1
|
Rorick MM, Artzy-Randrup Y, Ruybal-Pesántez S, Tiedje KE, Rask TS, Oduro A, Ghansah A, Koram K, Day KP, Pascual M. Signatures of competition and strain structure within the major blood-stage antigen of Plasmodium falciparum in a local community in Ghana. Ecol Evol 2018; 8:3574-3588. [PMID: 29686839 PMCID: PMC5901166 DOI: 10.1002/ece3.3803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/31/2017] [Accepted: 12/06/2017] [Indexed: 11/12/2022] Open
Abstract
The concept of niche partitioning has received considerable theoretical attention at the interface of ecology and evolution of infectious diseases. Strain theory postulates that pathogen populations can be structured into distinct nonoverlapping strains by frequency-dependent selection in response to intraspecific competition for host immune space. The malaria parasite Plasmodium falciparum presents an opportunity to investigate this phenomenon in nature, under conditions of high recombination rate and extensive antigenic diversity. The parasite's major blood-stage antigen, Pf EMP1, is encoded by the hyperdiverse var genes. With a dataset that includes thousands of var DBLα sequence types sampled from asymptomatic cases within an area of high endemicity in Ghana, we address how var diversity is distributed within isolates and compare this to the distribution of microsatellite allelic diversity within isolates to test whether antigenic and neutral regions of the genome are structured differently. With respect to var DBLα sequence types, we find that on average isolates exhibit significantly lower overlap than expected randomly, but that there also exists frequent pairs of isolates that are highly related. Furthermore, the linkage network of var DBLα sequence types reveals a pattern of nonrandom modularity unique to these antigenic genes, and we find that modules of highly linked DBLα types are not explainable by neutral forces related to var recombination constraints, microsatellite diversity, sampling location, host age, or multiplicity of infection. These findings of reduced overlap and modularity among the var antigenic genes are consistent with a role for immune selection as proposed by strain theory. Identifying the evolutionary and ecological dynamics that are responsible for the nonrandom structure in P. falciparum antigenic diversity is important for designing effective intervention in endemic areas.
Collapse
Affiliation(s)
- Mary M Rorick
- Department of Ecology and Evolution University of Chicago Chicago IL USA.,Department of Biology University of Utah Salt Lake City UT USA
| | - Yael Artzy-Randrup
- Theoretical Ecology Group Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands
| | - Shazia Ruybal-Pesántez
- School of Biosciences Bio21 Institute The University of Melbourne Melbourne Vic. Australia.,Department of Microbiology New York University New York NY USA
| | - Kathryn E Tiedje
- School of Biosciences Bio21 Institute The University of Melbourne Melbourne Vic. Australia.,Department of Microbiology New York University New York NY USA
| | - Thomas S Rask
- School of Biosciences Bio21 Institute The University of Melbourne Melbourne Vic. Australia.,Department of Microbiology New York University New York NY USA
| | | | - Anita Ghansah
- Noguchi Memorial Institute for Medical Research University of Ghana Legon Ghana
| | - Kwadwo Koram
- Noguchi Memorial Institute for Medical Research University of Ghana Legon Ghana
| | - Karen P Day
- School of Biosciences Bio21 Institute The University of Melbourne Melbourne Vic. Australia.,Department of Microbiology New York University New York NY USA
| | - Mercedes Pascual
- Department of Ecology and Evolution University of Chicago Chicago IL USA.,The Santa Fe Institute Santa Fe NM USA
| |
Collapse
|
2
|
Fonseca LL, Joyner CJ, Galinski MR, Voit EO. A model of Plasmodium vivax concealment based on Plasmodium cynomolgi infections in Macaca mulatta. Malar J 2017; 16:375. [PMID: 28923058 PMCID: PMC5608162 DOI: 10.1186/s12936-017-2008-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/02/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Plasmodium vivax can cause severe malaria. The total parasite biomass during infections is correlated with the severity of disease but not necessarily quantified accurately by microscopy. This finding has raised the question whether there could be sub-populations of parasites that are not observed in peripheral blood smears but continue to contribute to the increase in parasite numbers that drive pathogenesis. Non-human primate infection models utilizing the closely related simian malaria parasite Plasmodium cynomolgi hold the potential for quantifying the magnitude of possibly unobserved infected red blood cell (iRBC) populations and determining how the presence of this hidden reservoir correlates with disease severity. METHODS Time series data tracking the longitudinal development of parasitaemia in five Macaca mulatta infected with P. cynomolgi were used to design a computational model quantifying iRBCs that circulate in the blood versus those that are not detectable and are termed here as 'concealed'. This terminology is proposed to distinguish such observations from the deep vascular and widespread 'sequestration' of Plasmodium falciparum iRBCs, which is governed by distinctly different molecular mechanisms. RESULTS The computational model presented here clearly demonstrates that the observed growth data of iRBC populations are not consistent with the known biology and blood-stage cycle of P. cynomolgi. However, the discrepancies can be resolved when a sub-population of concealed iRBCs is taken into account. The model suggests that the early growth of a hidden parasite sub-population has the potential to drive disease. As an alternative, the data could be explained by the sequential release of merozoites from the liver over a number of days, but this scenario seems less likely. CONCLUSIONS Concealment of a non-circulating iRBC sub-population during P. cynomolgi infection of M. mulatta is an important aspect of this successful host-pathogen relationship. The data also support the likelihood that a sub-population of iRBCs of P. vivax has a comparable means to become withdrawn from the peripheral circulation. This inference has implications for understanding vivax biology and pathogenesis and stresses the importance of considering a concealed parasite reservoir with regard to vivax epidemiology and the quantification and treatment of P. vivax infections.
Collapse
Affiliation(s)
- Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive, Suite 2115, Atlanta, GA, 30332-2000, USA.,Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA
| | - Chester J Joyner
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA.,Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA
| | | | - Mary R Galinski
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA.,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA.,Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive, Suite 2115, Atlanta, GA, 30332-2000, USA. .,Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA.
| |
Collapse
|
3
|
Day KP, Artzy-Randrup Y, Tiedje KE, Rougeron V, Chen DS, Rask TS, Rorick MM, Migot-Nabias F, Deloron P, Luty AJF, Pascual M. Evidence of strain structure in Plasmodium falciparum var gene repertoires in children from Gabon, West Africa. Proc Natl Acad Sci U S A 2017; 114:E4103-E4111. [PMID: 28461509 PMCID: PMC5441825 DOI: 10.1073/pnas.1613018114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Existing theory on competition for hosts between pathogen strains has proposed that immune selection can lead to the maintenance of strain structure consisting of discrete, weakly overlapping antigenic repertoires. This prediction of strain theory has conceptual overlap with fundamental ideas in ecology on niche partitioning and limiting similarity between coexisting species in an ecosystem, which oppose the hypothesis of neutral coexistence. For Plasmodium falciparum, strain theory has been specifically proposed in relation to the major surface antigen of the blood stage, known as PfEMP1 and encoded by the multicopy multigene family known as the var genes. Deep sampling of the DBLα domain of var genes in the local population of Bakoumba, West Africa, was completed to define whether patterns of repertoire overlap support a role of immune selection under the opposing force of high outcrossing, a characteristic of areas of intense malaria transmission. Using a 454 high-throughput sequencing protocol, we report extremely high diversity of the DBLα domain and a large parasite population with DBLα repertoires structured into nonrandom patterns of overlap. Such population structure, significant for the high diversity of var genes that compose it at a local level, supports the existence of "strains" characterized by distinct var gene repertoires. Nonneutral, frequency-dependent competition would be at play and could underlie these patterns. With a computational experiment that simulates an intervention similar to mass drug administration, we argue that the observed repertoire structure matters for the antigenic var diversity of the parasite population remaining after intervention.
Collapse
Affiliation(s)
- Karen P Day
- School of Biosciences, The University of Melbourne, Parkville, VIC 3052, Australia;
- Department of Microbiology, New York University, New York, NY 10016
| | - Yael Artzy-Randrup
- Theoretical Ecology Group, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
| | - Kathryn E Tiedje
- School of Biosciences, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Microbiology, New York University, New York, NY 10016
| | - Virginie Rougeron
- Department of Microbiology, New York University, New York, NY 10016
- Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR 224-5290 CNRS, Institut de Recherche pour le Développement-Université de Montpellier, Centre Institut de Recherche pour le Développement de Montpellier, 34394 Montpellier, France
| | - Donald S Chen
- Department of Microbiology, New York University, New York, NY 10016
- Department of Medicine, New York Medical College, Valhalla, NY 10595
| | - Thomas S Rask
- School of Biosciences, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Microbiology, New York University, New York, NY 10016
| | - Mary M Rorick
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637
| | - Florence Migot-Nabias
- Institut de Recherche pour le Développement, UMR 216 Mère et Enfant Face aux Infections Tropicales, 75006 Paris, France
- Communautés d'Universités et Établissements, Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Philippe Deloron
- Institut de Recherche pour le Développement, UMR 216 Mère et Enfant Face aux Infections Tropicales, 75006 Paris, France
- Communautés d'Universités et Établissements, Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Adrian J F Luty
- Institut de Recherche pour le Développement, UMR 216 Mère et Enfant Face aux Infections Tropicales, 75006 Paris, France
- Communautés d'Universités et Établissements, Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637
- Santa Fe Institute, Santa Fe, NM 87501
| |
Collapse
|
4
|
Carlos BC, Fotoran WL, Menezes MJ, Cabral FJ, Bastos MF, Costa FT, Sousa-Neto JA, Ribolla PE, Wunderlich G, Ferreira MU. Expressed var gene repertoire and variant surface antigen diversity in a shrinking Plasmodium falciparum population. Exp Parasitol 2016; 170:90-99. [DOI: 10.1016/j.exppara.2016.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/01/2016] [Accepted: 09/20/2016] [Indexed: 10/21/2022]
|
5
|
Abstract
The Plasmodium falciparum erythrocyte membrane protein 1 antigens that are inserted onto the surface of P. falciparum infected erythrocytes play a key role both in the pathology of severe malaria and as targets of naturally acquired immunity. They might be considered unlikely vaccine targets because they are extremely diverse. However, several lines of evidence suggest that underneath this molecular diversity there are a restricted set of epitopes which may act as effective targets for a vaccine against severe malaria. Here we review some of the recent developments in this area of research, focusing on work that has assessed the potential of these molecules as possible vaccine targets.
Collapse
|
6
|
Artzy-Randrup Y, Pascual M. Composite temporal strategies in pathogen evolution: balancing invasion and persistence. THEOR ECOL-NETH 2014. [DOI: 10.1007/s12080-014-0221-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Modeling malaria infection and immunity against variant surface antigens in Príncipe Island, West Africa. PLoS One 2014; 9:e88110. [PMID: 24520349 PMCID: PMC3919732 DOI: 10.1371/journal.pone.0088110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/07/2014] [Indexed: 11/21/2022] Open
Abstract
After remarkable success of vector control campaigns worldwide, concerns about loss of immunity against Plasmodium falciparum due to lack of exposure to the parasite are relevant since an increase of severe cases in less immune individuals is expected. We present a mathematical model to investigate the impact of reducing exposure to the parasite on the immune repertoire against P. falciparum erythrocyte membrane protein 1 (PfEMP1) variants. The model was parameterized with data from Príncipe Island, West Africa, and applied to simulate two alternative transmission scenarios: one where control measures are continued to eventually drive the system to elimination; and another where the effort is interrupted after 6 years of its initiation and the system returns to the initial transmission potential. Population dynamics of parasite prevalence predict that in a few years infection levels return to the pre-control values, while the re-acquisition of the immune repertoire against PfEMP1 is slower, creating a window for increased severity. The model illustrates the consequences of loss of immune repertoire against PfEMP1 in a given setting and can be applied to other regions where similar data may be available.
Collapse
|
8
|
Gjini E, Haydon DT, Barry JD, Cobbold CA. Linking the antigen archive structure to pathogen fitness in African trypanosomes. Proc Biol Sci 2013; 280:20122129. [PMID: 23282992 PMCID: PMC3574339 DOI: 10.1098/rspb.2012.2129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/05/2012] [Indexed: 12/31/2022] Open
Abstract
Systems that generate antigenic variation enable pathogens to evade host immune responses and are intricately interwoven with major pathogen traits, such as host choice, growth, virulence and transmission. Although much is understood about antigen switching at the molecular level, little is known about the cross-scale links between these molecular processes and the larger-scale within and between host population dynamics that they must ultimately drive. Inspired by the antigenic variation system of African trypanosomes, we apply modelling approaches to our expanding understanding of the organization and expression of antigen repertoires, and explore links across these scales. We predict how pathogen population processes are determined by underlying molecular genetics and infer resulting selective pressures on important emergent repertoire traits.
Collapse
Affiliation(s)
- Erida Gjini
- School of Mathematics and Statistics, College of Science and Engineering, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | | | | | | |
Collapse
|
9
|
Warimwe GM, Fegan G, Musyoki JN, Newton CR, Opiyo M, Githinji G, Andisi C, Menza F, Kitsao B, Marsh K, Bull PC. Prognostic indicators of life-threatening malaria are associated with distinct parasite variant antigen profiles. Sci Transl Med 2012; 4:129ra45. [PMID: 22496547 PMCID: PMC3491874 DOI: 10.1126/scitranslmed.3003247] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PfEMP1 is a family of cytoadhesive surface antigens expressed on erythrocytes infected with Plasmodium falciparum, the parasite that causes the most severe form of malaria. These surface antigens play a role in immune evasion and are thought to contribute to the pathogenesis of the malaria parasite. Previous studies have suggested a role for a specific subset of PfEMP1 called "group A" in severe malaria. To explore the role of group A PfEMP1 in disease, we measured the expression of the var genes that encode them in parasites from clinical isolates collected from children suffering from malaria. We also looked at the ability of these clinical isolates to induce rosetting of erythrocytes, which indicates a cytoadhesion phenotype that is thought to be important in pathogenesis. These two sets of data were correlated with the presence of two life-threatening manifestations of severe malaria in the children: impaired consciousness and respiratory distress. Using regression analysis, we show that marked rosetting was associated with respiratory distress, whereas elevated expression of group A-like var genes without elevated rosetting was associated with impaired consciousness. The results suggest that manifestations of malarial disease may reflect the distribution of cytoadhesion phenotypes expressed by the infecting parasite population.
Collapse
Affiliation(s)
- George M. Warimwe
- Kenya Medical Research Institute-Wellcome Trust Research Programme, P.O. Box 230-80108 Kilifi, Kenya
| | - Gregory Fegan
- Kenya Medical Research Institute-Wellcome Trust Research Programme, P.O. Box 230-80108 Kilifi, Kenya
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Jennifer N. Musyoki
- Kenya Medical Research Institute-Wellcome Trust Research Programme, P.O. Box 230-80108 Kilifi, Kenya
| | - Charles R.J.C. Newton
- Kenya Medical Research Institute-Wellcome Trust Research Programme, P.O. Box 230-80108 Kilifi, Kenya
| | - Michael Opiyo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, P.O. Box 230-80108 Kilifi, Kenya
| | - George Githinji
- Kenya Medical Research Institute-Wellcome Trust Research Programme, P.O. Box 230-80108 Kilifi, Kenya
| | - Cheryl Andisi
- Kenya Medical Research Institute-Wellcome Trust Research Programme, P.O. Box 230-80108 Kilifi, Kenya
| | - Francis Menza
- Kenya Medical Research Institute-Wellcome Trust Research Programme, P.O. Box 230-80108 Kilifi, Kenya
| | - Barnes Kitsao
- Kenya Medical Research Institute-Wellcome Trust Research Programme, P.O. Box 230-80108 Kilifi, Kenya
| | - Kevin Marsh
- Kenya Medical Research Institute-Wellcome Trust Research Programme, P.O. Box 230-80108 Kilifi, Kenya
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Peter C. Bull
- Kenya Medical Research Institute-Wellcome Trust Research Programme, P.O. Box 230-80108 Kilifi, Kenya
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
10
|
Barry AE, Trieu A, Fowkes FJI, Pablo J, Kalantari-Dehaghi M, Jasinskas A, Tan X, Kayala MA, Tavul L, Siba PM, Day KP, Baldi P, Felgner PL, Doolan DL. The stability and complexity of antibody responses to the major surface antigen of Plasmodium falciparum are associated with age in a malaria endemic area. Mol Cell Proteomics 2011; 10:M111.008326. [PMID: 21825279 PMCID: PMC3226400 DOI: 10.1074/mcp.m111.008326] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Individuals that are exposed to malaria eventually develop immunity to the disease with one possible mechanism being the gradual acquisition of antibodies to the range of parasite variant surface antigens in their local area. Major antibody targets include the large and highly polymorphic Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family of proteins. Here, we use a protein microarray containing 123 recombinant PfEMP1-DBLα domains (VAR) from Papua New Guinea to seroprofile 38 nonimmune children (<4 years) and 29 hyperimmune adults (≥15 years) from the same local area. The overall magnitude, prevalence and breadth of antibody response to VAR was limited at <2 years and 2–2.9 years, peaked at 3–4 years and decreased for adults compared with the oldest children. An increasing proportion of individuals recognized large numbers of VAR proteins (>20) with age, consistent with the breadth of response stabilizing with age. In addition, the antibody response was limited in uninfected children compared with infected children but was similar in adults irrespective of infection status. Analysis of the variant-specific response confirmed that the antibody signature expands with age and infection. This also revealed that the antibody signatures of the youngest children overlapped substantially, suggesting that they are exposed to the same subset of PfEMP1 variants. VAR proteins were either seroprevalent from early in life, (<3 years), from later in childhood (≥3 years) or rarely recognized. Group 2 VAR proteins (Cys2/MFK-REY+) were serodominant in infants (<1-year-old) and all other sequence subgroups became more seroprevalent with age. The results confirm that the anti-PfEMP1-DBLα antibody responses increase in magnitude and prevalence with age and further demonstrate that they increase in stability and complexity. The protein microarray approach provides a unique platform to rapidly profile variant-specific antibodies to malaria and suggests novel insights into the acquisition of immunity to malaria.
Collapse
Affiliation(s)
- Alyssa E Barry
- Centre for Population Health, Burnet Institute, Melbourne, Victoria 3004, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang Q, Zhang Y, Huang Y, Xue X, Yan H, Sun X, Wang J, McCutchan TF, Pan W. From in vivo to in vitro: dynamic analysis of Plasmodium falciparum var gene expression patterns of patient isolates during adaptation to culture. PLoS One 2011; 6:e20591. [PMID: 21674009 PMCID: PMC3108956 DOI: 10.1371/journal.pone.0020591] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 05/04/2011] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by the var gene family, plays a crucial role in disease virulence through its involvement in binding to various host cellular receptors during infection. Growing evidence suggests that differential expression of the various var subgroups may be involved in parasite virulence. To further explore this issue, we have collected isolates from symptomatic patients in south China-Myanmar border, and characterized their sequence diversity and transcription profiles over time of var gene family, and cytoadherence properties from the time of their initial collection and extending through a two month period of adaptation to culture. Initially, we established a highly diverse, DBLα (4 cysteines) subtype-enriched, but unique local repertoire of var-DBL1α sequences by cDNA cloning and sequencing. Next we observed a rapid transcriptional decline of upsA- and upsB-subtype var genes at ring stage through qRT-PCR assays, and a switching event from initial ICAM-I binding to the CD36-binding activity during the first week of adaptive cultivation in vitro. Moreover, predominant transcription of upsA var genes was observed to be correlated with those isolates that showed a higher parasitemia at the time of collection and the ICAM-1-binding phenotype in culture. Taken together, these data indicate that the initial stage of adaptive process in vitro significantly influences the transcription of virulence-related var subtypes and expression of PfEMP1 variants. Further, the specific upregulation of the upsA var genes is likely linked to the rapid propagation of the parasite during natural infection due to the A-type PfEMP1 variant-mediated growth advantages.
Collapse
Affiliation(s)
- Qingfeng Zhang
- Institute of Infectious Disease and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Yilong Zhang
- Institute of Infectious Disease and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Yufu Huang
- Department of Pathogen Biology, Second Military Medical University, Shanghai, China
| | - Xiangyang Xue
- Institute of Infectious Disease and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - He Yan
- Institute of Infectious Disease and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Xiaodong Sun
- Yunnan Institute of Parasitic Diseases, Puer, China
| | - Jian Wang
- Yunnan Institute of Parasitic Diseases, Puer, China
| | - Thomas F. McCutchan
- Department of Pathogen Biology, Second Military Medical University, Shanghai, China
| | - Weiqing Pan
- Institute of Infectious Disease and Vaccine Development, Tongji University School of Medicine, Shanghai, China
- Department of Pathogen Biology, Second Military Medical University, Shanghai, China
- * E-mail:
| |
Collapse
|