1
|
Doering JA, Dubiel J, Stock E, Collins CH, Frick I, Johnson HM, Lowrey-Dufour CM, Miller JGP, Xia Z, Tomy GT, Wiseman S. A Quantitative Adverse Outcome Pathway for Embryonic Activation of the Aryl Hydrocarbon Receptor of Fishes by Polycyclic Aromatic Hydrocarbons Leading to Decreased Fecundity at Adulthood. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2145-2156. [PMID: 39092785 DOI: 10.1002/etc.5964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/02/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Quantitative adverse outcome pathways (qAOPs) describe the response-response relationships that link the magnitude and/or duration of chemical interaction with a specific molecular target to the probability and/or severity of the resulting apical-level toxicity of regulatory relevance. The present study developed the first qAOP for latent toxicities showing that early life exposure adversely affects health at adulthood. Specifically, a qAOP for embryonic activation of the aryl hydrocarbon receptor 2 (AHR2) of fishes by polycyclic aromatic hydrocarbons (PAHs) leading to decreased fecundity of females at adulthood was developed by building on existing qAOPs for (1) activation of the AHR leading to early life mortality in birds and fishes, and (2) inhibition of cytochrome P450 aromatase activity leading to decreased fecundity in fishes. Using zebrafish (Danio rerio) as a model species and benzo[a]pyrene as a model PAH, three linked quantitative relationships were developed: (1) plasma estrogen in adult females as a function of embryonic exposure, (2) plasma vitellogenin in adult females as a function of plasma estrogen, and (3) fecundity of adult females as a function of plasma vitellogenin. A fourth quantitative relationship was developed for early life mortality as a function of sensitivity to activation of the AHR2 in a standardized in vitro AHR transactivation assay to integrate toxic equivalence calculations that would allow prediction of effects of exposure to untested PAHs. The accuracy of the predictions from the resulting qAOP were evaluated using experimental data from zebrafish exposed as embryos to another PAH, benzo[k]fluoranthene. The qAOP developed in the present study demonstrates the potential of the AOP framework in enabling consideration of latent toxicities in quantitative ecological risk assessments and regulatory decision-making. Environ Toxicol Chem 2024;43:2145-2156. © 2024 SETAC.
Collapse
Affiliation(s)
- Jon A Doering
- Department of Environmental Sciences, College of the Coast & Environment, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Justin Dubiel
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Eric Stock
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Cameron H Collins
- Department of Environmental Sciences, College of the Coast & Environment, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ian Frick
- Department of Environmental Sciences, College of the Coast & Environment, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Hunter M Johnson
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Christopher M Lowrey-Dufour
- Department of Environmental Sciences, College of the Coast & Environment, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Justin G P Miller
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Zhe Xia
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gregg T Tomy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
2
|
Olsvik PA, Brokke KE, Samuelsen OB, Hannisdal R. Lufenuron treatment temporarily represses gene expression and affects the SUMO pathway in liver of Atlantic salmon. JOURNAL OF FISH DISEASES 2024; 47:e13880. [PMID: 37933190 DOI: 10.1111/jfd.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
Lufenuron is a benzoylurea insecticide currently in use to combat sea lice infestation in salmon aquaculture in Chile. With pending approval in Norway, the aim of this work was to study the uptake and toxicity of lufenuron in liver tissue of Atlantic salmon. Juvenile salmon weighing 40 g were given a standard 7-day oral dose, and bioaccumulation and transcriptional responses in the liver were examined 1 day after the end-of-treatment (day 8) and after 1 week of elimination (day 14). Bioaccumulation levels of lufenuron were 29 ± 3 mg/kg at day 8 and 14 ± 1 mg/kg at day 14, indicating relatively rapid clearance. However, residues of lufenuron were still present in the liver after 513 days of depuration. The exposure gave a transient inhibition of transcription in the liver at day 8 (2437 significant DEGs, p-adj < .05), followed by a weaker compensatory response at day 14 (169 significant DEGs). Pathways associated with RNA metabolism such as the sumoylation pathway were most strongly affected at day 8, while the apelin pathway was most profoundly affected at day 14. In conclusion, this study shows that lufenuron easily bioaccumulates and that a standard 7-day oral dose induces a transient inhibition of transcription in liver of salmon.
Collapse
Affiliation(s)
- Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Institute of Marine Research, Bergen, Norway
| | | | | | | |
Collapse
|
3
|
OUP accepted manuscript. Brief Funct Genomics 2022; 21:243-269. [DOI: 10.1093/bfgp/elac007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
|
4
|
Shankar P, Dasgupta S, Hahn ME, Tanguay RL. A Review of the Functional Roles of the Zebrafish Aryl Hydrocarbon Receptors. Toxicol Sci 2020; 178:215-238. [PMID: 32976604 PMCID: PMC7706399 DOI: 10.1093/toxsci/kfaa143] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the last 2 decades, the zebrafish (Danio rerio) has emerged as a stellar model for unraveling molecular signaling events mediated by the aryl hydrocarbon receptor (AHR), an important ligand-activated receptor found in all eumetazoan animals. Zebrafish have 3 AHRs-AHR1a, AHR1b, and AHR2, and studies have demonstrated the diversity of both the endogenous and toxicological functions of the zebrafish AHRs. In this contemporary review, we first highlight the evolution of the zebrafish ahr genes, and the characteristics of the receptors including developmental and adult expression, their endogenous and inducible roles, and the predicted ligands from homology modeling studies. We then review the toxicity of a broad spectrum of AHR ligands across multiple life stages (early stage, and adult), discuss their transcriptomic and epigenetic mechanisms of action, and report on any known interactions between the AHRs and other signaling pathways. Through this article, we summarize the promising research that furthers our understanding of the complex AHR pathway through the extensive use of zebrafish as a model, coupled with a large array of molecular techniques. As much of the research has focused on the functions of AHR2 during development and the mechanism of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) toxicity, we illustrate the need to address the considerable knowledge gap in our understanding of both the mechanistic roles of AHR1a and AHR1b, and the diverse modes of toxicity of the various AHR ligands.
Collapse
Affiliation(s)
- Prarthana Shankar
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| | - Subham Dasgupta
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
5
|
Azevedo RDS, Falcão KVG, Amaral IPG, Leite ACR, Bezerra RS. Mitochondria as targets for toxicity and metabolism research using zebrafish. Biochim Biophys Acta Gen Subj 2020; 1864:129634. [PMID: 32417171 DOI: 10.1016/j.bbagen.2020.129634] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND The study of mitochondrial functions in zebrafish was initiated before the 1990s and has effectively supported many of the recent scientific advances in the functional studies of mitochondria. SCOPE OF REVIEW This work elaborates various peculiarities and general advances in the study of mitochondria using this animal model. MAJOR CONCLUSIONS The inclusion of zebrafish models in scientific research was initiated with structural studies of mitochondria. Then, toxicological studies involving chemical compounds were undertaken. Currently, there is a decisive tendency to use zebrafish to understand how chemicals impair mitochondrial bioenergetics. Zebrafish modeling has been fruitful for the analysis of ion homeostasis, especially for Ca2+ transport, since zebrafish and mammals have the same set of Ca2+ transporters and mitochondrial membrane microdomains. Based on zebrafish embryo studies, our understanding of ROS generation has also led to new insights. GENERAL SIGNIFICANCE For the study of mitochondria, a new era was begun with the inclusion of zebrafish in bioenergetics research.
Collapse
Affiliation(s)
- Rafael D S Azevedo
- Biochemistry Department, Federal University of Pernambuco - UFPE, Recife, PE, Brazil.
| | - Kivia V G Falcão
- Biochemistry Department, Federal University of Pernambuco - UFPE, Recife, PE, Brazil
| | - Ian P G Amaral
- Biotechnology Center, Federal University of Paraiba - UFPB, João Pessoa, PB, Brazil
| | - Ana C R Leite
- Institute of Chemistry and Biotecnhology, Federal University of Alagoas - UFAL, Maceió, AL, Brazil
| | - Ranilson S Bezerra
- Biochemistry Department, Federal University of Pernambuco - UFPE, Recife, PE, Brazil
| |
Collapse
|
6
|
Doering JA, Beitel SC, Patterson S, Eisner BK, Giesy JP, Hecker M, Wiseman S. Aryl hydrocarbon receptor nuclear translocators (ARNT1, ARNT2, and ARNT3) of white sturgeon (Acipenser transmontanus): Sequences, tissue-specific expressions, and response to β-naphthoflavone. Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108726. [PMID: 32081761 DOI: 10.1016/j.cbpc.2020.108726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/01/2022]
Abstract
Sturgeons (Acipenseridae) are ancient fishes that have tissue-specific profiles of transcriptional responses to dioxin-like compounds (DLCs) that are unique from those generally measured in teleost fishes. Because DLCs exert their critical toxicities through activation of the aryl hydrocarbon receptor (AHR), this transcription factor has been the subject of intensive study. However, less attention has focused on the aryl hydrocarbon receptor nuclear translocator (ARNT), which is the dimerization partner of the AHR and required for AHR-mediated transcription. The present study sequenced ARNT1, ARNT2, and ARNT3 in a representative species of sturgeon, the white sturgeon (Acipenser transmontanus), and quantified tissue-specific basal transcript abundance for each ARNT and the response following exposure to the model agonist of the AHR, β-naphthoflavone. In common with other proteins in sturgeons, the amino acid sequences of ARNTs are more similar to those of tetrapods than are ARNTs of other fishes. Transcripts of ARNT1, ARNT2, and ARNT3 were detected in all tissues investigated. Expression of ARNTs are tightly regulated in vertebrates, but β-naphthoflavone caused down-regulation in liver and up-regulation in gill, while an upward trend was measured in intestine. ARNTs are dimeric partners for multiple proteins, including the hypoxia inducible factor 1α (HIF1α), which mediates response to hypoxia. A downward trend in abundance of HIF1α transcript was measured in liver of white sturgeon exposed to β-naphthoflavone. Altered expression of ARNTs and HIF1α caused by activation of the AHR might affect the ability of certain tissues in sturgeons to respond to hypoxia when co-exposed to DLCs or other agonists.
Collapse
Affiliation(s)
- Jon A Doering
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada.
| | - Shawn C Beitel
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Sarah Patterson
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Bryanna K Eisner
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX 76706, United States
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
7
|
Meador JP, Nahrgang J. Characterizing Crude Oil Toxicity to Early-Life Stage Fish Based On a Complex Mixture: Are We Making Unsupported Assumptions? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11080-11092. [PMID: 31503459 DOI: 10.1021/acs.est.9b02889] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Numerous studies of the water-soluble fraction (WSF) from crude oil have concluded that polycyclic aromatic hydrocarbons (PAHs) are the primary causative agents for early life stage (ELS) fish toxicity. Noteworthy is the lack of studies demonstrating that the sum of PAHs are capable of causing toxic effects in ELS fish at the low levels claimed (0.1-5 μg/L) without being part of a complex crude oil mixture. Crude oil and the WSF are composed of thousands of other compounds that co-occur and likely contribute to crude oil toxicity. Based on the available data, it appears that the syndrome of effects (lower heart rate, edemas, and morphological abnormalities) for ELS fish exposed to the aqueous fraction of a crude oil mixture is commonly observed in studies exposing fish embryos to high concentrations of a variety of compounds and may be a nonspecific response. We conclude that the available data support the hypothesis that this syndrome of effects is likely the result of baseline toxicity (not receptor based) due to membrane disruption and resulting alteration in ion (e.g., calcium and potassium) homeostasis. We acknowledge the possibility of some compounds in the WSF capable of causing a specific receptor based toxicity response to ELS fish; however, such compounds have not been identified nor their receptor characterized. Concluding that PAHs are the main toxic compounds for crude oil exposure is misleading and does not result in guideline values that can be useful for environmental protection. Water quality guidelines for any single chemical or suite of chemicals must be based on a complete understanding of exposure concentrations, mechanism of action, potency, and resulting response. This review focuses on the toxic effects reported for fish embryos and the purported toxic concentrations observed in the aqueous phase of an oil/water mixture, the known levels of toxicity for individual PAHs, a toxic unit approach for characterizing mixtures, and the potential molecular initiating event for ELS toxicity in fish. This review also has implications for a large number of studies exposing ELS fish to a variety of compounds at high concentrations that result in a common baseline toxic response.
Collapse
Affiliation(s)
- James P Meador
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service , National Oceanic and Atmospheric Administration , 2725 Montlake Boulevard East , Seattle , Washington 98112 , United States
| | - Jasmine Nahrgang
- Faculty of Biosciences, Fisheries and Economics, Department of Arctic and Marine Biology , UiT The Arctic University of Norway , N-9037 Tromsø , Norway
| |
Collapse
|
8
|
Jeggari A, Alekseenko Z, Petrov I, Dias JM, Ericson J, Alexeyenko A. EviNet: a web platform for network enrichment analysis with flexible definition of gene sets. Nucleic Acids Res 2019; 46:W163-W170. [PMID: 29893885 PMCID: PMC6030852 DOI: 10.1093/nar/gky485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022] Open
Abstract
The new web resource EviNet provides an easily run interface to network enrichment analysis for exploration of novel, experimentally defined gene sets. The major advantages of this analysis are (i) applicability to any genes found in the global network rather than only to those with pathway/ontology term annotations, (ii) ability to connect genes via different molecular mechanisms rather than within one high-throughput platform, and (iii) statistical power sufficient to detect enrichment of very small sets, down to individual genes. The users’ gene sets are either defined prior to upload or derived interactively from an uploaded file by differential expression criteria. The pathways and networks used in the analysis can be chosen from the collection menu. The calculation is typically done within seconds or minutes and the stable URL is provided immediately. The results are presented in both visual (network graphs) and tabular formats using jQuery libraries. Uploaded data and analysis results are kept in separated project directories not accessible by other users. EviNet is available at https://www.evinet.org/.
Collapse
Affiliation(s)
- Ashwini Jeggari
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Zhanna Alekseenko
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Iurii Petrov
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - José M Dias
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Johan Ericson
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Andrey Alexeyenko
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.,National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Box 1031, 171 21 Solna, Sweden
| |
Collapse
|
9
|
Schüttler A, Altenburger R, Ammar M, Bader-Blukott M, Jakobs G, Knapp J, Krüger J, Reiche K, Wu GM, Busch W. Map and model-moving from observation to prediction in toxicogenomics. Gigascience 2019; 8:giz057. [PMID: 31140561 PMCID: PMC6539241 DOI: 10.1093/gigascience/giz057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/13/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chemicals induce compound-specific changes in the transcriptome of an organism (toxicogenomic fingerprints). This provides potential insights about the cellular or physiological responses to chemical exposure and adverse effects, which is needed in assessment of chemical-related hazards or environmental health. In this regard, comparison or connection of different experiments becomes important when interpreting toxicogenomic experiments. Owing to lack of capturing response dynamics, comparability is often limited. In this study, we aim to overcome these constraints. RESULTS We developed an experimental design and bioinformatic analysis strategy to infer time- and concentration-resolved toxicogenomic fingerprints. We projected the fingerprints to a universal coordinate system (toxicogenomic universe) based on a self-organizing map of toxicogenomic data retrieved from public databases. Genes clustering together in regions of the map indicate functional relation due to co-expression under chemical exposure. To allow for quantitative description and extrapolation of the gene expression responses we developed a time- and concentration-dependent regression model. We applied the analysis strategy in a microarray case study exposing zebrafish embryos to 3 selected model compounds including 2 cyclooxygenase inhibitors. After identification of key responses in the transcriptome we could compare and characterize their association to developmental, toxicokinetic, and toxicodynamic processes using the parameter estimates for affected gene clusters. Furthermore, we discuss an association of toxicogenomic effects with measured internal concentrations. CONCLUSIONS The design and analysis pipeline described here could serve as a blueprint for creating comparable toxicogenomic fingerprints of chemicals. It integrates, aggregates, and models time- and concentration-resolved toxicogenomic data.
Collapse
Affiliation(s)
- Andreas Schüttler
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen, Worringerweg 1, 52074 Aachen, Germany
| | - Rolf Altenburger
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen, Worringerweg 1, 52074 Aachen, Germany
| | - Madeleine Ammar
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Marcella Bader-Blukott
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Gianina Jakobs
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Johanna Knapp
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Janet Krüger
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Kristin Reiche
- Bioinformatics Unit, Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany
| | - Gi-Mick Wu
- DEVELOP, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Wibke Busch
- Department Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
10
|
Nguyen H, Shrestha S, Tran D, Shafi A, Draghici S, Nguyen T. A Comprehensive Survey of Tools and Software for Active Subnetwork Identification. Front Genet 2019; 10:155. [PMID: 30891064 PMCID: PMC6411791 DOI: 10.3389/fgene.2019.00155] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
A recent focus of computational biology has been to integrate the complementary information available in molecular profiles as well as in multiple network databases in order to identify connected regions that show significant changes under different conditions. This allows for capturing dynamic and condition-specific mechanisms of the underlying phenomena and disease stages. Here we review 22 such integrative approaches for active module identification published over the last decade. This article only focuses on tools that are currently available for use and are well-maintained. We compare these methods focusing on their primary features, integrative abilities, network structures, mathematical models, and implementations. We also provide real-world scenarios in which these methods have been successfully applied, as well as highlight outstanding challenges in the field that remain to be addressed. The main objective of this review is to help potential users and researchers to choose the best method that is suitable for their data and analysis purpose.
Collapse
Affiliation(s)
- Hung Nguyen
- Department of Computer Science and Engineering, University of Nevada, Reno, NV, United States
| | - Sangam Shrestha
- Department of Computer Science and Engineering, University of Nevada, Reno, NV, United States
| | - Duc Tran
- Department of Computer Science and Engineering, University of Nevada, Reno, NV, United States
| | - Adib Shafi
- Department of Computer Science, Wayne State University, Detroit, MI, United States
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Tin Nguyen
- Department of Computer Science and Engineering, University of Nevada, Reno, NV, United States
| |
Collapse
|
11
|
Ulin A, Henderson J, Pham MT, Meyo J, Chen Y, Karchner SI, Goldstone JV, Hahn ME, Williams LM. Developmental Regulation of Nuclear Factor Erythroid-2 Related Factors (nrfs) by AHR1b in Zebrafish (Danio rerio). Toxicol Sci 2019; 167:536-545. [PMID: 30321412 PMCID: PMC6358246 DOI: 10.1093/toxsci/kfy257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interactions between regulatory pathways allow organisms to adapt to their environment and respond to stress. One interaction that has been recently identified occurs between the aryl hydrocarbon receptor (AHR) and the nuclear factor erythroid-2 related factor (NRF) family. Each transcription factor regulates numerous downstream genes involved in the cellular response to toxicants and oxidative stress; they are also implicated in normal developmental pathways. The zebrafish model was used to explore the role of AHR regulation of nrf genes during development and in response to toxicant exposure. To determine if AHR1b is responsible for transcriptional regulation of 6 nrf genes during development, a loss-of-function experiment using morpholino-modified oligonucleotides was conducted followed by a chromatin immunoprecipitation study at the beginning of the pharyngula period (24 h postfertilization). The expression of nrf1a was AHR1b dependent and its expression was directly regulated through specific XREs in its cis-promoter. However, nrf1a expression was not altered by exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), a toxicant and prototypic AHR agonist. The expression of nrf1b, nrf2a, and nfe2 was induced by TCDD, and AHR1b directly regulated their expression by binding to cis-XRE promoter elements. Last, nrf2b and nrf3 were neither induced by TCDD nor regulated by AHR1b. These results show that AHR1b transcriptionally regulates nrf genes under toxicant modulation via binding to specific XREs. These data provide a better understanding of how combinatorial molecular signaling potentially protects embryos from embryotoxic events following toxicant exposure.
Collapse
Affiliation(s)
- Alexandra Ulin
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Jake Henderson
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Minh-Tam Pham
- Department of biology, Bates College, Lewiston, Maine 04240
| | - James Meyo
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Yuying Chen
- Department of biology, Bates College, Lewiston, Maine 04240
| | - Sibel I Karchner
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Jared V Goldstone
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Mark E Hahn
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Larissa M Williams
- Department of biology, Bates College, Lewiston, Maine 04240
- Department of biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|
12
|
Doering JA, Wiseman S, Giesy JP, Hecker M. A Cross-species Quantitative Adverse Outcome Pathway for Activation of the Aryl Hydrocarbon Receptor Leading to Early Life Stage Mortality in Birds and Fishes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7524-7533. [PMID: 29863850 DOI: 10.1021/acs.est.8b01438] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dioxin-like compounds (DLCs) elicit adverse effects through activation of the aryl hydrocarbon receptor (AHR). Prior investigations demonstrated that sensitivity to activation of AHR1 in an in vitro AHR transactivation assay is predictive of early life stage mortality among birds. The present study investigated the link between sensitivity to activation of AHR1s and AHR2s and early life stage mortality among fishes. A significant, linear relationship was demonstrated between sensitivity to activation of AHR2 and early life stage mortality among nine fishes, while no relationship was found for AHR1. The slope and y-intercept for the linear relationship between sensitivity to activation of AHR1 and early life stage mortality in birds was not statistically different from the same relationship for AHR2 in fishes. Data for fishes and birds across DLCs were expanded into four significant, linear regression models describing the relationship between sensitivity to activation of AHR and the dose to cause early life stage mortality of 0%, 10%, 50%, or 100%. These four relationships were combined to form a quantitative adverse outcome pathway which can predict dose-response curves of early life stage mortality for DLCs to any bird or fish from species- and chemical-specific responses in an in vitro AHR transactivation assay.
Collapse
Affiliation(s)
- Jon A Doering
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
| | - Steve Wiseman
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Department of Biological Sciences , University of Lethbridge , Lethbridge , Alberta T1K 3M4 , Canada
| | - John P Giesy
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Department of Veterinary Biomedical Sciences , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B4 , Canada
| | - Markus Hecker
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- School of Environment and Sustainability , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5C8 , Canada
| |
Collapse
|
13
|
La Fleur L, Boura VF, Alexeyenko A, Berglund A, Pontén V, Mattsson JSM, Djureinovic D, Persson J, Brunnström H, Isaksson J, Brandén E, Koyi H, Micke P, Karlsson MCI, Botling J. Expression of scavenger receptor MARCO defines a targetable tumor-associated macrophage subset in non-small cell lung cancer. Int J Cancer 2018; 143:1741-1752. [PMID: 29667169 DOI: 10.1002/ijc.31545] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/14/2018] [Accepted: 03/28/2018] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) are attractive targets for immunotherapy. Recently, studies in animal models showed that treatment with an anti-TAM antibody directed against the scavenger receptor MARCO resulted in suppression of tumor growth and metastatic dissemination. Here we investigated the expression of MARCO in relation to other macrophage markers and immune pathways in a non-small cell lung cancer (NSCLC) cohort (n = 352). MARCO, CD68, CD163, MSR1 and programmed death ligand-1 (PD-L1) were analyzed by immunohistochemistry and immunofluorescence, and associations to other immune cells and regulatory pathways were studied in a subset of cases (n = 199) with available RNA-seq data. We observed a large variation in macrophage density between cases and a strong correlation between CD68 and CD163, suggesting that the majority of TAMs present in NSCLC exhibit a protumor phenotype. Correlation to clinical data only showed a weak trend toward worse survival for patients with high macrophage infiltration. Interestingly, MARCO was expressed on a distinct subpopulation of TAMs, which tended to aggregate in close proximity to tumor cell nests. On the transcriptomic level, we found a positive association between MARCO gene expression and general immune response pathways including strong links to immunosuppressive TAMs, T-cell infiltration and immune checkpoint molecules. Indeed, a higher macrophage infiltration was seen in tumors expressing PD-L1, and macrophages residing within tumor cell nests co-expressed MARCO and PD-L1. Thus, MARCO is a potential new immune target for anti-TAM treatment in a subset of NSCLC patients, possibly in combination with available immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Linnéa La Fleur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Vanessa F Boura
- Department of Microbiology, Tumor and Cell biology, Karolinska institutet, Stockholm, Sweden
| | - Andrey Alexeyenko
- Department of Microbiology, Tumor and Cell biology, Karolinska institutet, Stockholm, Sweden.,Science for Life Laboratory, National Bioinformatics Infrastructure Sweden, Solna, Sweden
| | | | - Victor Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Johanna S M Mattsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Dijana Djureinovic
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Johan Persson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Hans Brunnström
- Division of Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Johan Isaksson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden.,Department of Respiratory Medicine, Gävle Hospital, Gävle, Sweden.,County Council of Gävleborg, Centre for Research and Development, Uppsala University, Uppsala, Sweden
| | - Eva Brandén
- Department of Respiratory Medicine, Gävle Hospital, Gävle, Sweden.,County Council of Gävleborg, Centre for Research and Development, Uppsala University, Uppsala, Sweden
| | - Hirsh Koyi
- Department of Respiratory Medicine, Gävle Hospital, Gävle, Sweden.,County Council of Gävleborg, Centre for Research and Development, Uppsala University, Uppsala, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell biology, Karolinska institutet, Stockholm, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
14
|
Schüttler A, Reiche K, Altenburger R, Busch W. The Transcriptome of the Zebrafish Embryo After Chemical Exposure: A Meta-Analysis. Toxicol Sci 2018; 157:291-304. [PMID: 28329862 PMCID: PMC5443304 DOI: 10.1093/toxsci/kfx045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Numerous studies have been published in the past years investigating the transcriptome of the zebrafish embryo (ZFE) upon being subjected to chemical stress. Aiming at a more mechanistic understanding of the results of such studies, knowledge about commonalities of transcript regulation in response to chemical stress is needed. Thus, our goal in this study was to identify and interpret genes and gene sets constituting a general response to chemical exposure. Therefore, we aggregated and reanalyzed published toxicogenomics data obtained with the ZFE. We found that overlap of differentially transcribed genes in response to chemical stress across independent studies is generally low and the most commonly differentially transcribed genes appear in less than 50% of all treatments across studies. However, effect size analysis revealed several genes showing a common trend of differential expression, among which genes related to calcium homeostasis emerged as key, especially in exposure settings up to 24 h post-fertilization. Additionally, we found that these and other downregulated genes are often linked to anatomical regions developing during the respective exposure period. Genes showing a trend of increased expression were, among others, linked to signaling pathways (e.g., Wnt, Fgf) as well as lysosomal structures and apoptosis. The findings of this study help to increase the understanding of chemical stress responses in the developing zebrafish embryo and provide a starting point to improve experimental designs for this model system. In future, improved time- and concentration-resolved experiments should offer better understanding of stress response patterns and access to mechanistic information.
Collapse
Affiliation(s)
- Andreas Schüttler
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraβe 15, Leipig, Germany.,Institute for Environmental Research, RWTH Aachen, Worringerweg 1, Aachen, Germany
| | - Kristin Reiche
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraβe 15, Leipig, Germany.,Bioinformatics Unit, Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraβe 1, Leipzig, Germany
| | - Rolf Altenburger
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraβe 15, Leipig, Germany.,Institute for Environmental Research, RWTH Aachen, Worringerweg 1, Aachen, Germany
| | - Wibke Busch
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipig, Germany
| |
Collapse
|
15
|
Campana O, Wlodkowic D. Ecotoxicology Goes on a Chip: Embracing Miniaturized Bioanalysis in Aquatic Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:932-946. [PMID: 29284083 DOI: 10.1021/acs.est.7b03370] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biological and environmental sciences are, more than ever, becoming highly dependent on technological and multidisciplinary approaches that warrant advanced analytical capabilities. Microfluidic lab-on-a-chip technologies are perhaps one the most groundbreaking offshoots of bioengineering, enabling design of an entirely new generation of bioanalytical instrumentation. They represent a unique approach to combine microscale engineering and physics with specific biological questions, providing technological advances that allow for fundamentally new capabilities in the spatiotemporal analysis of molecules, cells, tissues, and even small metazoan organisms. While these miniaturized analytical technologies experience an explosive growth worldwide, with a substantial promise of a direct impact on biosciences, it seems that lab-on-a-chip systems have so far escaped the attention of aquatic ecotoxicologists. In this Critical Review, potential applications of the currently existing and emerging chip-based technologies for aquatic ecotoxicology and water quality monitoring are highlighted. We also offer suggestions on how aquatic ecotoxicology can benefit from adoption of microfluidic lab-on-a-chip devices for accelerated bioanalysis.
Collapse
Affiliation(s)
- Olivia Campana
- Instituto de Ciencias Marinas de Andalucía, CSIC , Puerto Real, 11519, Spain
| | - Donald Wlodkowic
- School of Science, RMIT University , Melbourne, Victoria 3083, Australia
| |
Collapse
|
16
|
Tillitt DE, Buckler JA, Nicks DK, Candrl JS, Claunch RA, Gale RW, Puglis HJ, Little EE, Linbo TL, Baker M. Sensitivity of lake sturgeon (Acipenser fulvescens) early life stages to 2,3,7,8-tetrachlorodibenzo-P-dioxin and 3,3',4,4',5-pentachlorobiphenyl. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:988-998. [PMID: 27600767 DOI: 10.1002/etc.3614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/18/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
The aquatic food web of the Great Lakes has been contaminated with polychlorinated biphenyls (PCBs) since the mid-20th century. Threats of PCB exposures to long-lived species of fish, such as lake sturgeon (Acipenser fulvescens), have been uncertain because of a lack of information on the relative sensitivity of the species. The objective of the present study was to evaluate the sensitivity of early-life stage lake sturgeon to 3,3',4,4',5-pentachlorobiphenyl (PCB-126) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. Mortality, growth, morphological and tissue pathologies, swimming performance, and activity levels were used as assessment endpoints. Pericardial and yolk sac edema, tubular heart, yolk sac hemorrhaging, and small size were the most commonly observed pathologies in both TCDD and PCB-126 exposures, beginning as early as 4 d postfertilization, with many of these pathologies occurring in a dose-dependent manner. Median lethal doses for PCB-126 and TCDD in lake sturgeon were 5.4 ng/g egg (95% confidence interval, 3.9-7.4 ng/g egg) and 0.61 ng/g egg (0.47-0.82 ng/g egg), respectively. The resulting relative potency factor for PCB-126 (0.11) was greater than the World Health Organization estimate for fish (toxic equivalency factor = 0.005), suggesting that current risk assessments may underestimate PCB toxicity toward lake sturgeon. Swimming activity and endurance were reduced in lake sturgeon survivors from the median lethal doses at 60 d postfertilization. Threshold and median toxicity values indicate that lake sturgeon, like other Acipenser species, are more sensitive to PCB and TCDD than the other genus of sturgeon, Scaphirhynchus, found in North America. Indeed, lake sturgeon populations in the Great Lakes and elsewhere are susceptible to PCB/TCDD-induced developmental toxicity in embryos and reductions in swimming performance. Environ Toxicol Chem 2017;36:988-998. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Donald E Tillitt
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Justin A Buckler
- Five Rivers Services Corporation, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - Diane K Nicks
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - James S Candrl
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Rachel A Claunch
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Robert W Gale
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Holly J Puglis
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Edward E Little
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Tiffany L Linbo
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Mary Baker
- Office of Response and Restoration, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| |
Collapse
|
17
|
Eid R, Arab NTT, Greenwood MT. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:399-430. [PMID: 27939167 DOI: 10.1016/j.bbamcr.2016.12.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 12/11/2022]
Abstract
Iron is an essential micronutrient that is problematic for biological systems since it is toxic as it generates free radicals by interconverting between ferrous (Fe2+) and ferric (Fe3+) forms. Additionally, even though iron is abundant, it is largely insoluble so cells must treat biologically available iron as a valuable commodity. Thus elaborate mechanisms have evolved to absorb, re-cycle and store iron while minimizing toxicity. Focusing on rarely encountered situations, most of the existing literature suggests that iron toxicity is common. A more nuanced examination clearly demonstrates that existing regulatory processes are more than adequate to limit the toxicity of iron even in response to iron overload. Only under pathological or artificially harsh situations of exposure to excess iron does it become problematic. Here we review iron metabolism and its toxicity as well as the literature demonstrating that intracellular iron is not toxic but a stress responsive programmed cell death-inducing second messenger.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Nagla T T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada.
| |
Collapse
|
18
|
Xu EG, Mager EM, Grosell M, Pasparakis C, Schlenker LS, Stieglitz JD, Benetti D, Hazard ES, Courtney SM, Diamante G, Freitas J, Hardiman G, Schlenk D. Time- and Oil-Dependent Transcriptomic and Physiological Responses to Deepwater Horizon Oil in Mahi-Mahi (Coryphaena hippurus) Embryos and Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7842-7851. [PMID: 27348429 DOI: 10.1021/acs.est.6b02205] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The Deepwater Horizon (DWH) oil spill contaminated the spawning habitats for numerous commercially and ecologically important fishes. Exposure to the water accommodated fraction (WAF) of oil from the spill has been shown to cause cardiac toxicity during early developmental stages across fishes. To better understand the molecular events and explore new pathways responsible for toxicity, RNA sequencing was performed in conjunction with physiological and morphological assessments to analyze the time-course (24, 48, and 96 h post fertilization (hpf)) of transcriptional and developmental responses in embryos/larvae of mahi-mahi exposed to WAF of weathered (slick) and source DWH oils. Slick oil exposure induced more pronounced changes in gene expression over time than source oil exposure. Predominant transcriptomic responses included alteration of EIF2 signaling, steroid biosynthesis, ribosome biogenesis and activation of the cytochrome P450 pathway. At 96 hpf, slick oil exposure resulted in significant perturbations in eye development and peripheral nervous system, suggesting novel targets in addition to the heart may be involved in the developmental toxicity of DHW oil. Comparisons of changes of cardiac genes with phenotypic responses were consistent with reduced heart rate and increased pericardial edema in larvae exposed to slick oil but not source oil.
Collapse
Affiliation(s)
- Elvis Genbo Xu
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| | - Edward M Mager
- Department of Marine Biology and Ecology, University of Miami , Miami, Florida 33149, United States
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami , Miami, Florida 33149, United States
| | - Christina Pasparakis
- Department of Marine Biology and Ecology, University of Miami , Miami, Florida 33149, United States
| | - Lela S Schlenker
- Department of Marine Biology and Ecology, University of Miami , Miami, Florida 33149, United States
| | - John D Stieglitz
- Department of Marine Biology and Ecology, University of Miami , Miami, Florida 33149, United States
| | - Daniel Benetti
- Department of Marine Biology and Ecology, University of Miami , Miami, Florida 33149, United States
| | - E Starr Hazard
- Center for Genomics Medicine, Medical University of South Carolina , Charleston, South Carolina 29403, United States
- Computational Biology Resource Center, Medical University of South Carolina , Charleston, South Carolina 29403, United States
| | - Sean M Courtney
- Center for Genomics Medicine, Medical University of South Carolina , Charleston, South Carolina 29403, United States
| | - Graciel Diamante
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| | - Juliane Freitas
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| | - Gary Hardiman
- Center for Genomics Medicine, Medical University of South Carolina , Charleston, South Carolina 29403, United States
- Departments of Medicine & Public Health Sciences, Medical University of South Carolina , Charleston, South Carolina 29403, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California , Riverside, California 92521, United States
| |
Collapse
|
19
|
Doering JA, Tang S, Peng H, Eisner BK, Sun J, Giesy JP, Wiseman S, Hecker M. High Conservation in Transcriptomic and Proteomic Response of White Sturgeon to Equipotent Concentrations of 2,3,7,8-TCDD, PCB 77, and Benzo[a]pyrene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4826-4835. [PMID: 27070345 DOI: 10.1021/acs.est.6b00490] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Adverse effects associated with exposure to dioxin-like compounds (DLCs) are mediated primarily through activation of the aryl hydrocarbon receptor (AHR). However, little is known about the cascades of events that link activation of the AHR to apical adverse effects. Therefore, this study used high-throughput, next-generation molecular tools to investigate similarities and differences in whole transcriptome and whole proteome responses to equipotent concentrations of three agonists of the AHR, 2,3,7,8-TCDD, PCB 77, and benzo[a]pyrene, in livers of a nonmodel fish, the white sturgeon (Acipenser transmontanus). A total of 926 and 658 unique transcripts were up- and down-regulated, respectively, by one or more of the three chemicals. Of the transcripts shared by responses to all three chemicals, 85% of up-regulated transcripts and 75% of down-regulated transcripts had the same magnitude of response. A total of 290 and 110 unique proteins were up- and down-regulated, respectively, by one or more of the three chemicals. Of the proteins shared by responses to all three chemicals, 70% of up-regulated proteins and 48% of down-regulated proteins had the same magnitude of response. Among treatments there was 68% similarity between the global transcriptome and global proteome. Pathway analysis revealed that perturbed physiological processes were indistinguishable between equipotent concentrations of the three chemicals. The results of this study contribute toward more completely describing adverse outcome pathways associated with activation of the AHR.
Collapse
Affiliation(s)
- Jon A Doering
- Toxicology Graduate Program, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Song Tang
- School of Environment and Sustainability, University of Saskatchewan , Saskatoon, SK S7N 5C8, Canada
| | - Hui Peng
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Bryanna K Eisner
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Jianxian Sun
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan , Saskatoon, SK S7N 5B4, Canada
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan , 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan , Saskatoon, SK S7N 5C8, Canada
| |
Collapse
|
20
|
Rousseau ME, Sant KE, Borden LR, Franks DG, Hahn ME, Timme-Laragy AR. Regulation of Ahr signaling by Nrf2 during development: Effects of Nrf2a deficiency on PCB126 embryotoxicity in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 167:157-71. [PMID: 26325326 PMCID: PMC4703126 DOI: 10.1016/j.aquatox.2015.08.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 05/23/2023]
Abstract
The embryotoxicity of co-planar PCBs is regulated by the aryl hydrocarbon receptor (Ahr), and has been reported to involve oxidative stress. Ahr participates in crosstalk with another transcription factor, Nfe2l2, or Nrf2. Nrf2 binds to antioxidant response elements to regulate the adaptive response to oxidative stress. To explore aspects of the crosstalk between Nrf2 and Ahr and its impact on development, we used zebrafish (Danio rerio) with a mutated DNA binding domain in Nrf2a (nrf2a(fh318/fh318)), rendering these embryos more sensitive to oxidative stress. Embryos were exposed to 2 nM or 5 nM PCB126 at 24 h post fertilization (prim-5 stage of pharyngula) and examined for gene expression and morphology at 4 days post fertilization (dpf; protruding - mouth stage). Nrf2a mutant eleutheroembryos were more sensitive to PCB126 toxicity at 4 dpf, and in the absence of treatment also displayed some subtle developmental differences from wildtype embryos, including delayed inflation of the swim bladder and smaller yolk sacs. We used qPCR to measure changes in expression of the nrf gene family, keap1a, keap1b, the ahr gene family, and known target genes. cyp1a induction by PCB126 was enhanced in the Nrf2a mutants (156-fold in wildtypes vs. 228-fold in mutants exposed to 5 nM). Decreased expression of heme oxygenase (decycling) 1 (hmox1) in the Nrf2a mutants was accompanied by increased nrf2b expression. Target genes of Nrf2a and AhR2, NAD(P)H:quinone oxidoreductase 1 (nqo1) and glutathione S-transferase, alpha-like (gsta1), showed a 2-5-fold increase in expression in the Nrf2a mutants as compared to wildtype. This study elucidates the interaction between two important transcription factor pathways in the developmental toxicity of co-planar PCBs.
Collapse
Affiliation(s)
- Michelle E Rousseau
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| | - Karilyn E Sant
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| | - Linnea R Borden
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| | - Diana G Franks
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States.
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States.
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, United States; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States.
| |
Collapse
|
21
|
Valenzuela-Miranda D, Boltaña S, Cabrejos ME, Yáñez JM, Gallardo-Escárate C. High-throughput transcriptome analysis of ISAV-infected Atlantic salmon Salmo salar unravels divergent immune responses associated to head-kidney, liver and gills tissues. FISH & SHELLFISH IMMUNOLOGY 2015; 45:367-377. [PMID: 25910847 DOI: 10.1016/j.fsi.2015.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 04/02/2015] [Accepted: 04/04/2015] [Indexed: 06/04/2023]
Abstract
Infectious salmon anaemia virus (ISAV) is an orthomyxovirus causing high mortality in farmed Atlantic salmon (Salmo salar). The collective data from the Atlantic salmon-ISAV interactions, performed "in vitro" using various salmon cell lines and "in vivo" fish infected with different ISAV isolates, have shown a strong regulation of immune related transcripts during the infection. Despite this strong defence response, the majority of fish succumb to infections with ISAV. The deficient protection of the host against ISAV is in part due to virulence factors of the virus, which allow evade the host-defence machinery. As such, the viral replication is uninhibited and viral loads quickly spread to several tissues causing massive cellular damage before the host can develop an effective cell-mediated and humoral outcome. To interrogate the correlation of the viral replication with the host defence response, we used fish that have been infected by cohabitation with ISAV-injected salmons. Whole gene expression patterns were measured with RNA-seq using RNA extracted from Head-kidney, Liver and Gills. The results show divergent mRNA abundance of functional modules related to interferon pathway, adaptive/innate immune response and cellular proliferation/differentiation. Furthermore, gene regulation in distinct tissues during the infection process was independently controlled within the each tissue and the observed mRNA expression suggests high modulation of the ISAV-segment transcription. Importantly this is the first time that strong correlations between functional modules containing significant immune process with protein-protein affinities and viral-segment transcription have been made between different tissues of ISAV-infected fish.
Collapse
Affiliation(s)
- Diego Valenzuela-Miranda
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Sebastian Boltaña
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Maria E Cabrejos
- Facultad de Ciencias Agronómicas, Universidad de Chile, Av Santa Rosa 11315, La Pintana, Santiago 8820808, Chile
| | - José M Yáñez
- Aquainnovo, Talca 60, P.O. Box 30B, Puerto Montt 5503032, Chile; Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Concepción, Chile.
| |
Collapse
|
22
|
Alexeyenko A, Alkasalias T, Pavlova T, Szekely L, Kashuba V, Rundqvist H, Wiklund P, Egevad L, Csermely P, Korcsmaros T, Guven H, Klein G. Confrontation of fibroblasts with cancer cells in vitro: gene network analysis of transcriptome changes and differential capacity to inhibit tumor growth. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:62. [PMID: 26081588 PMCID: PMC4472614 DOI: 10.1186/s13046-015-0178-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/02/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND There is growing evidence that emerging malignancies in solid tissues might be kept under control by physical intercellular contacts with normal fibroblasts. METHODS Here we characterize transcriptional landscapes of fibroblasts that confronted cancer cells. We studied four pairs of in vitro and ex vivo fibroblast lines which, within each pair, differed in their capacity to inhibit cancer cells. The natural process was modeled in vitro by confronting the fibroblasts with PC-3 cancer cells. Fibroblast transcriptomes were recorded by Affymetrix microarrays and then investigated using network analysis. RESULTS The network enrichment analysis allowed us to separate confrontation- and inhibition-specific components of the fibroblast transcriptional response. Confrontation-specific differences were stronger and were characterized by changes in a number of pathways, including Rho, the YAP/TAZ cascade, NF-kB, and TGF-beta signaling, as well as the transcription factor RELA. Inhibition-specific differences were more subtle and characterized by involvement of Rho signaling at the pathway level and by potential individual regulators such as IL6, MAPK8, MAP2K4, PRKCA, JUN, STAT3, and STAT5A. CONCLUSIONS We investigated the interaction between cancer cells and fibroblasts in order to shed light on the potential mechanisms and explain the differential inhibitory capacity of the latter, which enabled both a holistic view on the process and details at the gene/protein level. The combination of our methods pointed to proteins, such as members of the Rho pathway, pro-inflammatory signature and the YAP1/TAZ cascade, that warrant further investigation via tools of experimental perturbation. We also demonstrated functional congruence between the in vitro and ex vivo models. The microarray data are made available via the Gene Expression Omnibus as GSE57199.
Collapse
Affiliation(s)
- Andrey Alexeyenko
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden. .,Bioinformatics Infrastructure for Life Sciences, Science for Life Laboratory, Karolinska Institutet, Box 1031, 171 21, Solna, Sweden.
| | - Twana Alkasalias
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden. .,College of Science, Department of Biology, Salahaddin University, Erbil, Kurdistan-Iraq.
| | - Tatiana Pavlova
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| | - Laszlo Szekely
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| | - Vladimir Kashuba
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden. .,Institute of Molecular Biology and Genetics, UNAS, Kiev, Ukraine.
| | - Helene Rundqvist
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden.
| | - Peter Wiklund
- Department of Molecular Medicine and Surgery, section of Urology, Karolinska Institutet, Stockholm, Sweden.
| | - Lars Egevad
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Peter Csermely
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444, Budapest 8, Hungary.
| | - Tamas Korcsmaros
- TGAC, The Genome Analysis Centre, Norwich Research Park, Norwich, UK. .,Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, UK.
| | - Hayrettin Guven
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| | - George Klein
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Doering JA, Farmahin R, Wiseman S, Beitel SC, Kennedy SW, Giesy JP, Hecker M. Differences in activation of aryl hydrocarbon receptors of white sturgeon relative to lake sturgeon are predicted by identities of key amino acids in the ligand binding domain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4681-4689. [PMID: 25761200 DOI: 10.1021/acs.est.5b00085] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dioxin-like compounds (DLCs) are pollutants of global environmental concern. DLCs elicit their adverse outcomes through activation of the aryl hydrocarbon receptor (AhR). However, there is limited understanding of the mechanisms that result in differences in sensitivity to DLCs among different species of fishes. Understanding these mechanisms is critical for protection of the diversity of fishes exposed to DLCs, including endangered species. This study investigated specific mechanisms that drive responses of two endangered fishes, white sturgeon (Acipenser transmontanus) and lake sturgeon (Acipenser fulvescens) to DLCs. It determined whether differences in sensitivity to activation of AhRs (AhR1 and AhR2) can be predicted based on identities of key amino acids in the ligand binding domain (LBD). White sturgeon were 3- to 30-fold more sensitive than lake sturgeon to exposure to 5 different DLCs based on activation of AhR2. There were no differences in sensitivity between white sturgeon and lake sturgeon based on activation of AhR1. Adverse outcomes as a result of exposure to DLCs have been shown to be mediated through activation of AhR2, but not AhR1, in all fishes studied to date. This indicates that white sturgeon are likely to have greater sensitivity in vivo relative to lake sturgeon. Homology modeling and in silico mutagenesis suggests that differences in sensitivity to activation of AhR2 result from differences in key amino acids at position 388 in the LBD of AhR2 of white sturgeon (Ala-388) and lake sturgeon (Thr-388). This indicates that identities of key amino acids in the LBD of AhR2 could be predictive of both in vitro activation by DLCs and in vivo sensitivity to DLCs in these, and potentially other, fishes.
Collapse
Affiliation(s)
| | - Reza Farmahin
- §Environment Canada, National Wildlife Research Centre, Ottawa, Ontario K1A 0H3, Canada
- ∥Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | | | | - Sean W Kennedy
- §Environment Canada, National Wildlife Research Centre, Ottawa, Ontario K1A 0H3, Canada
- ∥Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - John P Giesy
- ⊥Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Markus Hecker
- ∇School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| |
Collapse
|
24
|
Jayasundara N, Van Tiem Garner L, Meyer JN, Erwin KN, Di Giulio RT. AHR2-Mediated transcriptomic responses underlying the synergistic cardiac developmental toxicity of PAHs. Toxicol Sci 2014; 143:469-81. [PMID: 25412620 DOI: 10.1093/toxsci/kfu245] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) induce developmental defects including cardiac deformities in fish. The aryl hydrocarbon receptor (AHR) mediates the toxicity of some PAHs. Exposure to a simple PAH mixture during embryo development consisting of an AHR agonist (benzo(a)pyrene-BaP) with fluoranthene (FL), an inhibitor of cytochrome p450 1(CYP1)--a gene induced by AHR activation--results in cardiac deformities. Exposure to BaP or FL alone at similar concentrations alters heart rates, but does not induce morphological deformities. Furthermore, AHR2 knockdown prevents the toxicity of BaP + FL mixture. Here, we used a zebrafish microarray analysis to identify heart-specific transcriptomic changes during early development that might underlie cardiotoxicity of BaP + FL. We used AHR2 morphant embryos to determine the role of this receptor in mediating toxicity. Control and knockdown embryos at 36 h post-fertilization were exposed to DMSO, 100 μg/l BaP, 500 μg/l FL, or 100 μg/l BaP + 500 μg/l FL, and heart tissues for RNA were extracted at 2, 6, 12, and 18 h-post-exposure (hpe), prior to the appearance of cardiac deformities. Data show AHR2-dependent BaP + FL effects on expression of genes involved in protein biosynthesis and neuronal development in addition to signaling molecules and their associated molecular pathways. Ca(2+)-cycling and muscle contraction genes were the most significantly differentially expressed category of transcripts when comparing BaP + FL-treated AHR2 morphant and control embryos. These differences were most prominent at 2 and 6 hpe. Therefore, we postulate that BaP + FL may affect cellular Ca(2+) levels and subsequently cardiac muscle function, potentially underlying BaP + FL cardiotoxicity.
Collapse
Affiliation(s)
- Nishad Jayasundara
- *Nicholas School of the Environment and Department of Pediatrics, Duke University, Durham, North Carolina 27708
| | - Lindsey Van Tiem Garner
- *Nicholas School of the Environment and Department of Pediatrics, Duke University, Durham, North Carolina 27708 *Nicholas School of the Environment and Department of Pediatrics, Duke University, Durham, North Carolina 27708 *Nicholas School of the Environment and Department of Pediatrics, Duke University, Durham, North Carolina 27708
| | - Joel N Meyer
- *Nicholas School of the Environment and Department of Pediatrics, Duke University, Durham, North Carolina 27708
| | - Kyle N Erwin
- *Nicholas School of the Environment and Department of Pediatrics, Duke University, Durham, North Carolina 27708
| | - Richard T Di Giulio
- *Nicholas School of the Environment and Department of Pediatrics, Duke University, Durham, North Carolina 27708
| |
Collapse
|
25
|
The transcriptional response to oxidative stress during vertebrate development: effects of tert-butylhydroquinone and 2,3,7,8-tetrachlorodibenzo-p-dioxin. PLoS One 2014; 9:e113158. [PMID: 25402455 PMCID: PMC4234671 DOI: 10.1371/journal.pone.0113158] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/20/2014] [Indexed: 01/12/2023] Open
Abstract
Oxidative stress is an important mechanism of chemical toxicity, contributing to teratogenesis and to cardiovascular and neurodegenerative diseases. Developing animals may be especially sensitive to chemicals causing oxidative stress. The developmental expression and inducibility of anti-oxidant defenses through activation of NF-E2-related factor 2 (NRF2) affect susceptibility to oxidants, but the embryonic response to oxidants is not well understood. To assess the response to chemically mediated oxidative stress and how it may vary during development, zebrafish embryos, eleutheroembryos, or larvae at 1, 2, 3, 4, 5, and 6 days post fertilization (dpf) were exposed to DMSO (0.1%), tert-butylhydroquinone (tBHQ; 10 µM) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 2 nM) for 6 hr. Transcript abundance was assessed by real-time qRT-PCR and microarray. qRT-PCR showed strong (4- to 5-fold) induction of gstp1 by tBHQ as early as 1 dpf. tBHQ also induced gclc (2 dpf), but not sod1, nqo1, or cyp1a. TCDD induced cyp1a but none of the other genes. Microarray analysis showed that 1477 probes were significantly different among the DMSO-, tBHQ-, and TCDD-treated eleutheroembryos at 4 dpf. There was substantial overlap between genes induced in developing zebrafish and a set of marker genes induced by oxidative stress in mammals. Genes induced by tBHQ in 4-dpf zebrafish included those involved in glutathione synthesis and utilization, signal transduction, and DNA damage/stress response. The strong induction of hsp70 determined by microarray was confirmed by qRT-PCR and by use of transgenic zebrafish expressing enhanced green fluorescent protein (EGFP) under control of the hsp70 promoter. Genes strongly down-regulated by tBHQ included mitfa, providing a molecular explanation for the loss of pigmentation in tBHQ-exposed embryos. These data show that zebrafish embryos are responsive to oxidative stress as early as 1 dpf, that responsiveness varies with development in a gene-specific manner, and that the oxidative stress response is substantially conserved in vertebrate animals.
Collapse
|
26
|
Merid SK, Goranskaya D, Alexeyenko A. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis. BMC Bioinformatics 2014; 15:308. [PMID: 25236784 PMCID: PMC4262241 DOI: 10.1186/1471-2105-15-308] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/02/2014] [Indexed: 01/09/2023] Open
Abstract
Background In somatic cancer genomes, delineating genuine driver mutations against a background of multiple passenger events is a challenging task. The difficulty of determining function from sequence data and the low frequency of mutations are increasingly hindering the search for novel, less common cancer drivers. The accumulation of extensive amounts of data on somatic point and copy number alterations necessitates the development of systematic methods for driver mutation analysis. Results We introduce a framework for detecting driver mutations via functional network analysis, which is applied to individual genomes and does not require pooling multiple samples. It probabilistically evaluates 1) functional network links between different mutations in the same genome and 2) links between individual mutations and known cancer pathways. In addition, it can employ correlations of mutation patterns in pairs of genes. The method was used to analyze genomic alterations in two TCGA datasets, one for glioblastoma multiforme and another for ovarian carcinoma, which were generated using different approaches to mutation profiling. The proportions of drivers among the reported de novo point mutations in these cancers were estimated to be 57.8% and 16.8%, respectively. The both sets also included extended chromosomal regions with synchronous duplications or losses of multiple genes. We identified putative copy number driver events within many such segments. Finally, we summarized seemingly disparate mutations and discovered a functional network of collagen modifications in the glioblastoma. In order to select the most efficient network for use with this method, we used a novel, ROC curve-based procedure for benchmarking different network versions by their ability to recover pathway membership. Conclusions The results of our network-based procedure were in good agreement with published gold standard sets of cancer genes and were shown to complement and expand frequency-based driver analyses. On the other hand, three sequence-based methods applied to the same data yielded poor agreement with each other and with our results. We review the difference in driver proportions discovered by different sequencing approaches and discuss the functional roles of novel driver mutations. The software used in this work and the global network of functional couplings are publicly available at http://research.scilifelab.se/andrej_alexeyenko/downloads.html. Electronic supplementary material The online version of this article (doi:10.1186/1471-2105-15-308) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Andrey Alexeyenko
- Department of Microbiology, Tumour and Cell biology, Bioinformatics Infrastructure for Life Sciences, Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
27
|
Dios S, Balseiro P, Costa MM, Romero A, Boltaña S, Roher N, Mackenzie S, Figueras A, Novoa B. The involvement of cholesterol in sepsis and tolerance to lipopolysaccharide highlighted by the transcriptome analysis of zebrafish (Danio rerio). Zebrafish 2014; 11:421-33. [PMID: 25181277 DOI: 10.1089/zeb.2014.0995] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Septic shock is the most common cause of death in intensive care units due to an aggressive inflammatory response that leads to multiple organ failure. However, a lipopolysaccharide (LPS) tolerance phenomenon (a nonreaction to LPS), is also often described. Neither the inflammatory response nor the tolerance is completely understood. In this work, both of these responses were analyzed using microarrays in zebrafish. Fish that were 4 or 6 days postfertilization (dpf) and received a lethal dose (LD) of LPS exhibited 100% mortality in a few days. Their transcriptome profile, even at 4 dpf, resembled the profile in humans with severe sepsis. Moreover, we selected 4-dpf fish to set up a tolerance protocol: fish treated with a nonlethal concentration of Escherichia coli LPS exhibited complete protection against the LD of LPS. Most of the main inflammatory molecules described in mammals were represented in the zebrafish microarray experiments. Additionally and focusing on this tolerance response, the use of cyclodextrins may mobilize cholesterol reservoirs to decrease mortality after a LD dose of LPS. Therefore, it is possible that the use of the whole animal could provide some clues to enhance the understanding of the inflammatory/tolerance response and to guide drug discovery.
Collapse
Affiliation(s)
- Sonia Dios
- 1 Instituto de Investigaciones Marinas (IIM)-Consejo Superior de Investigaciones Científicas (CSIC) , Vigo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
ModuleRole: a tool for modulization, role determination and visualization in protein-protein interaction networks. PLoS One 2014; 9:e94608. [PMID: 24788790 PMCID: PMC4006751 DOI: 10.1371/journal.pone.0094608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 03/17/2014] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED Rapidly increasing amounts of (physical and genetic) protein-protein interaction (PPI) data are produced by various high-throughput techniques, and interpretation of these data remains a major challenge. In order to gain insight into the organization and structure of the resultant large complex networks formed by interacting molecules, using simulated annealing, a method based on the node connectivity, we developed ModuleRole, a user-friendly web server tool which finds modules in PPI network and defines the roles for every node, and produces files for visualization in Cytoscape and Pajek. For given proteins, it analyzes the PPI network from BioGRID database, finds and visualizes the modules these proteins form, and then defines the role every node plays in this network, based on two topological parameters Participation Coefficient and Z-score. This is the first program which provides interactive and very friendly interface for biologists to find and visualize modules and roles of proteins in PPI network. It can be tested online at the website http://www.bioinfo.org/modulerole/index.php, which is free and open to all users and there is no login requirement, with demo data provided by "User Guide" in the menu Help. Non-server application of this program is considered for high-throughput data with more than 200 nodes or user's own interaction datasets. Users are able to bookmark the web link to the result page and access at a later time. As an interactive and highly customizable application, ModuleRole requires no expert knowledge in graph theory on the user side and can be used in both Linux and Windows system, thus a very useful tool for biologist to analyze and visualize PPI networks from databases such as BioGRID. AVAILABILITY ModuleRole is implemented in Java and C, and is freely available at http://www.bioinfo.org/modulerole/index.php. Supplementary information (user guide, demo data) is also available at this website. API for ModuleRole used for this program can be obtained upon request.
Collapse
|
29
|
Xu T, Zhao J, Hu P, Dong Z, Li J, Zhang H, Yin D, Zhao Q. Pentachlorophenol exposure causes Warburg-like effects in zebrafish embryos at gastrulation stage. Toxicol Appl Pharmacol 2014; 277:183-91. [PMID: 24642059 DOI: 10.1016/j.taap.2014.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/21/2014] [Accepted: 03/04/2014] [Indexed: 12/31/2022]
Abstract
Pentachlorophenol (PCP) is a prevalent pollutant in the environment and has been demonstrated to be a serious toxicant to humans and animals. However, little is known regarding the molecular mechanism underlying its toxic effects on vertebrate early development. To explore the impacts and underlying mechanisms of PCP on early development, zebrafish (Danio rerio) embryos were exposed to PCP at concentrations of 0, 20 and 50 μg/L, and microscopic observation and cDNA microarray analysis were subsequently conducted at gastrulation stage. The morphological observations revealed that PCP caused a developmental delay of zebrafish embryos in a concentration-dependent manner. Transcriptomic data showed that 50 μg/L PCP treatment resulted in significant changes in gene expression level, and the genes involved in energy metabolism and cell behavior were identified based on gene functional enrichment analysis. The energy production of embryos was influenced by PCP via the activation of glycolysis along with the inhibition of oxidative phosphorylation (OXPHOS). The results suggested that PCP acts as an inhibitor of OXPHOS at 8 hpf (hours postfertilization). Consistent with the activated glycolysis, the cell cycle activity of PCP-treated embryos was higher than the controls. These characteristics are similar to the Warburg effect, which occurs in human tumors. The microinjection of exogenous ATP confirmed that an additional energy supply could rescue PCP-treated embryos from the developmental delay due to the energy deficit. Taken together, our results demonstrated that PCP causes a Warburg-like effect on zebrafish embryos during gastrulation, and the affected embryos had the phenotype of developmental delay.
Collapse
Affiliation(s)
- Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092, China
| | - Jing Zhao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092, China
| | - Ping Hu
- Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061, China; State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Zhangji Dong
- Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Jingyun Li
- Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Hongchang Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Technology, Tongji University, Shanghai 200092, China.
| | - Qingshun Zhao
- Key Laboratory of Model Animal for Disease Study, Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing 210061, China.
| |
Collapse
|
30
|
Williams TD, Mirbahai L, Chipman JK. The toxicological application of transcriptomics and epigenomics in zebrafish and other teleosts. Brief Funct Genomics 2014; 13:157-71. [DOI: 10.1093/bfgp/elt053] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
31
|
Rey S, Boltana S, Vargas R, Roher N, Mackenzie S. Combining animal personalities with transcriptomics resolves individual variation within a wild-type zebrafish population and identifies underpinning molecular differences in brain function. Mol Ecol 2013; 22:6100-15. [PMID: 24118534 DOI: 10.1111/mec.12556] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/23/2013] [Indexed: 01/06/2023]
Abstract
Resolving phenotype variation within a population in response to environmental perturbation is central to understanding biological adaptation. Relating meaningful adaptive changes at the level of the transcriptome requires the identification of processes that have a functional significance for the individual. This remains a major objective towards understanding the complex interactions between environmental demand and an individual's capacity to respond to such demands. The interpretation of such interactions and the significance of biological variation between individuals from the same or different populations remain a difficult and under-addressed question. Here, we provide evidence that variation in gene expression between individuals in a zebrafish population can be partially resolved by a priori screening for animal personality and accounts for >9% of observed variation in the brain transcriptome. Proactive and reactive individuals within a wild-type population exhibit consistent behavioural responses over time and context that relates to underlying differences in regulated gene networks and predicted protein-protein interactions. These differences can be mapped to distinct regions of the brain and provide a foundation towards understanding the coordination of underpinning adaptive molecular events within populations.
Collapse
Affiliation(s)
- S Rey
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, 08193, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
32
|
Boltaña S, Rey S, Roher N, Vargas R, Huerta M, Huntingford FA, Goetz FW, Moore J, Garcia-Valtanen P, Estepa A, Mackenzie S. Behavioural fever is a synergic signal amplifying the innate immune response. Proc Biol Sci 2013; 280:20131381. [PMID: 23843398 PMCID: PMC3730603 DOI: 10.1098/rspb.2013.1381] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Behavioural fever, defined as an acute change in thermal preference driven by pathogen recognition, has been reported in a variety of invertebrates and ectothermic vertebrates. It has been suggested, but so far not confirmed, that such changes in thermal regime favour the immune response and thus promote survival. Here, we show that zebrafish display behavioural fever that acts to promote extensive and highly specific temperature-dependent changes in the brain transcriptome. The observed coupling of the immune response to fever acts at the gene–environment level to promote a robust, highly specific time-dependent anti-viral response that, under viral infection, increases survival. Fish that are not offered a choice of temperatures and that therefore cannot express behavioural fever show decreased survival under viral challenge. This phenomenon provides an underlying explanation for the varied functional responses observed during systemic fever. Given the effects of behavioural fever on survival and the fact that it exists across considerable phylogenetic space, such immunity–environment interactions are likely to be under strong positive selection.
Collapse
Affiliation(s)
- Sebastian Boltaña
- Institut de Biotecnologia i de Biomedicina, Universitat Autonoma de Barcelona, , Bellaterra (Barcelona) 08193, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Goodale BC, Tilton SC, Corvi MM, Wilson GR, Janszen DB, Anderson KA, Waters KM, Tanguay RL. Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish. Toxicol Appl Pharmacol 2013; 272:656-70. [PMID: 23656968 DOI: 10.1016/j.taap.2013.04.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 11/28/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC-MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures.
Collapse
Affiliation(s)
- Britton C Goodale
- Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Rigaud C, Couillard CM, Pellerin J, Légaré B, Gonzalez P, Hodson PV. Relative potency of PCB126 to TCDD for sublethal embryotoxicity in the mummichog (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 128-129:203-214. [PMID: 23314333 DOI: 10.1016/j.aquatox.2012.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/11/2012] [Accepted: 12/16/2012] [Indexed: 06/01/2023]
Abstract
The relative potency (ReP) of 3,3',4,4',5-pentachlorobiphenyl (PCB126) to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for sublethal responses was assessed in Fundulus heteroclitus embryos. Eggs were treated with intravitelline injections of graded sublethal doses of PCB126 (312-5000 pg g(-1) wet weight, ww) or TCDD (5-1280 pg g(-1) ww). At 16 days post-fertilization (DPF), craniofacial deformities were observed in larvae hatched from eggs treated with the two highest doses of PCB126 (2500-5000 pg g(-1) ww). Both compounds caused a dose-responsive reduction of larval growth and prey capture ability (at ≥1250 pg g(-1) ww), and induction of ethoxyresorufin-O-deethylase (EROD) activity (at ≥80 pg g(-1) ww). The dose-response relationships for EROD activity for PCB126 and TCDD had similar slopes and the ReP of PCB126 to TCDD for EROD activity was estimated at 0.71. This is 140-fold higher than the World Health Organization (WHO) TCDD equivalency factor (TEF) of PCB126 for fish (0.005), which is based on rainbow trout (Oncorhynchus mykiss) embryolethality data. The slope of the dose-response relationship for prey capture ability for PCB126 was steeper than for TCDD, suggesting different mechanisms of action. Expression levels of several genes were also studied by quantitative real-time polymerase chain reaction (qPCR) following exposure to single doses of TCDD or PCB126 (1280 and 1250 pg g(-1) ww, respectively) causing similar EROD induction. A different pattern of responses was observed between PCB126 and TCDD: PCB126 appeared to induce antioxidant responses by inducing sod2 expression, while TCDD did not. These results suggest that relative potencies are species-specific and that the current ReP for PCB126 underestimates its toxicity for some fish species. It is recommended to develop species-specific RePs for a variety of sublethal endpoints and at environmentally relevant doses.
Collapse
Affiliation(s)
- Cyril Rigaud
- Institut des Sciences de la Mer, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Frings O, Alexeyenko A, Sonnhammer ELL. MGclus: network clustering employing shared neighbors. MOLECULAR BIOSYSTEMS 2013; 9:1670-5. [PMID: 23396516 DOI: 10.1039/c3mb25473a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Network analysis is an important tool for functional annotation of genes and proteins. A common approach to discern structure in a global network is to infer network clusters, or modules, and assume a functional coherence within each module, which may represent a complex or a pathway. It is however not trivial to define optimal modules. Although many methods have been proposed, it is unclear which methods perform best in general. It seems that most methods produce far from optimal results but in different ways. MGclus is a new algorithm designed to detect modules with a strongly interconnected neighborhood in large scale biological interaction networks. In our benchmarks we found MGclus to outperform other methods when applied to random graphs with varying degree of noise, and to perform equally or better when applied to biological protein interaction networks. MGclus is implemented in Java and utilizes the JGraphT graph library. It has an easy to use command-line interface and is available for download from .
Collapse
Affiliation(s)
- Oliver Frings
- Stockholm Bioinformatics Centre, Science for Life Laboratory, Box 1031, SE-17121 Solna, Sweden
| | | | | |
Collapse
|
36
|
McCormack T, Frings O, Alexeyenko A, Sonnhammer ELL. Statistical assessment of crosstalk enrichment between gene groups in biological networks. PLoS One 2013; 8:e54945. [PMID: 23372799 PMCID: PMC3553069 DOI: 10.1371/journal.pone.0054945] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/21/2012] [Indexed: 11/19/2022] Open
Abstract
Motivation Analyzing groups of functionally coupled genes or proteins in the context of global interaction networks has become an important aspect of bioinformatic investigations. Assessing the statistical significance of crosstalk enrichment between or within groups of genes can be a valuable tool for functional annotation of experimental gene sets. Results Here we present CrossTalkZ, a statistical method and software to assess the significance of crosstalk enrichment between pairs of gene or protein groups in large biological networks. We demonstrate that the standard z-score is generally an appropriate and unbiased statistic. We further evaluate the ability of four different methods to reliably recover crosstalk within known biological pathways. We conclude that the methods preserving the second-order topological network properties perform best. Finally, we show how CrossTalkZ can be used to annotate experimental gene sets using known pathway annotations and that its performance at this task is superior to gene enrichment analysis (GEA). Availability and Implementation CrossTalkZ (available at http://sonnhammer.sbc.su.se/download/software/CrossTalkZ/) is implemented in C++, easy to use, fast, accepts various input file formats, and produces a number of statistics. These include z-score, p-value, false discovery rate, and a test of normality for the null distributions.
Collapse
Affiliation(s)
- Theodore McCormack
- Stockholm Bioinformatics Centre, Science for Life Laboratory, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Oliver Frings
- Stockholm Bioinformatics Centre, Science for Life Laboratory, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Andrey Alexeyenko
- Stockholm Bioinformatics Centre, Science for Life Laboratory, Solna, Sweden
- School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Erik L. L. Sonnhammer
- Stockholm Bioinformatics Centre, Science for Life Laboratory, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Swedish eScience Research Center, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
37
|
Acute effects of TCDD administration: special emphasis on testicular and sperm mitochondrial function. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2012. [DOI: 10.1016/s2305-0500(13)60091-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
38
|
Akan P, Alexeyenko A, Costea PI, Hedberg L, Solnestam BW, Lundin S, Hällman J, Lundberg E, Uhlén M, Lundeberg J. Comprehensive analysis of the genome transcriptome and proteome landscapes of three tumor cell lines. Genome Med 2012; 4:86. [PMID: 23158748 PMCID: PMC3580420 DOI: 10.1186/gm387] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/25/2012] [Accepted: 11/18/2012] [Indexed: 01/16/2023] Open
Abstract
We here present a comparative genome, transcriptome and functional network analysis of three human cancer cell lines (A431, U251MG and U2OS), and investigate their relation to protein expression. Gene copy numbers significantly influenced corresponding transcript levels; their effect on protein levels was less pronounced. We focused on genes with altered mRNA and/or protein levels to identify those active in tumor maintenance. We provide comprehensive information for the three genomes and demonstrate the advantage of integrative analysis for identifying tumor-related genes amidst numerous background mutations by relating genomic variation to expression/protein abundance data and use gene networks to reveal implicated pathways.
Collapse
Affiliation(s)
- Pelin Akan
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| | - Andrey Alexeyenko
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| | - Paul Igor Costea
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| | - Lilia Hedberg
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| | - Beata Werne Solnestam
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| | - Sverker Lundin
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| | - Jimmie Hällman
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| | - Emma Lundberg
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| | - Mathias Uhlén
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| | - Joakim Lundeberg
- KTH - Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, SE-171 65 Solna, Sweden
| |
Collapse
|
39
|
Network enrichment analysis: extension of gene-set enrichment analysis to gene networks. BMC Bioinformatics 2012; 13:226. [PMID: 22966941 PMCID: PMC3505158 DOI: 10.1186/1471-2105-13-226] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 08/09/2012] [Indexed: 11/29/2022] Open
Abstract
Background Gene-set enrichment analyses (GEA or GSEA) are commonly used for biological characterization of an experimental gene-set. This is done by finding known functional categories, such as pathways or Gene Ontology terms, that are over-represented in the experimental set; the assessment is based on an overlap statistic. Rich biological information in terms of gene interaction network is now widely available, but this topological information is not used by GEA, so there is a need for methods that exploit this type of information in high-throughput data analysis. Results We developed a method of network enrichment analysis (NEA) that extends the overlap statistic in GEA to network links between genes in the experimental set and those in the functional categories. For the crucial step in statistical inference, we developed a fast network randomization algorithm in order to obtain the distribution of any network statistic under the null hypothesis of no association between an experimental gene-set and a functional category. We illustrate the NEA method using gene and protein expression data from a lung cancer study. Conclusions The results indicate that the NEA method is more powerful than the traditional GEA, primarily because the relationships between gene sets were more strongly captured by network connectivity rather than by simple overlaps.
Collapse
|
40
|
King-Heiden TC, Mehta V, Xiong KM, Lanham KA, Antkiewicz DS, Ganser A, Heideman W, Peterson RE. Reproductive and developmental toxicity of dioxin in fish. Mol Cell Endocrinol 2012; 354:121-38. [PMID: 21958697 PMCID: PMC3306500 DOI: 10.1016/j.mce.2011.09.027] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD or dioxin) is a global environmental contaminant and the prototypical ligand for investigating aryl hydrocarbon receptor (AHR)-mediated toxicity. Environmental exposure to TCDD results in developmental and reproductive toxicity in fish, birds and mammals. To resolve the ecotoxicological relevance and human health risks posed by exposure to dioxin-like AHR agonists, a vertebrate model is needed that allows for toxicity studies at various levels of biological organization, assesses adverse reproductive and developmental effects and establishes appropriate integrative correlations between different levels of effects. Here we describe the reproductive and developmental toxicity of TCDD in feral fish species and summarize how using the zebrafish model to investigate TCDD toxicity has enabled us to characterize the AHR signaling in fish and to better understand how dioxin-like chemicals induce toxicity. We propose that such studies can be used to predict the risks that AHR ligands pose to feral fish populations and provide a platform for integrating risk assessments for both ecologically relevant organisms and humans.
Collapse
Affiliation(s)
- Tisha C. King-Heiden
- Department of Biology and River Studies Center, University of Wisconsin, La Crosse, WI
| | - Vatsal Mehta
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
| | - Kong M. Xiong
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI
| | - Kevin A. Lanham
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI
| | | | - Alissa Ganser
- Department of Biology and River Studies Center, University of Wisconsin, La Crosse, WI
| | - Warren Heideman
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
| | - Richard E. Peterson
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
| |
Collapse
|
41
|
Piña B, Barata C. A genomic and ecotoxicological perspective of DNA array studies in aquatic environmental risk assessment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:40-49. [PMID: 22099343 DOI: 10.1016/j.aquatox.2011.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/01/2011] [Accepted: 06/04/2011] [Indexed: 05/31/2023]
Abstract
Ecotoxicogenomics is developing into a key tool for the assessment of environmental impacts and environmental risk assessment for aquatic ecosystems. This review aims to report achievements and drawbacks of this technique and to explore potential conceptual and experimental procedures to improve future investigations. Ecotoxicogenomic literature evidences the ability of genomic technologies to characterize toxicant specific gene transcriptome patterns that can be used to identify major toxicants affecting aquatic species. They also contribute decisively to the development of new molecular biomarkers and, in many cases, to the determination of new possible gene targets. Primary transcriptomic responses obtained after short exposures provided more information of putative gene targets than secondary responses obtained after long, chronic exposures, which in turn are usually more accurate to describe actual environmental impacts in natural populations. Several problems need to be addressed in future investigations: the lack of studies (and genomic information) on key ecological species and taxa, the need to better understand the different transcriptomic responses to high and low doses and, especially, short and long exposures, and the need to improve experimental designs to minimize false transcriptome interpretations of target genes.
Collapse
Affiliation(s)
- Benjamin Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Jordi Girona, 18-26, 08034 Barcelona, Spain
| | | |
Collapse
|
42
|
Hahn ME. Mechanistic research in aquatic toxicology: perspectives and future directions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:67-71. [PMID: 22099346 PMCID: PMC3220193 DOI: 10.1016/j.aquatox.2011.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 05/21/2023]
Abstract
On the 30th anniversary of the journal, I provide a perspective on some of the questions and opportunities for new understanding that will interest aquatic toxicologists during the next 30 years. I focus on mechanisms of toxicity involving transcription factors, signalling pathways, and gene networks involved in toxic and adaptive responses in aquatic animals. Prominent questions address the value of a toxicity pathways approach in aquatic systems, issues involving extrapolation among species, identification of susceptibility genes and useful biomarkers of adverse effect, new emerging contaminants, the importance of epigenetic mechanisms, effects of multiple stressors, evolutionary toxicology, and the relative roles of technical and conceptual limitations to our understanding of chemical effects on aquatic systems.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States.
| |
Collapse
|
43
|
Incardona JP, Linbo TL, Scholz NL. Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development. Toxicol Appl Pharmacol 2011; 257:242-9. [PMID: 21964300 DOI: 10.1016/j.taap.2011.09.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/08/2011] [Accepted: 09/08/2011] [Indexed: 01/22/2023]
Abstract
Petroleum-derived compounds, including polycyclic aromatic hydrocarbons (PAHs), commonly occur as complex mixtures in the environment. Recent studies using the zebrafish experimental model have shown that PAHs are toxic to the embryonic cardiovascular system, and that the severity and nature of this developmental cardiotoxicity varies by individual PAH. In the present study we characterize the toxicity of the relatively higher molecular weight 5-ring PAHs benzo[a]pyrene (BaP), benzo[e]pyrene (BeP), and benzo[k]fluoranthene (BkF). While all three compounds target the cardiovascular system, the underlying role of the ligand-activated aryl hydrocarbon receptor (AHR2) and the tissue-specific induction of the cytochrome p450 metabolic pathway (CYP1A) were distinct for each. BaP exposure (40μM) produced AHR2-dependent bradycardia, pericardial edema, and myocardial CYP1A immunofluorescence. By contrast, BkF exposure (4-40μM) caused more severe pericardial edema, looping defects, and erythrocyte regurgitation through the atrioventricular valve that were AHR2-independent (i.e., absent myocardial or endocardial CYP1A induction). Lastly, exposure to BeP (40μM) yielded a low level of CYP1A+ signal in the vascular endothelium of the head and trunk, without evident toxic effects on cardiac function or morphogenesis. Combined with earlier work on 3- and 4-ring PAHs, our findings provide a more complete picture of how individual PAHs may drive the cardiotoxicity of mixtures in which they predominate. This will improve toxic injury assessments and risk assessments for wild fish populations that spawn in habitats altered by overlapping petroleum-related human impacts such as oil spills, urban stormwater runoff, or sediments contaminated by legacy industrial activities.
Collapse
Affiliation(s)
- John P Incardona
- Ecotoxicology and Environmental Fish Health Program, Environmental Conservation Division, Northwest Fisheries Science Center, 2725 Montlake Blvd E, Seattle,WA 98112, United States.
| | | | | |
Collapse
|
44
|
Chang Y, Feng L, Miao W. Toxicogenomic investigation of Tetrahymena thermophila exposed to dichlorodiphenyltrichloroethane (DDT), tributyltin (TBT), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). SCIENCE CHINA-LIFE SCIENCES 2011; 54:617-25. [PMID: 21748585 DOI: 10.1007/s11427-011-4194-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 06/20/2011] [Indexed: 12/31/2022]
Abstract
Dichlorodiphenyltrichloroethane (DDT), tributyltin (TBT), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are persistent in the environment and cause continuous toxic effects in humans and aquatic life. Tetrahymena thermophila has the potential for use as a model for research regarding toxicants. In this study, this organism was used to analyze a genome-wide microarray generated from cells exposed to DDT, TBT and TCDD. To accomplish this, genes differentially expressed when treated with each toxicant were identified, after which their functions were categorized using GO enrichment analysis. The results suggested that the responses of T. thermophila were similar to those of multicellular organisms. Additionally, the context likelihood of relatedness method (CLR) was applied to construct a TCDD-relevant network. The T-shaped network obtained could be functionally divided into two subnetworks. The general functions of both subnetworks were related to the epigenetic mechanism of TCDD. Based on analysis of the networks, a model of the TCDD effect on T. thermophila was inferred. Thus, Tetrahymena has the potential to be a good unicellular eukaryotic model for toxic mechanism research at the genome level.
Collapse
Affiliation(s)
- Yue Chang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | | | | |
Collapse
|