise environment, decreased the striatal activity of GT subjects as well as the prefrontal activity of GG subjects while processing emotional faces. These findings suggest that genetic variability of dopamine receptors affects sound environment modulations of mood and emotion processing.
Collapse
Affiliation(s)
- T Quarto
- Cognitive Brain Research Unit, Institute of Behavioral Science, University of Helsinki, Helsinki, Finland; Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - M C Fasano
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy; Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - P Taurisano
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - L Fazio
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - L A Antonucci
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy; Department of Education Science, Psychology and Communication Science, University of Bari "Aldo Moro", Bari, Italy
| | - B Gelao
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - R Romano
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - M Mancini
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - A Porcelli
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - R Masellis
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - K J Pallesen
- The Research Clinic for Functional Disorders and Psychosomatics, Aarhus University, Aarhus, Denmark
| | - A Bertolino
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - G Blasi
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - E Brattico
- Cognitive Brain Research Unit, Institute of Behavioral Science, University of Helsinki, Helsinki, Finland; Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.
| |
Collapse
|
30
|
Prefrontal Activity and Connectivity with the Basal Ganglia during Performance of Complex Cognitive Tasks Is Associated with Apathy in Healthy Subjects. PLoS One 2016; 11:e0165301. [PMID: 27798669 PMCID: PMC5087839 DOI: 10.1371/journal.pone.0165301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/10/2016] [Indexed: 11/19/2022] Open
Abstract
Objective Convergent evidence indicates that apathy affects cognitive behavior in different neurological and psychiatric conditions. Studies of clinical populations have also suggested the primary involvement of the prefrontal cortex and the basal ganglia in apathy. These brain regions are interconnected at both the structural and functional levels and are deeply involved in cognitive processes, such as working memory and attention. However, it is unclear how apathy modulates brain processing during cognition and whether such a modulation occurs in healthy young subjects. To address this issue, we investigated the link between apathy and prefrontal and basal ganglia function in healthy young individuals. We hypothesized that apathy may be related to sub-optimal activity and connectivity in these brain regions. Methods Three hundred eleven healthy subjects completed an apathy assessment using the Starkstein’s Apathy Scale and underwent fMRI during working memory and attentional performance tasks. Using an ROI approach, we investigated the association of apathy with activity and connectivity in the DLPFC and the basal ganglia. Results Apathy scores correlated positively with prefrontal activity and negatively with prefrontal-basal ganglia connectivity during both working memory and attention tasks. Furthermore, prefrontal activity was inversely related to attentional behavior. Conclusions These results suggest that in healthy young subjects, apathy is a trait associated with inefficient cognitive-related prefrontal activity, i.e., it increases the need for prefrontal resources to process cognitive stimuli. Furthermore, apathy may alter the functional relationship between the prefrontal cortex and the basal ganglia during cognition.
Collapse
|
31
|
A splicing-regulatory polymorphism in DRD2 disrupts ZRANB2 binding, impairs cognitive functioning and increases risk for schizophrenia in six Han Chinese samples. Mol Psychiatry 2016; 21:975-82. [PMID: 26347318 DOI: 10.1038/mp.2015.137] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 01/12/2023]
Abstract
The rs1076560 polymorphism of DRD2 (encoding dopamine receptor D2) is associated with alternative splicing and cognitive functioning; however, a mechanistic relationship to schizophrenia has not been shown. Here, we demonstrate that rs1076560(T) imparts a small but reliable risk for schizophrenia in a sample of 616 affected families and five independent replication samples totaling 4017 affected and 4704 unaffected individuals (odds ratio=1.1; P=0.004). rs1076560(T) was associated with impaired verbal fluency and comprehension in schizophrenia but improved performance among healthy comparison subjects. rs1076560(T) also associated with lower D2 short isoform expression in postmortem brain. rs1076560(T) disrupted a binding site for the splicing factor ZRANB2, diminished binding affinity between DRD2 pre-mRNA and ZRANB2 and abolished the ability of ZRANB2 to modulate short:long isoform-expression ratios of DRD2 minigenes in cell culture. Collectively, this work implicates rs1076560(T) as one possible risk factor for schizophrenia in the Han Chinese population, and suggests molecular mechanisms by which it may exert such influence.
Collapse
|
32
|
Sutcliffe G, Harneit A, Tost H, Meyer-Lindenberg A. Neuroimaging Intermediate Phenotypes of Executive Control Dysfunction in Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:218-229. [DOI: 10.1016/j.bpsc.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 01/10/2023]
|
33
|
Gluskin BS, Mickey BJ. Genetic variation and dopamine D2 receptor availability: a systematic review and meta-analysis of human in vivo molecular imaging studies. Transl Psychiatry 2016; 6:e747. [PMID: 26926883 PMCID: PMC4872447 DOI: 10.1038/tp.2016.22] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/22/2015] [Accepted: 01/25/2016] [Indexed: 12/21/2022] Open
Abstract
The D2 dopamine receptor mediates neuropsychiatric symptoms and is a target of pharmacotherapy. Inter-individual variation of D2 receptor density is thought to influence disease risk and pharmacological response. Numerous molecular imaging studies have tested whether common genetic variants influence D2 receptor binding potential (BP) in humans, but demonstration of robust effects has been limited by small sample sizes. We performed a systematic search of published human in vivo molecular imaging studies to estimate effect sizes of common genetic variants on striatal D2 receptor BP. We identified 21 studies examining 19 variants in 11 genes. The most commonly studied variant was a single-nucleotide polymorphism in ANKK1 (rs1800497, Glu713Lys, also called 'Taq1A'). Fixed- and random-effects meta-analyses of this variant (5 studies, 194 subjects total) revealed that striatal BP was significantly and robustly lower among carriers of the minor allele (Lys713) relative to major allele homozygotes. The weighted standardized mean difference was -0.57 under the fixed-effect model (95% confidence interval=(-0.87, -0.27), P=0.0002). The normal relationship between rs1800497 and BP was not apparent among subjects with neuropsychiatric diseases. Significant associations with baseline striatal D2 receptor BP have been reported for four DRD2 variants (rs1079597, rs1076560, rs6277 and rs1799732) and a PER2 repeat polymorphism, but none have yet been tested in more than two independent samples. Our findings resolve apparent discrepancies in the literature and establish that rs1800497 robustly influences striatal D2 receptor availability. This genetic variant is likely to contribute to important individual differences in human striatal function, neuropsychiatric disease risk and pharmacological response.
Collapse
Affiliation(s)
- B S Gluskin
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - B J Mickey
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
34
|
Zeuner KE, Knutzen A, Granert O, Sablowsky S, Götz J, Wolff S, Jansen O, Dressler D, Schneider SA, Klein C, Deuschl G, van Eimeren T, Witt K. Altered brain activation in a reversal learning task unmasks adaptive changes in cognitive control in writer's cramp. NEUROIMAGE-CLINICAL 2015; 10:63-70. [PMID: 26702397 PMCID: PMC4669532 DOI: 10.1016/j.nicl.2015.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 11/28/2022]
Abstract
Previous receptor binding studies suggest dopamine function is altered in the basal ganglia circuitry in task-specific dystonia, a condition characterized by contraction of agonist and antagonist muscles while performing specific tasks. Dopamine plays a role in reward-based learning. Using fMRI, this study compared 31 right-handed writer's cramp patients to 35 controls in reward-based learning of a probabilistic reversal-learning task. All subjects chose between two stimuli and indicated their response with their left or right index finger. One stimulus response was rewarded 80%, the other 20%. After contingencies reversal, the second stimulus response was rewarded in 80%. We further linked the DRD2/ANKK1-TaqIa polymorphism, which is associated with 30% reduction of the striatal dopamine receptor density with reward-based learning and assumed impaired reversal learning in A + subjects. Feedback learning in patients was normal. Blood-oxygen level dependent (BOLD) signal in controls increased with negative feedback in the insula, rostral cingulate cortex, middle frontal gyrus and parietal cortex (pFWE < 0.05). In comparison to controls, patients showed greater increase in BOLD activity following negative feedback in the dorsal anterior cingulate cortex (BA32). The genetic status was not correlated with the BOLD activity. The Brodmann area 32 (BA32) is part of the dorsal anterior cingulate cortex (dACC) that plays an important role in coordinating and integrating information to guide behavior and in reward-based learning. The dACC is connected with the basal ganglia-thalamo-loop modulated by dopaminergic signaling. This finding suggests disturbed integration of reinforcement history in decision making and implicate that the reward system might contribute to the pathogenesis in writer's cramp.
Collapse
Affiliation(s)
| | - Arne Knutzen
- Department of Neurology, Kiel University, Germany
| | | | | | - Julia Götz
- Department of Neurology, Kiel University, Germany
| | - Stephan Wolff
- Department of Radiology and Neuroradiology, Kiel University, Germany
| | - Olav Jansen
- Department of Radiology and Neuroradiology, Kiel University, Germany
| | - Dirk Dressler
- Movement Disorders Section, Department of Neurology, Hannover Medical School, Germany
| | | | | | | | | | - Karsten Witt
- Department of Neurology, Kiel University, Germany
| |
Collapse
|
35
|
Colizzi M, Iyegbe C, Powell J, Ursini G, Porcelli A, Bonvino A, Taurisano P, Romano R, Masellis R, Blasi G, Morgan C, Aitchison K, Mondelli V, Luzi S, Kolliakou A, David A, Murray RM, Bertolino A, Forti MD. Interaction Between Functional Genetic Variation of DRD2 and Cannabis Use on Risk of Psychosis. Schizophr Bull 2015; 41:1171-82. [PMID: 25829376 PMCID: PMC4535639 DOI: 10.1093/schbul/sbv032] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Both cannabis use and the dopamine receptor (DRD2) gene have been associated with schizophrenia, psychosis-like experiences, and cognition. However, there are no published data investigating whether genetically determined variation in DRD2 dopaminergic signaling might play a role in individual susceptibility to cannabis-associated psychosis. We genotyped (1) a case-control study of 272 patients with their first episode of psychosis and 234 controls, and also from (2) a sample of 252 healthy subjects, for functional variation in DRD2, rs1076560. Data on history of cannabis use were collected on all the studied subjects by administering the Cannabis Experience Questionnaire. In the healthy subjects' sample, we also collected data on schizotypy and cognitive performance using the Schizotypal Personality Questionnaire and the N-back working memory task. In the case-control study, we found a significant interaction between the rs1076560 DRD2 genotype and cannabis use in influencing the likelihood of a psychotic disorder. Among cannabis users, carriers of the DRD2, rs1076560, T allele showed a 3-fold increased probability to suffer a psychotic disorder compared with GG carriers (OR = 3.07; 95% confidence interval [CI]: 1.22-7.63). Among daily users, T carrying subjects showed a 5-fold increase in the odds of psychosis compared to GG carriers (OR = 4.82; 95% CI: 1.39-16.71). Among the healthy subjects, T carrying cannabis users had increased schizotypy compared with T carrying cannabis-naïve subjects, GG cannabis users, and GG cannabis-naïve subjects (all P ≤ .025). T carrying cannabis users had reduced working memory accuracy compared with the other groups (all P ≤ .008). Thus, variation of the DRD2, rs1076560, genotype may modulate the psychosis-inducing effect of cannabis use.
Collapse
Affiliation(s)
- Marco Colizzi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro,” Bari, Italy;,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Conrad Iyegbe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - John Powell
- Department of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Gianluca Ursini
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro,” Bari, Italy;,Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MA
| | - Annamaria Porcelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro,” Bari, Italy
| | - Aurora Bonvino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro,” Bari, Italy
| | - Paolo Taurisano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro,” Bari, Italy
| | - Raffaella Romano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro,” Bari, Italy
| | - Rita Masellis
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro,” Bari, Italy
| | - Giuseppe Blasi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro,” Bari, Italy
| | - Craig Morgan
- Department of Health Services and Population Research, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Katherine Aitchison
- MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Sonija Luzi
- Department of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Anna Kolliakou
- National Institute for Health Research Maudsley Biomedical Research Centre and Dementia Unit, London, UK
| | - Anthony David
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Alessandro Bertolino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro,” Bari, Italy;,pRED, NORD DTA, F. Hoffman-La Roche Ltd., Basel, Switzerland
| | - Marta Di Forti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK;,To whom correspondence should be addressed; Department of Psychosis Studies, Institute of Psychiatry, King’s College London, London SE5 8AF, UK; tel: 44-(0)20-7848-0100, fax: 44-(0)20-7848-0287, e-mail:
| |
Collapse
|
36
|
Blum K, Thompson B, Demotrovics Z, Femino J, Giordano J, Oscar-Berman M, Teitelbaum S, Smith DE, Roy AK, Agan G, Fratantonio J, Badgaiyan RD, Gold MS. The Molecular Neurobiology of Twelve Steps Program & Fellowship: Connecting the Dots for Recovery. JOURNAL OF REWARD DEFICIENCY SYNDROME 2015; 1:46-64. [PMID: 26306329 PMCID: PMC4545669 DOI: 10.17756/jrds.2015-008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are some who suggest that alcoholism and drug abuse are not diseases at all and that they are not consequences of a brain disorder as espoused recently by the American Society of Addiction Medicine (ASAM). Some would argue that addicts can quit on their own and moderate their alcohol and drug intake. When they present to a treatment program or enter the 12 Step Program & Fellowship, many addicts finally achieve complete abstinence. However, when controlled drinking fails, there may be successful alternatives that fit particular groups of individuals. In this expert opinion, we attempt to identify personal differences in recovery, by clarifying the molecular neurobiological basis of each step of the 12 Step Program. We explore the impact that the molecular neurobiological basis of the 12 steps can have on Reward Deficiency Syndrome (RDS) despite addiction risk gene polymorphisms. This exploration has already been accomplished in part by Blum and others in a 2013 Springer Neuroscience Brief. The purpose of this expert opinion is to briefly, outline the molecular neurobiological and genetic links, especially as they relate to the role of epigenetic changes that are possible in individuals who regularly attend AA meetings. It begs the question as to whether "12 steps programs and fellowship" does induce neuroplasticity and continued dopamine D2 receptor proliferation despite carrying hypodopaminergic type polymorphisms such as DRD2 A1 allele. "Like-minded" doctors of ASAM are cognizant that patients in treatment without the "psycho-social-spiritual trio," may not be obtaining the important benefits afforded by adopting 12-step doctrines. Are we better off with coupling medical assisted treatment (MAT) that favors combining dopamine agonist modalities (DAM) as possible histone-deacetylase activators with the 12 steps followed by a program that embraces either one or the other? While there are many unanswered questions, at least we have reached a time when "science meets recovery," and in doing so, can further redeem joy in recovery.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, School of Medicine and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Addiction Research and Therapy, Malibu Beach Recovery Center, Malibu Beach, CA, USA
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
- IGENE, LLC., Austin, TX, USA
- RDSolutions, Del Mar, CA, USA
- National Institute for Holistic Medicine, North Miami Beach, FL, USA
| | - Benjamin Thompson
- Behavioral Neuroscience Program, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
| | - Zsolt Demotrovics
- Eötvös Loránd University, Institute of Psychology, Budapest, Hungary
| | - John Femino
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
- Meadows Edge Recovery Center, North Kingstown, RI, USA
| | - John Giordano
- National Institute for Holistic Medicine, North Miami Beach, FL, USA
| | - Marlene Oscar-Berman
- Departments of Psychiatry, Neurology, and Anatomy & Neurobiology, Boston University School of Medicine, and Boston VA Healthcare System, Boston, MA, USA
| | - Scott Teitelbaum
- Department of Psychiatry, School of Medicine and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - David E. Smith
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
- Institute of Health & Aging, University of California at San Francisco, San Francisco, CA, USA
| | | | - Gozde Agan
- Dominion Diagnostics, Inc., North Kingstown, RI, USA
| | | | - Rajendra D. Badgaiyan
- Department of Psychiatry, University of Minnesota College of Medicine, Minneapolis, MN, USA
| | - Mark S. Gold
- Director of Research, Drug Enforcement Administration (DEA) Educational Foundation, Washington, D.C, USA
- Departments of Psychiatry & Behavioral Sciences at the Keck, University of Southern California, School of Medicine, CA, USA
| |
Collapse
|
37
|
Colizzi M, Iyegbe C, Powell J, Blasi G, Bertolino A, Murray RM, Di Forti M. Interaction between DRD2 and AKT1 genetic variations on risk of psychosis in cannabis users: a case-control study. NPJ SCHIZOPHRENIA 2015; 1:15025. [PMID: 27336035 PMCID: PMC4849451 DOI: 10.1038/npjschz.2015.25] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Marco Colizzi
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Conrad Iyegbe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London , London, UK
| | - John Powell
- Department of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London , London, UK
| | - Giuseppe Blasi
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari 'Aldo Moro' , Bari, Italy
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy; pRED, NORD DTA, F. Hoffman-La Roche Ltd., Basel, Switzerland
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London , London, UK
| | - Marta Di Forti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London , London, UK
| |
Collapse
|
38
|
Roussotte FF, Jahanshad N, Hibar DP, Thompson PM. Altered regional brain volumes in elderly carriers of a risk variant for drug abuse in the dopamine D2 receptor gene (DRD2). Brain Imaging Behav 2015; 9:213-22. [PMID: 24634060 PMCID: PMC4276548 DOI: 10.1007/s11682-014-9298-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dopamine D2 receptors mediate the rewarding effects of many drugs of abuse. In humans, several polymorphisms in DRD2, the gene encoding these receptors, increase our genetic risk for developing addictive disorders. Here, we examined one of the most frequently studied candidate variant for addiction in DRD2 for association with brain structure. We tested whether this variant showed associations with regional brain volumes across two independent elderly cohorts, totaling 1,032 subjects. We first examined a large sample of 738 elderly participants with neuroimaging and genetic data from the Alzheimer's Disease Neuroimaging Initiative (ADNI1). We hypothesized that this addiction-related polymorphism would be associated with structural brain differences in regions previously implicated in familial vulnerability for drug dependence. Then, we assessed the generalizability of our findings by testing this polymorphism in a non-overlapping replication sample of 294 elderly subjects from a continuation of the first ADNI project (ADNI2) to minimize the risk of reporting false positive results. In both cohorts, the minor allele-previously linked with increased risk for addiction-was associated with larger volumes in various brain regions implicated in reward processing. These findings suggest that neuroanatomical phenotypes associated with familial vulnerability for drug dependence may be partially mediated by DRD2 genotype.
Collapse
Affiliation(s)
- Florence F Roussotte
- Imaging Genetics Center, Institute for Neuroimaging and Informatics Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | | | | | | |
Collapse
|
39
|
Eicher JD, Stein CM, Deng F, Ciesla AA, Powers NR, Boada R, Smith SD, Pennington BF, Iyengar SK, Lewis BA, Gruen JR. The DYX2 locus and neurochemical signaling genes contribute to speech sound disorder and related neurocognitive domains. GENES BRAIN AND BEHAVIOR 2015; 14:377-85. [PMID: 25778907 PMCID: PMC4492462 DOI: 10.1111/gbb.12214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 12/17/2022]
Abstract
A major milestone of child development is the acquisition and use of speech and language. Communication disorders, including speech sound disorder (SSD), can impair a child's academic, social and behavioral development. Speech sound disorder is a complex, polygenic trait with a substantial genetic component. However, specific genes that contribute to SSD remain largely unknown. To identify associated genes, we assessed the association of the DYX2 dyslexia risk locus and markers in neurochemical signaling genes (e.g., nicotinic and dopaminergic) with SSD and related endophenotypes. We first performed separate primary associations in two independent samples - Cleveland SSD (210 affected and 257 unaffected individuals in 127 families) and Denver SSD (113 affected individuals and 106 unaffected individuals in 85 families) - and then combined results by meta-analysis. DYX2 markers, specifically those in the 3' untranslated region of DCDC2 (P = 1.43 × 10(-4) ), showed the strongest associations with phonological awareness. We also observed suggestive associations of dopaminergic-related genes ANKK1 (P = 1.02 × 10(-2) ) and DRD2 (P = 9.22 × 10(-3) ) and nicotinic-related genes CHRNA3 (P = 2.51 × 10(-3) ) and BDNF (P = 8.14 × 10(-3) ) with case-control status and articulation. Our results further implicate variation in putative regulatory regions in the DYX2 locus, particularly in DCDC2, influencing language and cognitive traits. The results also support previous studies implicating variation in dopaminergic and nicotinic neural signaling influencing human communication and cognitive development. Our findings expand the literature showing genetic factors (e.g., DYX2) contributing to multiple related, yet distinct neurocognitive domains (e.g., dyslexia, language impairment, and SSD). How these factors interactively yield different neurocognitive and language-related outcomes remains to be elucidated.
Collapse
Affiliation(s)
- J D Eicher
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Functional genetic variation of the cannabinoid receptor 1 and cannabis use interact on prefrontal connectivity and related working memory behavior. Neuropsychopharmacology 2015; 40:640-9. [PMID: 25139064 PMCID: PMC4289952 DOI: 10.1038/npp.2014.213] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/29/2014] [Accepted: 07/14/2014] [Indexed: 02/06/2023]
Abstract
Cannabinoid signaling is involved in different brain functions and it is mediated by the cannabinoid receptor 1 (CNR1), which is encoded by the CNR1 gene. Previous evidence suggests an association between cognition and cannabis use. The logical interaction between genetically determined cannabinoid signaling and cannabis use has not been determined. Therefore, we investigated whether CNR1 variation predicts CNR1 prefrontal mRNA expression in postmortem prefrontal human tissue. Then, we studied whether functional variation in CNR1 and cannabis exposure interact in modulating prefrontal function and related behavior during working memory processing. Thus, 208 healthy subjects (113 males) were genotyped for the relevant functional SNP and were evaluated for cannabis use by the Cannabis Experience Questionnaire. All individuals performed the 2-back working memory task during functional magnetic resonance imaging. CNR1 rs1406977 was associated with prefrontal mRNA and individuals carrying a G allele had reduced CNR1 prefrontal mRNA levels compared with AA subjects. Moreover, functional connectivity MRI demonstrated that G carriers who were also cannabis users had greater functional connectivity in the left ventrolateral prefrontal cortex and reduced working memory behavioral accuracy during the 2-back task compared with the other groups. Overall, our results indicate that the deleterious effects of cannabis use are more evident on a specific genetic background related to its receptor expression.
Collapse
|
41
|
Pharmacogenetic associations of the type-3 metabotropic glutamate receptor (GRM3) gene with working memory and clinical symptom response to antipsychotics in first-episode schizophrenia. Psychopharmacology (Berl) 2015; 232:145-54. [PMID: 25096017 PMCID: PMC4282597 DOI: 10.1007/s00213-014-3649-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/29/2014] [Indexed: 10/24/2022]
Abstract
RATIONALE Type-3 metabotropic glutamate receptor gene (GRM3) single nucleotide polymorphisms (SNPs) have been associated with cognitive performance and prefrontal cortex brain activity in chronically treated schizophrenia patients. Whether these SNPs are associated with cognitive and symptom response to antipsychotic therapy has not been extensively evaluated. OBJECTIVES The aim of the study was to examine pharmacogenetic relationships between GRM3 and selected variants in relevant dopamine genes with changes in spatial working memory and clinical symptoms after treatment. METHODS Sixty-one untreated first-episode schizophrenia patients were assessed before and after 6 weeks of antipsychotic pharmacotherapy, primarily consisting of risperidone. Patients' level of cognitive performance on a spatial working memory task was assessed with a translational oculomotor paradigm. Changes after treatment in cognitive and clinical measures were examined in relationship to genetic polymorphisms in the GRM3, COMT, and DRD2/ANKK1 gene regions. RESULTS Spatial working memory performance worsened after antipsychotic treatment. This worsening was associated with GRM3 rs1468412, with the genetic subgroup of patients known to have altered glutamate activity having greater adverse changes in working memory performance after antipsychotic treatment. Negative symptom improvement was associated with GRM3 rs6465084. There were no pharmacogenetic associations between DRD2/ANKK1 and COMT with working memory changes or symptom response to treatment. CONCLUSIONS These findings suggest important pharmacogenetic relationships between GRM3 variants and changes in cognition and symptom response with exposure to antipsychotics. This information may be useful in identifying patients susceptible to adverse cognitive outcomes associated with antipsychotic treatment and suggest that glutamatergic mechanisms contribute to such effects.
Collapse
|
42
|
Kaalund SS, Newburn EN, Ye T, Tao R, Li C, Deep-Soboslay A, Herman MM, Hyde TM, Weinberger DR, Lipska BK, Kleinman JE. Contrasting changes in DRD1 and DRD2 splice variant expression in schizophrenia and affective disorders, and associations with SNPs in postmortem brain. Mol Psychiatry 2014; 19:1258-66. [PMID: 24322206 DOI: 10.1038/mp.2013.165] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/04/2013] [Accepted: 10/17/2013] [Indexed: 12/29/2022]
Abstract
Dopamine 2 receptor (DRD2) is of major interest to the pathophysiology of schizophrenia (SCZ) both as a target for antipsychotic drug action as well as a SCZ-associated risk gene. The dopamine 1 receptor (DRD1) is thought to mediate some of the cognitive deficits in SCZ, including impairment of working memory that relies on normal dorsolateral prefrontal cortex (DLPFC) function. To better understand the association of dopamine receptors with SCZ, we studied the expression of three DRD2 splice variants and the DRD1 transcript in DLPFC, hippocampus and caudate nucleus in a large cohort of subjects (~700), including patients with SCZ, affective disorders and nonpsychiatric controls (from 14th gestational week to 85 years of age), and examined genotype-expression associations of 278 single-nucleotide polymorphisms (SNPs) located in or near DRD2 and DRD1 genes. Expression of D2S mRNA and D2S/D2-long (D2L) ratio were significantly increased in DLPFC of patients with SCZ relative to controls (P<0.0001 and P<0.0001, respectively), whereas D2L, D2Longer and DRD1 were decreased (P<0.0001). Patients with affective disorders showed an opposite pattern: reduced expression of D2S (major depressive disorder, P<0.0001) and increased expression of D2L and DRD1 (bipolar disorder, P<0.0001). Moreover, SCZ-associated risk alleles at rs1079727, rs1076560 and rs2283265 predicted increased D2S/D2L expression ratio (P<0.05) in control individuals. Our data suggest that altered splicing of DRD2 and expression of DRD1 may constitute a pathophysiological mechanism in risk for SCZ and affective disorders. The association between SCZ risk-associated polymorphism and the ratio of D2S/D2L is consistent with this possibility.
Collapse
Affiliation(s)
- S S Kaalund
- 1] Human Brain Collection Core, IRP, National Institute of Mental Health, Bethesda, MD, USA [2] Research Laboratory for Stereology and Neuroscience, Bispebjerg University Hospital, Copenhagen NV, Denmark [3] Faculty of Health Sciences, Protein Laboratory, Institute of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - E N Newburn
- Human Brain Collection Core, IRP, National Institute of Mental Health, Bethesda, MD, USA
| | - T Ye
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - R Tao
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - C Li
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | - M M Herman
- Human Brain Collection Core, IRP, National Institute of Mental Health, Bethesda, MD, USA
| | - T M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - D R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - B K Lipska
- Human Brain Collection Core, IRP, National Institute of Mental Health, Bethesda, MD, USA
| | - J E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
| |
Collapse
|
43
|
The influence of genetic variants on striatal dopamine transporter and D2 receptor binding after TBI. J Cereb Blood Flow Metab 2014; 34:1328-39. [PMID: 24849661 PMCID: PMC4126093 DOI: 10.1038/jcbfm.2014.87] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/12/2014] [Accepted: 04/21/2014] [Indexed: 12/24/2022]
Abstract
Dopamine (DA) neurotransmission influences cognition and recovery after traumatic brain injury (TBI). We explored whether functional genetic variants affecting the DA transporter (DAT) and D2 receptor (DRD2) impacted in vivo dopaminergic binding with positron emission tomography (PET) using [(11)C]βCFT and [(11)C]raclopride. We examined subjects with moderate/severe TBI (N=12) ∼1 year post injury and similarly matched healthy controls (N=13). The variable number of tandem repeat polymorphism within the DAT gene and the TaqI restriction fragment length polymorphism near the DRD2 gene were assessed. TBI subjects had age-adjusted DAT-binding reductions in the caudate, putamen, and ventral striatum, and modestly increased D2 binding in ventral striatum versus controls. Despite small sample sizes, multivariate analysis showed lower caudate and putamen DAT binding among DAT 9-allele carriers and DRD2 A2/A2 homozygotes with TBI versus controls with the same genotype. Among TBI subjects, 9-allele carriers had lower caudate and putamen binding than 10/10 homozygotes. This PET study suggests a hypodopaminergic environment and altered DRD2 autoreceptor DAT interactions that may influence DA transmission after TBI. Future work will relate these findings to cognitive performance; future studies are required to determine how DRD2/DAT1 genotype and DA-ligand binding are associated with neurostimulant response and TBI recovery.
Collapse
|
44
|
Taurisano P, Romano R, Mancini M, Giorgio AD, Antonucci LA, Fazio L, Rampino A, Quarto T, Gelao B, Porcelli A, Papazacharias A, Ursini G, Caforio G, Masellis R, Niccoli-Asabella A, Todarello O, Popolizio T, Rubini G, Blasi G, Bertolino A. Prefronto-striatal physiology is associated with schizotypy and is modulated by a functional variant of DRD2. Front Behav Neurosci 2014; 8:235. [PMID: 25071490 PMCID: PMC4089730 DOI: 10.3389/fnbeh.2014.00235] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/13/2014] [Indexed: 11/13/2022] Open
Abstract
“Schizotypy” is a latent organization of personality related to the genetic risk for schizophrenia. Some evidence suggests that schizophrenia and schizotypy share some biological features, including a link to dopaminergic D2 receptor signaling. A polymorphism in the D2 gene (DRD2 rs1076560, guanine > thymine (G > T)) has been associated with the D2 short/long isoform expression ratio, as well as striatal dopamine signaling and prefrontal cortical activity during different cognitive operations, which are measures that are altered in patients with schizophrenia. Our aim is to determine the association of schizotypy scores with the DRD2 rs1076560 genotype in healthy individuals and their interaction with prefrontal activity during attention and D2 striatal signaling. A total of 83 healthy subjects were genotyped for DRD2 rs1076560 and completed the Schizotypal Personality Questionnaire (SPQ). Twenty-six participants underwent SPECT with [123I]IBZM D2 receptor radiotracer, while 68 performed an attentional control task during fMRI. We found that rs1076560 GT subjects had greater SPQ scores than GG individuals. Moreover, the interaction between schizotypy and the GT genotype predicted prefrontal activity and related attentional behavior, as well as striatal binding of IBZM. No interaction was found in GG individuals. These results suggest that rs1076560 GT healthy individuals are prone to higher levels of schizotypy, and that the interaction between rs1076560 and schizotypy scores modulates phenotypes related to the pathophysiology of schizophrenia, such as prefrontal activity and striatal dopamine signaling. These results provide systems-level qualitative evidence for mapping the construct of schizotypy in healthy individuals onto the schizophrenia continuum.
Collapse
Affiliation(s)
- Paolo Taurisano
- Department of Basic Medical Science, Psychiatric Neuroscience Group, Neuroscience and Sense Organs, University of Bari Aldo Moro Bari, Italy ; IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo Foggia, Italy
| | - Raffaella Romano
- Department of Basic Medical Science, Psychiatric Neuroscience Group, Neuroscience and Sense Organs, University of Bari Aldo Moro Bari, Italy
| | - Marina Mancini
- Department of Basic Medical Science, Psychiatric Neuroscience Group, Neuroscience and Sense Organs, University of Bari Aldo Moro Bari, Italy
| | - Annabella Di Giorgio
- Department of Basic Medical Science, Psychiatric Neuroscience Group, Neuroscience and Sense Organs, University of Bari Aldo Moro Bari, Italy ; IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo Foggia, Italy
| | - Linda A Antonucci
- Department of Basic Medical Science, Psychiatric Neuroscience Group, Neuroscience and Sense Organs, University of Bari Aldo Moro Bari, Italy
| | - Leonardo Fazio
- Department of Basic Medical Science, Psychiatric Neuroscience Group, Neuroscience and Sense Organs, University of Bari Aldo Moro Bari, Italy ; IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo Foggia, Italy
| | - Antonio Rampino
- Department of Basic Medical Science, Psychiatric Neuroscience Group, Neuroscience and Sense Organs, University of Bari Aldo Moro Bari, Italy
| | - Tiziana Quarto
- Department of Basic Medical Science, Psychiatric Neuroscience Group, Neuroscience and Sense Organs, University of Bari Aldo Moro Bari, Italy ; Department of Behavioural Sciences, Cognitive Brain Research Unit, University of Helsinki Helsinki, Finland
| | - Barbara Gelao
- Department of Basic Medical Science, Psychiatric Neuroscience Group, Neuroscience and Sense Organs, University of Bari Aldo Moro Bari, Italy
| | - Annamaria Porcelli
- Department of Basic Medical Science, Psychiatric Neuroscience Group, Neuroscience and Sense Organs, University of Bari Aldo Moro Bari, Italy
| | - Apostolos Papazacharias
- Department of Basic Medical Science, Psychiatric Neuroscience Group, Neuroscience and Sense Organs, University of Bari Aldo Moro Bari, Italy
| | - Gianluca Ursini
- Department of Basic Medical Science, Psychiatric Neuroscience Group, Neuroscience and Sense Organs, University of Bari Aldo Moro Bari, Italy ; Lieber Institute for Brain Development, Johns Hopkins University Medical Campus Baltimore, MD, USA
| | - Grazia Caforio
- Department of Basic Medical Science, Psychiatric Neuroscience Group, Neuroscience and Sense Organs, University of Bari Aldo Moro Bari, Italy
| | - Rita Masellis
- Department of Basic Medical Science, Psychiatric Neuroscience Group, Neuroscience and Sense Organs, University of Bari Aldo Moro Bari, Italy
| | - Artor Niccoli-Asabella
- Department of Internal Medicine and of Public Medicine, Nuclear Medicine Unit, University of Bari Aldo Moro Bari, Italy
| | - Orlando Todarello
- Department of Basic Medical Science, Psychiatric Neuroscience Group, Neuroscience and Sense Organs, University of Bari Aldo Moro Bari, Italy
| | - Teresa Popolizio
- IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo Foggia, Italy
| | - Giuseppe Rubini
- Department of Internal Medicine and of Public Medicine, Nuclear Medicine Unit, University of Bari Aldo Moro Bari, Italy
| | - Giuseppe Blasi
- Department of Basic Medical Science, Psychiatric Neuroscience Group, Neuroscience and Sense Organs, University of Bari Aldo Moro Bari, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Psychiatric Neuroscience Group, Neuroscience and Sense Organs, University of Bari Aldo Moro Bari, Italy ; IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo Foggia, Italy ; pRED, NORD DTA, Hoffmann-La Roche, Ltd. Basel, Switzerland
| |
Collapse
|
45
|
DRD2 genotype predicts prefrontal activity during working memory after stimulation of D2 receptors with bromocriptine. Psychopharmacology (Berl) 2014; 231:2361-70. [PMID: 24424781 DOI: 10.1007/s00213-013-3398-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/01/2013] [Indexed: 10/25/2022]
Abstract
RATIONALE Pharmacological stimulation of D2 receptors modulates prefrontal neural activity associated with working memory (WM) processing. The T allele of a functional single-nucleotide polymorphism (SNP) within DRD2 (rs1076560 G > T) predicts reduced relative expression of the D2S receptor isoform and less efficient neural cortical responses during WM tasks. OBJECTIVE We used functional MRI to test the hypothesis that DRD2 rs1076560 genotype interacts with pharmacological stimulation of D2 receptors with bromocriptine on prefrontal responses during different loads of a spatial WM task (N-Back). METHODS Fifty-three healthy subjects (38 GG and 15 GT) underwent two 3-T functional MRI scans while performing the 1-, 2- and 3-Back versions of the N-Back WM task. Before the imaging sessions, either bromocriptine or placebo was administered to all subjects in a counterbalanced order. A factorial repeated-measures ANOVA within SPM8 (p < 0.05, family-wise error corrected) was used. RESULTS On bromocriptine, GG subjects had reduced prefrontal activity at 3-Back together with a significant decrement in performance, compared with placebo. On the other hand, GT subjects had lower activity for the same level of performance at 1-Back but a trend for reduced behavioral performance in the face of unchanged activity at 2-Back. CONCLUSIONS These results indicate that bromocriptine stimulation modulates prefrontal activity in terms of disengagement or of efficiency depending on DRD2 genotype and working memory load.
Collapse
|
46
|
Di Giorgio A, Smith RM, Fazio L, D'Ambrosio E, Gelao B, Tomasicchio A, Selvaggi P, Taurisano P, Quarto T, Masellis R, Rampino A, Caforio G, Popolizio T, Blasi G, Sadee W, Bertolino A. DRD2/CHRNA5 interaction on prefrontal biology and physiology during working memory. PLoS One 2014; 9:e95997. [PMID: 24819610 PMCID: PMC4018353 DOI: 10.1371/journal.pone.0095997] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 04/01/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560) and in the nicotinic receptor α5 gene (CHRNA5, rs16969968) on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume. METHODS A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T) and CHNRA5 rs16969968 (G>A) on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI. RESULTS We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups. CONCLUSIONS The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5.
Collapse
Affiliation(s)
| | - Ryan M. Smith
- Department of Pharmacology, Center for Pharmacogenomics, The Ohio State University, Columbus, Ohio, United States of America
| | - Leonardo Fazio
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, Aldo Moro University, Bari, Italy
| | - Enrico D'Ambrosio
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, Aldo Moro University, Bari, Italy
| | - Barbara Gelao
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, Aldo Moro University, Bari, Italy
| | - Aldo Tomasicchio
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, Aldo Moro University, Bari, Italy
| | - Pierluigi Selvaggi
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, Aldo Moro University, Bari, Italy
| | - Paolo Taurisano
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, Aldo Moro University, Bari, Italy
| | - Tiziana Quarto
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, Aldo Moro University, Bari, Italy
- Cognitive Brain Research Unit, Department of Behavioral Sciences, University of Helsinki, Helsinki, Finland
| | - Rita Masellis
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, Aldo Moro University, Bari, Italy
| | - Antonio Rampino
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, Aldo Moro University, Bari, Italy
| | - Grazia Caforio
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, Aldo Moro University, Bari, Italy
| | - Teresa Popolizio
- IRCCSS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Giuseppe Blasi
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, Aldo Moro University, Bari, Italy
| | - Wolfgang Sadee
- Department of Pharmacology, Center for Pharmacogenomics, The Ohio State University, Columbus, Ohio, United States of America
| | - Alessandro Bertolino
- IRCCSS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, Aldo Moro University, Bari, Italy
- pRED, NORD DTA, F. Hoffman-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
47
|
Zhang S, Zhang M, Zhang J. Association of COMT and COMT-DRD2 interaction with creative potential. Front Hum Neurosci 2014; 8:216. [PMID: 24782743 PMCID: PMC3995040 DOI: 10.3389/fnhum.2014.00216] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/27/2014] [Indexed: 12/13/2022] Open
Abstract
Several lines of evidence suggest that genes involved in dopamine (DA) transmission may contribute to creativity. Among these genes, the catechol-O-methyltransferase gene (COMT) and the dopamine D2 receptor gene (DRD2) are the most promising candidates. Our previous study has revealed evidence for the involvement of DRD2 in creative potential. The present study extended our previous study by systematically exploring the association of COMT with creative potential as well as the interaction between COMT and DRD2. Twelve single nucleotide polymorphisms (SNPs) covering COMT were genotyped in 543 healthy Chinese college students whose creative potentials were assessed by divergent thinking tests. Single SNP analysis showed that rs174697 was nominally associated with verbal originality, two SNPs (rs737865 and rs5993883) were nominally associated with figural fluency, and two SNPs (rs737865 and rs4680) were nominally associated with figural originality. Haplotype analysis showed that, the TCT and CCT haplotype (rs737865-rs174675-rs5993882) were nominally associated with figural originality, and the TATGCAG and CGCGGGA haplotype (rs4646312-rs6269-rs4633-rs6267-rs4818-rs4680-rs769224) were nominally associated with figural originality and verbal flexibility, respectively. However, none of these nominal findings survived correction for multiple testing. Gene-gene interaction analysis identified one significant four-way interaction of rs174675 (COMT), rs174697 (COMT), rs1076560 (DRD2), and rs4436578 (DRD2) on verbal fluency, one significant four-way interaction of rs174675 (COMT), rs4818 (COMT), rs1076560 (DRD2), and rs4648317 (DRD2) on verbal flexibility, and one significant three-way interaction of rs5993883 (COMT), rs4648319 (DRD2), and rs4648317 (DRD2) on figural flexibility. In conclusion, the present study provides nominal evidence for the involvement of COMT in creative potential and suggests that DA related genes may act in coordination to contribute to creativity.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Psychology, Shandong Normal University Jinan, China
| | - Muzi Zhang
- Department of Psychology, Shandong Normal University Jinan, China
| | - Jinghuan Zhang
- Department of Psychology, Shandong Normal University Jinan, China
| |
Collapse
|
48
|
Juran SA, Johanson G, Ernstgård L, Iregren A, van Thriel C. Neurobehavioral performance in volunteers after inhalation of white spirits with high and low aromatic content. Arch Toxicol 2014; 88:1127-40. [DOI: 10.1007/s00204-014-1236-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 03/26/2014] [Indexed: 11/30/2022]
|
49
|
Yildiz A, Wolf OT, Beste C. Stress intensifies demands on response selection during action cascading processes. Psychoneuroendocrinology 2014; 42:178-87. [PMID: 24636514 DOI: 10.1016/j.psyneuen.2014.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 12/24/2022]
Abstract
Stress has been shown to modulate a number of cognitive processes including action control. These functions are important in daily life and are mediated by various cognitive subprocesses. However, it is unknown if stress affects the whole processing cascade, or exerts specific effects on a restricted subset of processes involved in the chaining of actions. We examine the effects of stress on action selection processes in a stop-change paradigm and apply event-related potentials (ERPs) combined with source localization analysis to examine potentially restricted effects of stress on subprocesses mediating action cascading. The results show that attentional selection processes, as well as processes related to allocation of processing resources were not affected by stress. Stress only seems to affect response selection functions during action cascading and leads to slowing of responses when two actions are executed in succession. These changes are related to the anterior cingulate cortex (ACC). Changes in response selection were predictable on the basis of individual salivary cortisol levels. The results show that stress does not affect the whole processing cascade involved in the cascading of different actions, but seems to exert circumscribed effects on response selection processes which have previously been shown to depend on dopaminergic neural transmission.
Collapse
Affiliation(s)
- Ali Yildiz
- Institute for Cognitive Neuroscience, Biopsychology, Ruhr Universität Bochum, Germany; Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Germany
| | - Oliver T Wolf
- Institute for Cognitive Neuroscience, Cognitive Psychology, Ruhr Universität Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Germany.
| |
Collapse
|
50
|
|